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Supporting Information A. Numerical Illustration of Theoretical Findings.

Here we demonstrate the finite-n implications of our findings. In the following figures, we plot figures
for different values of an upper bound on the conditional probability of each data entry being observed qú,
the number of observations (rows) n, the number of variables (columns) k and a sharp lower bound on
pall denoted pall = (1 ≠ qf(n)

ú )n. pall is the lowest possible (”best-case”) probability that listwise deletion
removes all data.

Figure 3 demonstrates how listwise deletion asymptotically removes all data. Figure 3 plots the sharp
lower bound pall for the probability that listwise deletion removes all data against the number of variables
k in three different settings for n = 100, 1000, 10000 in each subfigure. By Lemma 3, we can compute
pall = (1 ≠ qk

ú)n.

Figure 3. Lower bound of probability that all rows missing (pall) plotted against values of n,k and qú.

In each subfigure, we simultaneously consider three different values for the upper bound of the conditional
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probability qú defined in Assumption 2: the red curves represent pall calculated with qú = 0.75, the
blue curves represent pall calculated with qú = 0.90 , and the green curves represent pall calculated with
qú = 0.99. We see that the rate of pall converges to 1 as k gets large, which is faster when q gets smaller.
However, the rate of convergence heavily depends on qú. When qú = 0.75 (i.e., each variable has at
least a 25% chance of idiosyncratic missingness), the lower bound p

all
is extremely close to 1 even when

n = 10, 000. However, when the upper bound qú is as large as 0.99, pall is essentially zero when n = 100
and k = 150, reflecting the fact that the probability of idiosyncratic missingness is essential in determining
the properties of listwise deletion.

Figure 4 illustrates, for a given n, qú, how large k can be while still ensuring that pall Æ 0.5, 0.99. We
compute this using the result from Lemma 3, pall = (1 ≠ qk

ú)n. Since (1 ≠ qk
ú)n is strictly increasing

in k, solving for equality pall = (1 ≠ qk
ú)n we will get the smallest possible k for each pall that k =E

log(1≠pall
1/n)

log(qú)

F

. We present two subfigures: with pall = 0.5 for the first subfigure and pall = 0.99 for the

second subfigure, and we plot the k against the n for three different upper bounds qú = 0.75, 0.90, 0.99.

With more missingness, qú = 0.75, 0.90, even relatively small k can yield missingness of pall. For example,
even with n = 10, 000 and qú = 0.75 we need only k = 33 to have a 50% probability that all rows will be
missing. However, when missingness is very low, k needs to be very large to cause all data to be missing.
For example, with n = 10, 000 and qú = 0.99, we need k = 952 to have a 50% probability that all rows
will be missing.

(a) pall Æ 0.5 (b) pall Æ 0.99

Figure 4. Largest k such that pall Æ 0.5, 0.99 plotted against n and qú.

Our final numerical illustration considers an upper bound on the expected proportion of observations that
are missing, 1 ≠ qk

ú , which does not depend on n. Figure 5 plots the expected proportion of data missing
versus the number of variables k. We see the same qualititative relationship as before — as the number of
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variables increases, we have a very quick decline in the proportion of usable data. In comparison to Figure
3, the expected proportion of data missing tends faster to 1 for each qú considered as k gets large, as it is
equivalent to the special case for pall when n = 1.

Figure 5. Lower bound of expected proportion of all rows missing (pall) plotted against values of n,k and
qú.

Supporting Information B. Asymptotics in the Number of Groups of Variables.

In this section, we provide a formal exposition of how our results can generalize to the case where we
have idiosyncratic missingness with respect to groups of variables, rather than each specific variable. The
language is largely duplicative of the language in Section 2 of the main text; however it makes explicit the
direct manner in which the result can generalize.

Let n be the number of observations. Let g be the number of variable groups in the dataset, within which
all observations share an identical missingness pattern. We let Mij be a random indicator variable for
whether or not the jth group in the ith row is missing. We use one indicator for each group due to the
shared missingness. Similar to the previous setting, we use Mij to represent the random vector collecting
the missingness indicators up to variable j, (Mi1, Mi2, . . . , Mij). Let k be the number of variables in the
dataset. Note that, by construction, we know that k Ø g since groups contain at least one variable.

