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A Additional Discussion on the Bias-Corrected Estimator

A.1 Derivation of the Bias

Here, we derive the bias in the naı̈ve crosswise estimator based on the argument in Section 3. According
to the conventional definition of bias in estimators, we define bias as the (signed) difference between the
expected value of the naı̈ve crosswise estimator and the true quantity of interest:

BCM ≡ E[π̂CM ]− π (A.1a)

= E

[
λ̂+ p− 1

2p− 1

]
− λ− (1− p)γ − κ(1− γ)

(2p− 1)γ
(A.1b)

=
γ(λ+ p− 1)− (λ− γ + pγ − κ+ κγ)

(2p− 1)γ
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=
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(A.1d)

=
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(2p− 1)γ
(A.1e)

=
λ− κ

(2p− 1)
− λ− κ

(2p− 1)γ
(A.1f)

=
1

2

(
λ− κ
p− 1

2

)
− 1

2γ

(
λ− κ
p− 1
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)
(A.1g)

=

(
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2
− 1

2γ

)(
λ− κ
p− 1

2

)
(A.1h)

The second term of the second line was obtained by transforming Equation (1c) as:

λ =
{
πp+ (1− π)(1− p)

}
γ + κ(1− γ) (A.2a)

⇒
{
πp+ (1− π)(1− p)

}
γ = λ− κ(1− γ) (A.2b)

⇒
{
πp+ 1− p− π + πp

}
γ = λ− κ(1− γ) (A.2c)

⇒
{

2πp− π + 1− p
}
γ = λ− κ(1− γ) (A.2d)

⇒
{
π(2p− 1) + 1− p

}
γ = λ− κ(1− γ) (A.2e)

⇒ π(2p− 1)γ + (1− p)γ = λ− κ(1− γ) (A.2f)

⇒ π(2p− 1)γ = λ− (1− p)γ − κ(1− γ) (A.2g)

⇒ π =
λ− (1− p)γ − κ(1− γ)

(2p− 1)γ
(A.2h)

(A.2i)
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A.2 Behavior of the Bias

By definition, the bias vanishes when the proportion of attentive respondents is 1 (γ = 1). To see this,
simply observe the following limit:

lim
γ→1

(
1

2
− 1

2γ

)(
λ− κ
p− 1

2

)
(A.3a)

=

(
1

2
− 1

2

)(
λ− κ
p− 1

2

)
(A.3b)

= 0 (A.3c)

In contrast, as the proportion of attentive respondents approaches 0 (from the side of 1), the bias term
explodes and approaches positive infinity. To see this, observe that the multiplier

(
1
2−

1
2λ

)
is always negative

and the multiplicand
(
λ−κ
p− 1

2

)
is also negative under some regularity conditions. These conditions are that

π < 0.5, and p < 1
2 (and thus λ > κ). These regularity conditions hold in most surveys that use the

crosswise model. Since the absolute value of the multiplier grows as λ approaches 0, the bias term increases
as the proportion of attentive responses decreases.

However, the limit itself does not exist as:

lim
λ→0

(
1

2
− 1

2γ

)(
λ− κ
p− 1

2

)
(A.4a)

= Undefined (A.4b)

A.3 Simulation of the Bias

Figure A.1 visualizes the properties of the bias in the conventional crosswise estimator (assuming κ = 0.5).
It shows that the size of the bias increases as (1) the percentage of inattentive respondents increases and (2)
the quantity of interest approaches 0, but that it does not change regardless of the value of p.
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Figure A.1: Bias in the Naı̈ve Crosswise Estimator. Note: Both panels display the (theoretical) bias in the
conventional crosswise estimator with varying levels of inattentive respondents.
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A.4 Derivation of the Variance

Here, we derive the population and sample variance of the bias-corrected crosswise estimator discussed in
Section 3.
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Similarly,

V̂(π̂BC) = V̂

[(
λ̂

λ̂′

)(
1
2 − p

′

2p− 1

)]
(A.5m)

(A.5n)

A.5 Unbiasedness of the Naı̈ve Estimator

To see that the naı̈ve estimator is unbiased when γ = 1, let Yi be a binary random variable denoting
whether respondent i chooses the crosswise item (i.e., TRUE-TRUE or FALSE-FALSE) and its realization
yi ∈ {0, 1}. Let the number of respondents choosing the crosswise item be k =

∑N
i=1 yi, where k < n.

Then, the likelihood function for λ given any observed k is L(λ|n, k) =
(
n
k

)
λk(1 − λ)n−k. Applying
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the first-order condition yields a maximum likelihood estimate (MLE) of λ, λ̂ = k
n , where E[λ̂] = λ. The

unbiasedness follows from the fact that E[λ̂] = E
[
k
n

]
= 1

nE[k] = 1
nnλ = λ. Following the parameterization

invariance property of MLEs, E[π̂CM ] = π. This result, however, does not hold when γ 6= 1.

