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Appendix A: Bayes’ Rule and (non)Exclusive Hypotheses

We emphasized in Section 2 of our article that Bayes’ rule holds universally. In fact, Bayes’

rule itself, in its most basic form:

P (H |E I) =
P (H | I)P (E |H I)

P (E | I)
, (A1)

is simply a rearrangement of the product rule of probability:

P (AB |C) = P (A |BC)P (B |C) = P (B |AC)P (A |C) , (A2)

as can be demonstrated by substituting H for proposition A, E for B, and background infor-

mation I for C. Accordingly, any alteration of Bayes’ rule will violate this fundamental law of

probability and will inevitably produce logical contradictions. This reality follows from Cox’s

Theorem, which ensures that any purported extension or modification to probability theory will

either end up simply recapitulating the original probability calculus, or will otherwise introduce

inconsistencies with logic or common sense. In fact, Cox (1961) and Jaynes (2003) proved that

Bayesian probability theory emerges as the uniquely consistent extension of deductive (Boolean)

logic to situations where propositions are either true or false, but we do not know these truth

values with certainty.1 No modifications or extensions are required, or allowed, upon pain of

logical inconsistency.

RAR nevertheless maintains that Bayes’ rule “requires extensive modification when dealing with

nonexclusive theories” and proceeds to devise non-standard rules for evaluating probabilities

1 E.T. Jaynes, Probability Theory: The Logic of Science, Cambridge University Press, 2003; Richard Cox, The
Algebra of Probable Inference, Baltimore: Johns Hopkins University Press, 1961.
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in different contexts, depending on which of various “types” of non-exclusive hypotheses are

considered.2 To illustrate one example of how RAR’s rules produce logical contradictions, as

Cox’s theorem dictates it must, consider the following proposed relationship for evaluating the

likelihood of a binary clue K under the conjunction of two “congruent hypotheses” that “work

together to bring about the outcome” (RAR:348):

P (K = 1 |H1 ∩H2) = 1− P (K = 0 |H1)P (K = 0 |H2) (RAR equation 5),

or in more compact notation:

P (K |H1H2)
?
= 1− P (K |H1)P (K |H2). (A3)

Applying the negation rule, P (K |H1H2) = 1 − P (K |H1H2), to the left-hand side and rear-

ranging, we obtain:

P (K |H1H2)
?
= P (K |H1)P (K |H2). (A4)

This relationship is meant to hold when “K is expected with some positive probability under

both H1 and H2” (RAR:354), which implies that P (K |H1) > 0 and P (K |H2) > 0. Now

suppose that 0 < P (K |H1) = 1 − P (K |H1) < 1, and 0 < P (K |H2) = 1 − P (K |H2) < 1,

i.e., none of the likelihoods is certain. Next, consider that “congruent hypotheses” include as a

special case “inclusive hypotheses,” where one hypothesis is an “extension of an existing theory”

(RAR:350). This definition presumably encompasses the situation where a narrower theory H1

is logically implied as a special case of a more general theory H2, such that P (K |H1H2) =

P (K |H2), in which case the left-hand side of (A4) simply reduces to P (K |H2), and we have:

P (K |H2)
?
= P (K |H1)P (K |H2). (A5)

Dividing by the strictly positive quantity P (K |H2), and remembering that P (K |H1) < 1 by

assumption, we find:

1
?
= P (K |H1) < 1, (A6)

which is a contradiction, since 1 cannot be less than 1.

Working with non-exclusive hypotheses is technically permitted by the ordinary rules of proba-

bility, but it is awkward and inefficient. If one nevertheless opts for non-exclusive hypotheses, no

2 These proposed rules are presented without justification other than “intuition” (RAR p.354) from Venn-like
diagrams.
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modifications or additions to ordinary probability theory are required; one must just carefully

adhere to the dictates of the sum rule and the product rule. In particular, Bayes’ rule (A1) still

holds.3 However, the prior P (H | I) is more difficult to think about, because the probability

assigned to one non-exclusive hypothesis does not necessarily come at the expense of another.

And the marginal likelihood P (E | I), which serves to normalize the overall probability, can

no longer be expanded using the law of total probability, P (E | I) =
n∑

j=1
P (Hj I)P (E |Hj I) ,

which does not hold for non-exclusive hypotheses. Expanding the marginal likelihood instead

requires the more complicated inclusion-exclusion rule (which can be derived from the sum and

product rules):

P (E | I) =
∑
j

P (Hj | I)P (E |HjI)−
∑
j

∑
k>j

P (HjHk | I)P (E |HjHkI)

+
∑
j

∑
k>j

∑
`>k

P (HjHkH` | I)P (E |HjHkH`I)− . . .