We will restate Assumption 1 and 2 in the group settings in Assumption 6 and 7 such that there is mutual
independence of missingness across rows as well as the conditional probability that an observation is
missing being bounded away from zero.
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Assumption 6. All rows of the data

1
(M11, ..., M1g), ..., (Mn1, ..., Mng)

2
are mutually independent.

Assumption 7. There exists a qú œ [0, 1) such that for all i,

• Pr(Mi1 = 0) Æ qú

• Pr(Mij = 0|Mi(j≠1) = 0) Æ qú, for all j œ {2, . . . , g} such that Pr(Mi(j≠1) = 0) > 0

Then we can obtain a group version of Lemma 3 (Lemma 8) following similar steps.

Lemma 8. Under Assumptions 6 and 7, the probability that listwise deletion removes all rows is pall Ø
(1 ≠ qg

ú)n
.

Proof of Lemma 8: Similar to the proof of Lemma 3, we will still consider two cases for qú. Suppose
qú = 0. Since this entails that all groups of variables are completely missing, pall = 1 = (1 ≠ qg

ú)n. For the
second case suppose qú œ (0, 1). By the group independence assumption, pall = �n

i=1(1 ≠ Pr(Mig = 0)).
Denote qij = Pr(Mij = 0|Mi(j≠1) = 0) if j > 1, else qij = Pr(Mij = 0). By Assumption 7, qij Æ qú,
for all j œ {1, 2, . . . , g}. By the chain rule of conditional probability, Pr(Mig = 0) = qi1qi2 · · · qig. This
means that the probability of a single observation containing at least one missing entry is (1≠qi1qi2 · · · qig).
Since qú Ø qij for all j œ {1, 2, . . . , g}, qg

ú Ø qi1qi2 · · · qig. Thus (1 ≠ qg
ú) Æ (1 ≠ qi1qi2 · · · qig). Thus

(1 ≠ qg
ú)n is a lower bound for the probability of all n observations each containing at least one missing

entry. ⇤

Similarly, we will embed the problem into a sequence gn = l(n), where l has range over the natural
numbers, and allow Mij,n and qij,n to vary at each n. We omit the n notation for simplicity. Hence we
have the third assumption in the group setting that g grows superlogarithmically in n. We discussed the
interpretation of this assumption in the variable setting extensively in the Theory section, so here we will
only present the assumption and the group version of Proposition 5 in Proposition 10, as well as a proof
for Proposition 10.

Assumption 9. The number of groups of covariates grows superlogarithmically in n, so that limnæŒ
l(n)

log(n) =
Œ.

Proposition 10. Under Assumptions 6, 7 and 9, limnæŒ pall = 1.

Proof of Proposition 10: First we will show that limnæŒ nql(n)
ú = 0 (in asymptotic shorthand notation,

ql(n)
ú = o(n≠1)). Note that

lim
næŒ

nql(n)
ú = lim

næŒ
elog nq

l(n)
ú = lim

næŒ
elog n+l(n) log qú .

Since qú œ (0, 1), log qú < 0. Since l(n) = Ê(log n), the sequence log n + l(n) log qú diverges to negative
infinity, and so

lim
næŒ

elog n+l(n) log qú = 0 = lim
næŒ

nql(n)
ú .

Since qú œ (0, 1) and k = l(n) Øú 1, ≠ql(n)
ú > ≠1 and 1 ≠ ql(n)

ú Æ 1. By Bernoulli’s Inequality, since
n œ N, (1 ≠ ql(n)

ú )n Øú 1 + n(≠ql(n)
ú ) = 1 ≠ nql(n)

ú . Thus 1 ≠ nql(n)
ú Æ (1 ≠ ql(n

ú )n Æ 1 in the common
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domain n œ N. Since limnæŒ 1 = 1 and limnæŒ 1 ≠ nql(n)
ú = 1 ≠ limnæŒ nql(n)

ú = 1, by the Squeeze
Theorem,

lim
næŒ

(1 ≠ ql(n)
ú )n = 1.

Then, since ’n, (1 ≠ ql(n)
ú )n Æ pall Æ 1, we have limnæŒ pall = 1, again by the Squeeze Theorem. ⇤
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