A.6 Unbiasedness of λ̂′

To see that λ̂′ is an unbiased estimator of λ′, let us define that λ̂′ is a binomial random variable (like λ̂)
with parameters n, λ′ and λ̂′ = k′/n, where k′ is the number of people who choose the crosswise item in
the anchor question. This is because k′ ∼ Binom(n, λ′) and λ̂′ = k′/n suggests λ̂′ ∼ Binom(n, k′). The
probability mass function that λ̂′ taking n′/n is given by Pr(λ̂′ = n′

n ) =
(
n
n′

)
(k′)n

′
(1− k′)n−n′ .

A.7 Unbiasedness of the Proposed Estimator

Here, we offer proof that the proposed estimator is an unbiased estimator of the quantity of interest under
two assumptions.
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= π (by the definition of the bias) (A.6i)
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B Discussions and Evaluations of Alternative Estimators

In this appendix section, we describe two other methods for adjusting crosswise estimates for bias resulting
from respondent inattention. In the first subsection we describe these methods a explain why we should only
expect them to be useful under ideal conditions unlikely to be met in most settings in which the crosswise
model would be used. Next, we present a set of simulation based comparison of the bias, root mean squared
error, and coverage of the 95% confidence intervals for these estimators against our own.

B.1 Description of Alternative Estimators Estimator

The first suggestion for correcting bias due to inattention in the crosswise estimator was by Enzmann (2017),
who made the suggestion in a book chapter on crosswise methods, but provided no discussion or justification
for his proposal. His proposal begins with the formula below and then suggests estimating the unknown
proportion of inattentive respondents by asking, in an unprotected direct question, whether the respondent
answered the crosswise question randomly. It’s unclear from his brief treatment whether this should be done
separately for each crosswise question in a survey or only once for the survey as a whole.

π̂CM − 0.5r

1− r
(B.1a)

where π̂CM is the naive crosswise estimator and r is the population proportion of inattentive respondents.
In a later paper, Schnapp (2019, 311) reproduces Enzmanns formula and then leans into the idea of

estimating the percentage of random responders in this equation via direct questioning. Further, he adds an
equation for the variance of the estimator. Below, we call this the Enzmann-Schnapp estimator, or just “ES.”

Besides describing the Enzmann method, Schnapp (2019) also presents his own proposal for a bias-
corrected estimator, which he calls the CMR-I. That estimator also asks respondents if they answered the
crosswise question(s) randomly and then uses that answer to adjust individual answers to the crosswise
questions accordingly (e.g., changing the answers for respondents that report answering randomly from
either the recorded 0 or 1 to 0.5 and then using all the adjusted and unadjusted responses together to calculate
λ̂ (the proportion of respondents choosing “both or neither is true”) in the usual crosswise formula). He then
applies the usual variance estimator for crosswise models (not the one he proposed for Enzmann’s estimator)
to this estimator.

The main difference in our estimator and the ES and CMR-I estimators is that, while we use anchor
questions to estimate the share of inattentive respondents, these estimators both do so by directly asking
respondents whether they answered the crosswise question(s) randomly. And, of course, the CMR-I esti-
mator also differs more fundamentally in its overall construction. Likewise, Schnapp’s variance estimate
for this estimator is derived under the assumption that the percentage of random responders is known and
so is not appropriate for the full estimator he actually describes (and uses), which includes the use of direct
questioning about inattention.

Importantly, in both the ES and CMR-I estimators, the direct question about random responding is asked
without the protection of the crosswise format and so it is likely that at least some respondents will hesitate
to admit to that socially-undesirable behavior. Thus, in our simulations below, we present results for both
The ES and CMR-I estimators with varying levels of veracity for the direct question about random guessing.

B.2 Comparative Evaluation of the Estimators

To perform our comparative evaluation, we replicate the simulations presented in Figure 1. To reiterate,
in each simulation, we draw π from continuous uniform distribution (0.1, 0.45), p and p′ from continuous
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uniform distribution (0.088, 0.333) (reflecting the smallest and largest values in existing studies), and γ from
continuous uniform distribution (0.5, 1). Finally, we repeat the set of experiments for different sample sizes
of 200, 500, 1000, 2000, and 5000 and evaluate the results. To include the ES and CMR-I estimators in
the simulations, we simulate direct questioning that asks whether respondents give random answers in the
crosswise question with three different percentages of “liars” in the direct question: 0%, 25%, and 50%. We
call these conditions “No liars”, “25% liars”, and “50% liars”, respectively. When simulating respondent an-
swers to the direct question about whether they answered randomly, we also make the following assumption:

Assumption B.1 (One-side Lying). Only inattentive respondents may lie about giving random answers in
the crosswise questions.

In other words, we assume that attentive respondents always report that they did not give random answers
in the crosswise model.