+ (−1)n−1P (H1 · · ·Hn | I)P (E |H1 · · ·HnI) ,

(A7)

involving probabilities of conjunctions of multiple hypotheses, as well as likelihoods conditioned

on multiple hypotheses.

The best way to deal with the complications of non-exclusive hypotheses is to avoid them. As

argued here and elsewhere (Fairfield & Charman 2017 and forthcoming), constructing mutually

exclusive hypotheses does not require a strong or onerous modeling assumption, nor does it limit

in any way the causal complexity that can be captured. Instead, ensuring that our hypotheses

are exclusive usually just requires a bit of attention to wording, along with an awareness that

exclusive hypotheses can reference non-disjoint causal variables (Appendix B).

Far from a limitation of Bayesian analysis, as UB (p.10) frames it, the requirement to work

with a set of carefully constructed, mutually exclusive alternatives is actually a strength of the

Bayesian approach that forces us to be clear about the hypothesis we are proposing and how

it diverges from alternatives. UB (p.10) is correct that many examples can be found where

scholars use hypotheses that “implicitly take the form ‘this matters, too,’” but as we empha-

sized in Section 2, such hypotheses are too vague—we can and should aim to do better. For

how are other scholars to interpret a claim that “Xi matters for Y ”? Does this mean that

3 Bayes’ rule in the odds-ratio form also still holds, contrary to UB’s claim (p. 10) that “Mathematically, when
two nonexclusive hypotheses are treated as though exclusivity holds, nearly every term in the equation is
inaccurate.” What is true is that the odds-ratio form of Bayes’ rule may not be convenient, or informative, if
applied directly to non-exclusive hypotheses.
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we are seeking to improve a leading theory from the literature by including Xi? If so, how

salient is the role of Xi relative to other causal factors in the theory? Is Xi a minor contributor

that entails an incremental revision of the existing theory? Or is Xi to be taken as a more

important contributing factor than the variables in the leading theory, such the “Xi matters”

claim constitutes a major departure from existing explanations? Equally important, especially

from a process-tracing perspective, how does this variable operate alongside or in conjunction

with other causal factors? What is the mechanism or causal process? Does Xi operate indepen-

dently of other contributing causes, or through some kind of interaction? Assertions that “Xi

matters” can have a role in early stages of theory development. But until we begin to answer

these kinds of questions about how Xi operates and how salient it is relative to other causes,

we have taken only a preliminary step toward theory development, and we cannot meaningfully

test our hypothesis against alternatives—recall that hypotheses must be specific enough to be

able to “mentally inhabit” the corresponding world and evaluate likelihoods for the evidence.

Stated in more technical terms, H = Xi matters is too vague a proposition upon which to

condition probabilities, such that P (E |H I) will be ill-defined, or at least impossible to assess

even approximately.

Appendix B: Constructing Mutually Exclusive Hypotheses From Contributing Causes

Readers may wish to see explicit political science illustrations to better understand how we can

construct a set of mutually exclusive hypotheses that share causal variables. We offer two such

examples below; the first draws on Slater’s (2009) research on democratic mobilization, and the

second reworks UB’s (Section 4.2) greed, grievance, and rebellion example.

1. Communal Elites, Stolen Elections, and Democratic Mobilization

In this example, we begin with two causal factors—autonomous communal elites (X1) and stolen

elections (X2)—that authors have theorized to be salient for eliciting democratic mobilization

against dictatorship (Y ). Hypotheses HA and HB below each focus on one or the other of the

two causal factors, whereas HC , HD, and HE invoke both of the causal factors in distinct ways

(Fairfield & Charman, forthcoming). In essence, each of these hypotheses tells a different story

about how democratic mobilization comes about. They are all mutually exclusive, in that no
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two of these stories can simultaneously be true.

HA = Autonomous communal elites are critical agents for eliciting democratic

mobilization (Slater 2009).4 Emotive appeals that these actors make, invoking po-

litically salient nationalist and religious sentiments and solidarities, are the central

factor that sparks and sustains collective action against dictatorship. When au-

tonomous communal elites oppose the regime, democratic mobilization is probable;

if these actors are absent, mobilization is unlikely.

HB = Stolen elections are the central factor that elicits democratic mobilization,

by revealing the regime’s lack of legitimacy, quashing expectations of change, and

creating a focal event to catalyze collective action.

HC = Autonomous communal elites and stolen elections are jointly critical factors

for eliciting democratic mobilization. The combination of communal elites opposing

the regime and stolen elections provokes outrage, solves collective action problems,

and catalyzes protest. In the absence of either (or both) of these factors, democratic

mobilization is unlikely—neither causal factor on its own is enough to catalyze and

sustain collective action.