Figure B.1 report the results of our comparative assessments. It suggests that the CMR-I estimator
does not work at all and the ES estimator only works under the no lair condition, which is hard to satisfy.
Additionally, the ES estimator appears to have a wider coverage of the ground truth than necessary (i.e.,
their 95% confidence intervals appear to cover the ground truth almost 100% of the time). In contrast, the
95% confidence interval of our estimator covers the ground truth 95% of the times as expected.

If one focuses only on the bias and MSE results, it is clear that the our estimator and the ES estimator
produce identical results under the No Liars condition. Indeed, in Section B.3 below, we show that if (and
only if) that assumption (and one other) holds, the ES estimator is algebraically equivalent to ours. Of
course, this key assumption is unlikely to hold in any realistic setting.
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Figure B.1: Finite Sample Performance of the Naı̈ve, Bias-Corrected, and Enzmann-Schnapp Esti-
mators. Note: This figure displays the bias, root-mean-square error, and the coverage of 95% confidence
interval of naı̈ve estimator, our estimator, Enzmann-Schanpp correction (No liars), Enzmann-Schanpp cor-
rection (25% liars), Enzmann-Schanpp correction (50% liars), CMR-I (No liars), CMR-I (25% liars), and
CMR-I (50% liars).

To further investigate the relative efficiency of our estimator vs. the ES in its most favorable condition
(i.e., no lair), Figure B.2 shows the relative length of the 95% confidence interval of our estimator (left
panel) and the ES (right panel) to that of the conventional estimator. The figure illustrates that regardless
of the sample size our estimator has a narrower confidence interval (about 1.3 times larger than the conven-
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tional crosswise confidence interval) than does the ES (about 4 times larger than the conventional crosswise
confidence interval).
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Figure B.2: Relative Lengths of 95% Confidence Interval with respect to the Naı̈ve estimator. Note:
This figure displays the length of the 95% confidence intervals of each estimator relative to that of the
conventional estimator on the y-axis. For example, for 200 observations, the confidence interval of the
Enzmann-Schnapp correction is about 4 times larger than that of the naı̈ve estimator.
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B.3 Proof that Equation (3d) and Equation (B.1.a) are Equivalent under Several Conditions

In this section we show that our bias-corrected estimator is equivalent to the Enzmann-Schnapp correction
if and only if we assume that r is an estimated proportion of inattentive respondents (i.e., r = 1 − γ̂),
Assumption 1 holds (i.e., κ = 0.5), and the proportion of inattentive respondents is estimated in the same
way using the anchor question. To prove the equivalence, we show that the difference between the two
estimators is zero under these conditions.

π̂Schnapp-Enznmann − π̂BC =
π̂CM − 0.5r

1− r
−

[
π̂CM − B̂CM

]
(B.2a)

=
π̂CM − 1

2(1− γ̂)

γ̂
− π̂CM + B̂CM (B.2b)

=
π̂CM
γ̂
− 1

2γ̂
(1− γ̂)− π̂CM + B̂CM (B.2c)
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1
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− 1
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− 1
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1

2
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(
1
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)(
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1

2

)
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2

)
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=

(
1
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)(
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2(p− 1
2)
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2

)
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=

(
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=

(
1
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− 1

)(
λ̂+ p− 1− p+ 1

2

2(p− 1
2)
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=

(
1
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− 1

)(
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)
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(
1

2
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)(
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p− 1
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)
+ B̂CM (B.2l)

= −B̂CM + B̂CM (B.2m)

= 0 (B.2n)
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C Additional Discussion and Simulations for Extensions

In this section, we present additional information for the proposed extensions of the bias-corrected estimator.

C.1 Sensitivity Analysis

Here, we present the full results of our sensitivity analysis. We applied our sensitivity analysis to all existing
studies (49 estimates reported by 21 unique articles) for which we were able to collect essential information.
For consistency, if the original estimate (π̂) is between 0.5 and 1 (where we expect over-reporting), we flip
the direction of the estimate so that it will be between 0 and 0.5 (where we expect under-reporting). We did
not apply this transformation for Figure 5. The featured studies are from Coutts et al. (2011); Jann, Jerke and
Krumpal (2012); Kundt, Misch and Nerré (2013); Korndörfer, Krumpal and Schmukle (2014); Shamsipour
et al. (2014); Kundt (2014); Hoffmann et al. (2015); Gingerich et al. (2016); Waubert de Puiseau, Hoffmann
and Musch (2017); Höglinger and Jann (2018); Nasirian et al. (2018); Kuhn and Vivyan (2018); Banayejeddi
et al. (2019); Hoffmann and Musch (2019); Hopp and Speil (2019); Klimas et al. (2019); Meisters, Hoffmann
and Musch (2020a); Hoffmann, Meisters and Musch (2020); ÖZGÜL (2020); Mieth et al. (2021); Canan
et al. (2021).
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Figure C.1: Sensitivity Analysis of Previous Crosswise Estimates. Note: For each estimate, the bias
correction is applied with varying percentages of inattentive respondents.
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C.2 Weighting