HD = Autonomous communal elites are critical agents for eliciting democratic

mobilization. In addition, stolen elections contribute to democratic mobilization,

by giving communal elites extra motivation to oppose the regime and by making

citizens even more likely to respond to their appeals. When autonomous communal

elites oppose the regime, democratic mobilization is probable. When stolen elec-

tions also occur, the probability of mobilization increases, and protests are likely

to be even more massive. In contrast, democratic mobilization is unlikely when

autonomous communal elites are absent.

HE = Autonomous communal elites and stolen elections both contribute indepen-

dently to eliciting democratic mobilization. The probability and expected scale of

mobilization increases with the net effect of these two factors.

We could of course propose additional hypotheses that posit even more complicated causal sto-

4 Dan Slater, “Revolutions, Crackdowns, and Quiescence: Communal Elites and Democratic Mobilization in
Southeast Asia,” American Journal of Sociology 115(1):203-254, 2009.
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ries involving communal elites and stolen elections, but a central recommendation that emerges

from the Bayesian framework (i.e., Occam penalties, Appendix D below) is that we should be-

gin by assessing simpler hypotheses before proposing highly complex and intricate explanations.

For that reason, a natural approach to the problem at hand would be to begin by comparing

HA and HB, and only consider hypotheses HC , HD, or HE in a later round of inference if the

evidence suggests that they might significantly improve explanatory leverage.

Here we would point out that while some scholars are of the opinion that qualitative research

by and large does not consider monocausal hypotheses, there are actually many such examples,

including Slater (2009), which we draw on here. That is, Slater does not simply suggest that

autonomous communal elites are “a cause of” democratic mobilization; he argues that they are

in fact the primary cause of democratic mobilization. In accord with the Bayesian guidelines

that we recommend, Slater (2009:206, 207 footnote 7, 226-27) explicitly pits his communal elites

explanation, which corresponds to HA above, against the stolen elections hypothesis HB and

several other rivals that each invoke a different central causal factor (e.g., economic decline).

Note also that each of the hypotheses above articulates a process that aims to clarify “how” and

“why” the causal factors matter for the outcome. Bayesians, like process tracers more generally,

should aim to craft hypotheses that are more specific than simply positing “a causal arrow”

leading from X to Y . Some might prefer to see even more detail when articulating causal

processes (Beach and Pedersen 2019). And of course, Slater (2009) provides more context and

discussion in developing his communal elites hypothesis than we have captured in our summary

statement, HA. Nevertheless, the above hypotheses are reasonably well-articulated rivals—they

include enough detail for us to “mentally inhabit the world” that each describes and assess how

likely various concrete pieces of evidence that Slater uncovers would be in each of the respective

worlds (Fairfield & Charman, forthcoming: Chapters 5 & 6).

2. Greed, Grievance, and Rebellion

We emphasize again that constructing mutually exclusive hypotheses is simply a matter of good

housekeeping, to “make our work much neater,” as one introductory Bayesian textbook puts
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it.5 The author proceeds to note: “People sometimes carelessly list sets of alternatives which

violate these conditions, but the situation can usually be remedied,” (Schmitt 1969:12). Let us

put this basic housekeeping principle to work and show how carefully defining the hypothesis

space immediately resolves the concerns that UB poses in Section 4.2 (p.10-11).

UB’s example is set up to compare “two hypotheses that could jointly be true: whether greed

or grievance motivates participation in rebellion.”6 UB asserts that “literature is unclear on

how to proceed” in these instances, when hypotheses take the form of “this matters, too.”

To reiterate the Bayesian guidance: avoid working with such hypotheses. Instead, construct

mutually exclusive alternatives that articulate how the particular causes of interest matter along

with any other causes deemed important for constructing a compelling explanation.

In UB’s example, as a starting point we would do well to include simple possibilities of the

form: H1 = Greed is the primary factor motivating rebellion, and H2 = Grievance is the

primary factor motivating rebellion, which are exclusive by our own deliberate construction.

We might find that one or the other of these hypotheses does a very good job of explaining

the evidence, even if the real world is somewhat more complex. Importantly, one should also

specify some mechanism or concrete causal logic that explains how and why grievance matters

in H1, and similarly for H2, but we leave that exercise to readers.