Here, we present our strategy to incorporate sample weights into our bias-corrected estimator. Recall that
the only sample statistics we observe in our framework are λ̂ and λ̂′, which are observed proportions of
respondents choosing the crosswise item in the crosswise and anchor questions, respectively. The key idea
here is that we can apply a Horvitz-Thompson-type estimator of the mean (and thus the inverse probability
weighting more generally) to the crosswise proportions, where weights are the inverse of the probabilities
that respondents in different strata will be in the sample. Namely, we can apply a weight wi = 1

Pr(Si=1|Xi)
,

where Si = {0, 1} is a binary variable denoting if respondent i is in the sample and Xi is a vector of the
respondent’s background characteristics.1

Let Yi ∈ {0, 1} be a binary variable denoting if respondent i chooses the crosswise item in the crosswise
question and Ai ∈ {0, 1} be a binary variable denoting if the same respondent chooses the crosswise item
in the anchor question. We then estimate the weighted crosswise proportion in the crosswise question and
the weighted proportion of attentive respondents in the following way:

λ̂w =

∑n
i=1wiYi∑n
i=1wi

and γ̂w =

∑n
i=1wiAi∑n
i=1wi

− 1
2

1
2 − p′

, (C.1a)

The proof is straightforward. Assuming that Yi⊥⊥Si|X (choosing the crosswise item and being in the
sample are statistically independent conditional upon a covaraite), weighting can recover the population
crosswise proportion λ from the sample crosswise response YiSi:

E

[
YiSi

Pr(Si = 1|X)

]

=E

[
E

[
YiSi

Pr(Si = 1|X)

∣∣∣∣∣X
]

(Iterative Expectation)

=E

[
E[Yi|X]E[Si|X]

Pr(Si = 1|X)

]
(Conditional Independence)

=E

[
E[Yi|X]Pr(Si = 1|X)

Pr(Si = 1|X)

]
(Definition of Expectation)

=E[E[Yi|X]]

=E[Yi] (Iterative Expectation)

=λ

1In this article, we only consider the base weight, but one can naturally include other weights such as non-response weights to
construct the final survey weights.
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Similarly, we can show that

E

[
AiSi

Pr(Si = 1|X)

]

=E

[
E

[
AiSi

Pr(Si = 1|X)

∣∣∣∣∣X
]

=E[Ai]

=λ′

In practice, researchers can calculate weights using their favorite weighting techniques such as raking
(or iterative proportional fitting), matching, propensity score weighting, or sequential applications of these.
Recent research shows that “when it comes to accuracy, choosing the right variables for weighting is more
important than choosing the right statistical method” (Mercer, Lau and Kennedy, 2018, 4). Thus, we rec-
ommend that researchers think carefully about the association between the sensitive attribute of interest and
basic demographic and other context-dependent factors when using weighting. To choose the “right” vari-
ables, our proposed regression models can also be useful exploratory aids. When generalizing the results on
sensitive attributes to a larger population, however, it is strongly advised to elaborate on how weights are
constructed and what potential bias may exist (Franco et al., 2017).

Another possible approach to deal with highly selected samples is to employ multilevel regression and
post-stratification (MRP) (Downes et al., 2018). While we do not consider MRP with crosswise estimates
in this article, future research should explore the optimal strategy to use MRP in sensitive questions.

To illustrate our weighting strategy, we simulate crosswise data with two covariates: X1 ∼ Binomial(0.5)
and X2 ∼ Poisson(30) for, for example, 100,000 voters. Specifically, we simulate the true prevalence rates
in the crosswise and anchor questions according to the following generative models:

π =
exp(β0 + β1X1 + β2X2)

1 + exp(β0 + β1X1 + β2X2)

γ =
exp(θ0 + θ1X1 + θ2X2)

1 + exp(θ0 + θ1X1 + θ2X2)
,

where we set β0 = −1.5, β1 = 0.5, β2 = 0.02 and θ0 = 2, θ1 = −0.1, θ2 = −0.01.. For example, we can
consider X1 as a binary indicator for being female (as opposed to non-female) and female voters are more
likely to have sensitive traits than non-female voters (i.e., β1 = 0.5).

Under this generative model, the population-level proportion of individuals with sensitive traits is 0.35
(and the population proportion is 0.40 for female and 0.29 for non-female voters). Now, from the population
of 100,000 voters, we sample 1000, 2000, 3000, 4000, and 5000 individuals. In this process, we intentionally
oversample female voters with probability 0.7. Consequently, we obtain sample weights 1.43 for female
voters and 3.33 for non-female voters. We then generate bias-corrected crosswise estimates with and without
incorporating the sample weights.

Figure C.2 compares bias-corrected crosswise estimates based on simulated unrepresentative samples
with and without sample weights. It demonstrates that while the unweighted estimator always overestimates
the ground truth, the weighted estimator captures the population-level quantity of interest.
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Figure C.2: Weighting in the Crosswise Estimator. Note: This figure shows bias-corrected crosswise
estimates without weighting (left panel) and estimates with weighting (right panel) based on simulated
unrepresentative samples.

C.3 Multivariate Regression: Sensitive Attribute as an Outcome

To validate this regression framework, we simulate crosswise data with two covariates: X1 ∼ Binomial(0.5)
and X2 ∼ Poisson(30). Specifically, we simulate the true prevalence rates in the crosswise and anchor
questions according to the following generative models:

π =
exp(β0 + β1X1 + β2X2)

1 + exp(β0 + β1X1 + β2X2)

γ =
exp(θ0 + θ1X1 + θ2X2)

1 + exp(θ0 + θ1X1 + θ2X2)
,

where we set β0 = −1.5, β1 = 0.5, β2 = 0.02 and θ0 = 2, θ1 = −0.1, θ2 = −0.01..
Finally, we estimate the crosswise regression with the latent sensitive trait as the outcome variable. For

estimation, we take a natural log of this likelihood function and maximize it by an iterative maximization
method. For inference, we use the negative inverse of the Hessian matrix of the log-likelihood evaluated
at the maximum likelihood estimates to compute standard errors of the estimated coefficients. The same
applies to the next regression model. Figure C.3 displays the estimated parameters and confidence intervals
with different sample sizes. The results suggest that the proposed model and estimation strategy can recover
the true parameters (asymptotically). It is also straightforward to compute predicted probabilities of having
a sensitive attribute with 95% confidence intervals using the parametric bootstrap. Figure C.4 displays the
predicted probabilities of having sensitive attributes in this particular simulation with different values forX1.
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Figure C.3: Finite Sample Performance of Regression Estimator (Sensitive Trait as a Predictor). Note:
Regression estimates of six parameters in simulated data. The dashed lines indicate the true values for the
parameters.
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C.4 Multivariate Regression: Sensitive Attribute as a Predictor

Next, we propose regressions models in which the latent sensitive attribute is used as a predictor or explana-
tory variable. Let Vi be a continuous or discrete outcome variable for respondent i (other types of outcome
variables are also possible). We define the regression model (conditional expectation) of interest as:

gΘ(Vi|Xi, Zi), (C.2a)

where Θ is a vector of parameters that associate a set of predictors plus the indicator for having a sensitive
trait (Xi, Zi) and the response variable (Vi). For example, for a normally distributed outcome variable,
we can consider gΘ(Vi|Xi, Zi) = N (α + γ>Xi + δZi, σ

2) with Θ = (α,γ, δ, σ2). For a binary response
variable, we can consider gΘ(Vi|Xi, Zi) = Bernoulli(φ), where φ

1−φ = α+γ>Xi+δZi and Θ = (α,γ, δ).
Our goal is to make inferences about the association between the latent sensitive attribute (Zi) and the
response variable (Vi) after controlling for other covariates (δ is our primary quantity of interest).

Using all the available information from data, the observed data likelihood function then becomes:

L(β,θ,Θ|{Vi,Xi, Yi, Ai}ni=1, p, p
′) =

n∏
i=1

gΘ(Vi|Xi, Zi, Ti)P(Yi = 1, Zi, Ti|Xi)P(Ai = 1, Zi, Ti|Xi)

=
n∏
i=1

{
gΘ(Vi|Xi, 1, 1)pYi(1− p)1−Yiπβ(Xi)(1− p′)Aip′1−Aiγθ(Xi)

+ gΘ(Vi|Xi, 0, 1)(1− p)Yip1−Yi(1− πβ(Xi))(1− p′)Aip′1−Aiγθ(Xi)

+ gΘ(Vi|Xi, 1, 0)
1

2
πβ(Xi)

1

2
(1− γθ(Xi))

+ gΘ(Vi|Xi, 0, 0)
1

2
(1− πβ(Xi))

1

2
(1− γθ(Xi))

}
, (C.2b)

where each part inside the bracket is gΘ(Vi|Xi, z, t)P(Yi = 1|Zi = z, Ti = t)P(Zi = z|Xi)P(Ai = 1|Zi =
z, Ti = t)P(Ti = 1|Xi), where z = {0, 1} and t = {0, 1}.

We assume that Assumptions 1-3 hold as well as Vi⊥⊥Yi|Xi, Vi⊥⊥Ai|Xi, and Yi⊥⊥Ai|Xi. The key
insight is that, under these assumptions, we can rewrite the entire likelihood of the observed crosswise data
as a product of three conditional probabilities. We can then marginalize the product over the two latent
variables Zi and Ti by summing up the conditional probabilities that we could in principle obtain for all
possible combinations of the latent variables.2 Our simulation studies confirm that this regression model
can recover both the main (Θ) and auxiliary (β,θ) parameters (Section C.4). We plan to demonstrate the
effectiveness of the proposed regression frameworks with empirical examples in future research.

To validate the proposed framework, we simulate crosswise data with two covariates as in Online Ap-
pendix C.3. We then simulate the response variable according to the following generative model:

Vi = γ0 + γ1X1 + γ2X2 + δZi + εi,

2For example, the third component inside the bracket represents gΘ(Vi|Xi, 1, 0)P(Yi = 1|Zi = 1, Ti = 0)P(Zi =
1|Xi)P(Ai = 1|Zi = 1, Ti = 0)P(Ti = 1|Xi). Here, P(Yi = 1|Zi = 1, Ti = 0) is the conditional probability that re-
spondents choose the crosswise item when they actually have a sensitive trail and do not provide attentive responses. Because they
do not follow the instruction, Assumption 1 states that this probability is 1

2
(regardless of Zi). Next, P(Zi = 1|Xi) is the condi-

tional probability that respondents have a sensitive trait, and we defined this quantity as πβ(Xi). Now, P(Ai = 1|Zi = 1, Ti = 0)
is the conditional probability that respondents choose the crosswise item in the anchor question when they actually have a sensitive
trait and do not provide attentive responses. Because they do not follow the instruction, Assumption 1 states that this probability is
1
2

(regardless of Zi). Finally, P(Ti = 1|Xi) is the conditional probability that respondents do not provide attentive responses, and
we defined this quantity as 1−γθ(Xi). Hence, the joint probability for this component is gΘ(Vi|Xi, 1, 0)

1
2
πβ(Xi)

1
2
(1−γθ(Xi)).
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where we set γ0 = 0, γ1 = 0.3, γ2 = 0.01, δ = 1, and εi ∼ N(0, 1). Recall that Zi is a latent variable for
having a sensitive trait and we cannot observe its value directly (and thus crosswise data do not contain Zi).

We then estimate the above crosswise regression model with the simulated observed outcome and cross-
wise data. Figure C.5 shows the estimates for our quantity of interest with different sample size. It demon-
strates that the proposed regression model and estimation strategy can recover the latent magnitude of the
association between the latent sensitive trait and the response variable (δ = 1). It also shows that other ten
parameters can be properly estimated by the proposed regression model. It is also straightforward to com-
pute predicted values of the outcome variable with 95% confidence intervals using the parametric bootstrap.
Figure C.6 displays the predicted values of the outcome in this particular simulation with different values
for Z.
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Figure C.5: Finite Sample Performance of Regression Estimator (Sensitive Trait as a Predictor). Note:
The dashed lines indicate the true values for the parameters.
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C.5 Sample Size Determination and Parameter Selection

When using the crosswise model with our procedure, researchers may wish to choose the sample size and
specify other design parameters (i.e., π′, p, and p′) so that they can obtain (1) high statistical power for
hypothesis testing and/or (2) narrow confidence intervals for precise estimation. To fulfill these needs, we
develop power analysis and data simulation tools appropriate for our bias-corrected estimator.

First, our power analysis uses a one-sided hypothesis test based on the Wald test (Ulrich et al., 2012).
We consider the null hypothesis H0 : π ≤ π0, where π0 (prevalence rate under the null) may be zero or a
particular value obtained from direct questioning. Assuming that the crosswise estimate is larger than the
direct questioning estimate — and larger than zero (i.e., more-is-better assumption), we then consider the
alternative hypothesis H1 : π > π0 when the true value of π is π1. Based on the normal approximation, the
power function becomes:

P({Reject H0|H1 is true})︸ ︷︷ ︸
Power

= β = 1− Φ
(π0 − π1 − cσ̃0

σ̃1

)
︸ ︷︷ ︸

P(Type II Error)

, (C.3)

where Φ is the cumulative distribution function of the standard normal distribution, c = Φ(1 − α) is the
critical value given size α = P(Type I Error), and σ̃0 and σ̃1 are simulated standard errors of the bias-
corrected estimates under H0 and H1, respectively.3

Panel A of Figure C.7 plots power curves against the sample sizes. For this illustration, we assume that
π0 = 0, π1 = 0.1, π′ = 0, p′ = 0.1, γ = 0.8, and α = 0.05. Substantively, this means that we hope to
distinguish the estimated prevalence of 0.1 from zero with a 95% (100% × 1−α) level of confidence when
we expect that only 80% of respondents are attentive. Panel A displays multiple power curves for different

3We simulate the standard errors in repeated Monte Carlo experiments at n = {1, 500, 1000, 1500, 2000, 2500}. Our software
also allows one to draw more fine-grained power curves.
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values of p. It suggests that if researchers want to reject H0 with power β = 0.8 they need to have about
400 (when p = 0.1), 600 (when p = 0.2), and 1400 (when p = 0.3) respondents.
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Figure C.7: Tools for Power Analysis and Parameter Selection. Note: Panel A shows power curves for
three different values of p. Panel B offers visualizes type I error, type II error, and power as areas under
the empirical cumulative distribution of point estimates under H0 (left) and H1 (right). Panel C display 100
point estimates and 95% confidence intervals based on 100 simulated data sets.

After choosing the sample size n, researchers may wish to verify if the selected n and design parameters
achieve the desired level of power and re-adjust their design parameters if necessary. To further assist applied
researchers, Panel B visualizes type I error, type II error, and statistical power as areas under the (empirical)
cumulative distribution function of the sampling distribution of the bias-corrected estimates based on H0

(left) and H1 (right). We assume the same parameter values as above and n = 400 and p = 0.1. Panel B
shows a small type I error and high power (close to 0.8) or equivalently small type II error as we expected.

Next, our data simulation tool allows researchers to see what they would obtain from using the crosswise
model with some fixed sample size and parameter values. The key idea is to give analysts a sense of how
large their 95% confidence interval would be and let them change the sample size and design parameters
to achieve their desired precision (i.e., desired length of the confidence interval). To illustrate, Panel C
shows the point estimates and 95% confidence intervals based on 100 simulated data sets with n = 1000
and π = 0.1, π′ = 0, p = p′ = 0.1, γ = 0.8. It suggests that the resulting interval estimate would be
approximately the point estimate ±0.05. If a narrower confidence interval is needed, researchers should
increase the sample size and/or choose lower values for p and p′.

C.6 Secret Number Approach to Non-Sensitive Statements

This section introduces another extension of our method, which was not fully discussed in the main manuscript.
One of the obstacles for some researchers to use the crosswise model is that they need to find an appropriate
non-sensitive statement with a known prevalence in the crosswise question. Further, to maintain respondent
privacy it is essential that a different non-sensitive item be used with each crosswise question in the survey.
This can be quite difficult to do in practice when one asks many crosswise questions. To remedy this prob-
lem, we propose a secret number approach to the non-sensitive statement. The essence of the secret number
approach is to use a different virtual die roll for the non-sensitive crosswise item in each question, but to do
so in a way that makes it clear to respondents the critical information remains private even if they believe
surveyors are recording the result of the virtual die rolls.
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If respondents believe that a virtual die roll is private, there are many advantages of using it in online
surveys for the non-sensitive piece of private information needed in the crosswise question (e.g., after they
roll the die the statement used is something like the value of my die roll was 4 rather than a statement like
my mother was born in January.) These advantages are the same ones as using a physical die in a paper and
pencil survey and include:

• The necessary probabilities are known completely and do not change with the population being surveyed.

• The die roll can be used in the same format in many different questions, alleviating the need to develop a
large library of items with known prevalence for surveys with many crosswise items.

• There is no chance that respondents will not know the value of the die roll or be uncertain about it (unlike,
for example, their mother’s birthday).

• The die roll is independent of sensitive item by construction.

The problem with the virtual die roll is that respondents will often not believe that it is not being recorded
and so their privacy protection will be undermined.

However, a simple addition to the instructions for rolling a virtual die alleviates this problem completely.
To reassure respondents that such virtual dice rolls cannot be recorded and used by researchers to undermine
privacy, one can simply ask the respondent to first pick (and perhaps write down) a “secret number”, which
must be an integer between 1 and 6, and then roll the virtual die. Then, the statement they evaluate is simply
“The value of the dice roll for this question was equal to my secret number.”

Further, in surveys with multiple crosswise items, respondents can be told that the can change their
secret number on each question or not as they like. Since researchers will not know whether they have or
not, their privacy is assured.
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D Examples and Discussion of Constructing Anchor Questions

As discussed in the main text, anchor questions should be topically connected to the other questions that are
being asked in the crosswise format and should be sufficiently sensitive that they do not stand out relative to
the other crosswise items.

Our purpose here is to first provide some examples of anchor questions that could be used for typical
kinds of political science surveys that might use crosswise questions and then some discussion and practical
advice about how to choose/construct good anchor questions.

D.1 Practice Guide

We first offer some practical advice for researchers when designing a bias-corrected crosswise model. First,
to satisfy the random pick assumption (Assumption 1), researchers should randomize the order of the two
crosswise answer-choices both in the crosswise and anchor questions. This can be done at the question level
or (if there are many crosswise questions presented sequentially) at the respondent level (to avoid respondent
confusion).

Second, attention consistency (Assumption 2) is satisfied when the crosswise and anchor questions
have the same proportion of attentive respondents. If respondents, on average, perceive these two types
of questions to be somehow different, attention consistency may be violated. Thus, we recommend that
researchers design the anchor questions to fit in topically with the other crosswise questions in the survey,
have a similar level of sensitivity, and look quite similar to them (e.g., the anchor question should use the
same format for the non-sensitive item as the other crosswise questions (e.g., a mother’s birthday) and the
sensitive item should be about the same length in both the anchor and other crosswise questions).

We discuss more of the subtleties of writing good anchor questions (and provide examples) below. In
addition, researchers may also compare the duration of time spent on the crosswise and anchor questions as
a way of diagnosing any differences in how respondents have treated them.

Finally, randomizing the position of the anchor question in the survey relative to the crosswise questions
may help guarantee that there is no carryover effect from one type of question to another (Assumption 3).

D.2 Examples

To help researchers get started on writing useful anchor questions, we provide a set of examples for anchor
questions that might fit into crosswise survey modules on sensitive political topics (see Table D.1). Of
course, these examples are meant only as a starting point and may or may not make sense in any given
setting. As always researchers should think carefully (and creatively) about the specific survey and sample
in which they might be used.
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Anchor statement May be useful for surveys
with crosswise items about

True prevalence Note

I have paid a bribe to be at the top of a waiting list for
organ transplants

corruption 0

In 2019, I became a naturalized citizen of the United
States

political participation, immi-
gration attitudes

.0025 in a US
sample

In the last election, I voted in a state other than the
one I in which I registered

elections 0

In 2019 or 2020, I donated at least $200 to NARAL,
a Political Action Committee that advocates for abor-
tion rights

elections, participation 598 people (US
sample)

At some time in my life, I have worked for a political
organization that advocates the violent overthrow of
the government

radicalism, trust in govern-
ment or political institutions

≈ 0 for western
samples

*

Last year, the gross annual income of my household
was more than 600,000 dollars

inequality, policy opinion ≈ .005 in US
sample

**

At sometime in my life, I have physically threatened
and member of Congress

public opinion surveys ≈ 0 ***

I am a registered lobbyist for the Iron and Steel As-
sociation of America

policy opinion surveys 0 (this industry
group does not
exist)

****

I am going to vote for the [name of a fictional party] election, voting for extremist
parties, “shy voters”

0

Table D.1: Examples of Anchor Statements. Note: * = Assuming this is not the object of inquiry, this
would be a good match to other cross-wise questions that are very intrusive/sensitive, ** = Given the difficult
of sampling high earners, this is likely 0 in any real sample. Also, much evidence suggests people think of
income questions as sensitive, *** = Keep in mind that the public opinion survey we have in mind would be
probing sensitive topics about the relationship of citizens and leaders so these kinds of question may seem
jarring outside of that context but within that context they, **** = The industry can be chosen to fit the topic
of the survey.
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D.3 Discussion

The examples above illustrate some of the different kinds of sensitive statements that may have known
prevalence in a given population. As the diversity of the examples illustrate, however, statements differ in
the extent to which they are sensitive and so they should be matched in terms of the level of sensitivity to
the other crosswise questions in the survey.

In addition, some of the examples suggest that researchers should try to avoid statements that, while they
have might have a true prevalence of zero, might nevertheless attract false positives for reasons other than
inattention. One way this can happen is if an item attracts support for purely symbolic or affecting reasons.
For example, in the example that uses a fictional party, care must be taken in choosing a neutral name of the
fictional party. Prior et al. (2015), for example, have shown that partisans sometimes report factual opinions
on surveys that they know to be wrong as a kind of partisan cheerleading. Applying this to an election survey
aimed at detecting “shy” Trump voters, for example, one might use an anchor question like “In the 2020
election I voted for the Anarchy Party of Texas.” Since there is no such party, the prevalence rate should be
zero. However, we might expect this statement to attract some support from anarchists who engaged in a
kind of partisan cheerleading.

A better alternative would be a party with a more neutral name. This would be less sensitive, but in the
context of a survey asking crosswise questions which other (extremist and non-extremist) parties one would
vote for, it would likely fit in well. This illustrates again that whether an anchor question matches the set of
crosswise questions well depends entirely on the context of the other crosswise questions.

Finally, its important to point out that a given anchor question can be made more typical of the whole set
of crosswise questions not only by altering the anchor question itself but also by altering the composition of
the whole set of crosswise questions in ways that make a given anchor question more representative of the
whole set.

Specifically, those who are finding it difficult to construct a topically relevant anchor question that is
sufficiently sensitive to match their crosswise questions of interest can simply add several topically relevant
crosswise questions that are less sensitive than their crosswise questions of interest. In this way, the dis-
tribution of all the crosswise questions that the respondent sees (before encountering the anchor question)
can be made to be more diverse in terms of sensitivity. This may make the anchor question less jarring
when it is encountered. Likewise, if the trouble is finding a topically relevant anchor question, then several
off-topic crosswise questions can be added to alter the mix of crosswise questions in ways that make the
anchor question less of a stand-out.
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