We can of course include more complex hypotheses that invoke both greed and grievance in

our set of mutually exclusive explanations. But here too we need to articulate well-specified

alternatives. Simply claiming that “both matter” is too vague a hypothesis to make concrete

evidentiary predictions, such that P (E |H I) cannot be assessed. We have to explain how

greed and grievance together produce the outcome, and there are many different possibilities

one could envision. Examples could include something along the following lines:

H3 = Greed and grievance both make independent contributions to motivating

rebellion. The probability of rebellion increases with the net effect of either or

both factors, once enough group members have been pushed past a threshold of

5 Samuel Schmitt, Measuring Uncertainty: An Elementary Introduction to Bayesian Statistics. Addison-Wesley,
1969.

6 Here we would point out that a standard reading of “greed or grievance” would interpret “or” as an exclusive
disjunction, suggesting two mutually exclusive hypotheses, but in stating that these hypotheses can oper-
ate jointly, UB clearly has in mind something along the lines of H1 = “greed is a cause of rebellion” and
H2 =“grievance is a cause of rebellion.”
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indifference.

H4 = The combination of greed among group leaders and grievance among group

members is critical for rebellion. When group members experience high levels of

grievance, leaders who are motivated by greed are able to capitalize on discontent,

foment rebellion, and use the power it grants them to pursue their own personalistic

agenda. In the absence of widespread grievance, leaders are not able to foment

rebellion, while leaders motivated by factors other than greed find it difficult to

take the drastic steps necessary to translate grievance into rebellion.

Note that all four hypotheses, H1, H2, H3, and H4 are to be understood as mutually exclusive

alternatives. We emphasize again that asking if greed matters and if grievance matters may be

a reasonable starting point at very early stages of theorizing, but hypotheses must be better

developed and better articulated before they can be tested.

Once the hypothesis space is set up properly, Bayesian analysis proceeds as usual—we assess

prior odds and evaluate likelihood ratios for evidence under pairs of rival hypotheses. None of

the various quantities UB (p.11) proposes, involving differences of probabilities or probabilities

of conjunctions of hypotheses, need to be computed (nor would these be the correct calculations

if the hypotheses were nonexclusive).7 No assumptions of any kind must be made about the

evidence to “return valid results.” And Bayes’ rule, if properly applied, never introduces “bias.”

We must simply remember that a given piece of evidence supports a hypothesis Hj over a rival

Hk to the extent that Hj makes that evidence more expected than does Hk. Asking if E is

“relevant” to a hypothesis (UB p.11) is not the right question. We must instead ask which

hypothesis makes E more expected (or equivalently, less surprising). A given hypothesis Hj

may not make sharp predictions about whether we should observe E, but if a rival Hk predicts

that evidence with a higher likelihood, then E weighs in favor of Hk over Hj .
8 To reiterate, we

cannot even begin to ask whether evidence E supports hypothesis Hj before we have identified a

rival for comparison. Indeed, evidence that supports Hj over Hk might actually undermine Hj

7 In the “greed vs. grievance” example, UB actually seems to be working in a very indirect way with the exclu-
sive hypotheses H$H/, H$H/, and H/H$, with prior probabilities P (H$H/ | I) = P (H$ | I)P (H/ |H$I),
P (H$H/ | I) = P (H$ | I) − P (H$H/ | I), and P (H/H$ | I) = P (H/ | I) − P (H$H/ | I), respectively. But
then the likelihood ratios in UB’s example should also be conditioned on these conjoined hypotheses, not the
original pair {H$, H/} if regarded as non-exclusive.

8 If the evidence is equally likely under a pair of hypotheses, it is simply uninformative with respect to that
pair of hypotheses, and we should proceed to look for other evidence that does discriminate between these
hypotheses.
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relative to a different rival, Hm (see Fairfield & Charman 2017: 374-5 for empirical examples).

Moreover, “evidence consistent with a theory can actually lower its posterior and evidence that

does not fit a theory can raise its posterior” (Bennett 2015:291)—depending on how likely that

evidence is under the rival hypothesis in question.

Appendix C: Odds Ratios vs. Posterior Probabilities

Concerns about a combinatoric explosion when comparing multiple hypotheses appear to stem

in part from UB’s (Appendix p.2) notion that the odds-ratio form of Bayes’ rule (equation

1 in our letter) is somehow inadequate, because: “the probabilities in the numerator and

denominator of the posterior cannot be isolated for each individual hypothesis.” Under the

standard practice of working with mutually exclusive and exhaustive (MEE) hypotheses, the

posterior odds-ratios uniquely determine the posterior probabilities, and vice-versa. In the

instance UB considers, there are three unknowns (posterior probabilities for HM , HR, and HC)

that can easily be solved for using the two independent odds ratios that have been evaluated—

e.g., P (HM |E I)/P (HR |E I) and P (HM |E I)/P (HC |E I))—along with the normalization

constraint P (HM |E I) + P (HR |E I) + P (HC |E I) = 1, which follows from extending the

MEE assumption that UB makes for two hypotheses to include the third hypothesis. More

generally, when working with n MEE hypotheses, H1, H2, . . . ,Hn, posterior probabilities can

be obtained directly from the (n− 1) independent odds ratios as follows:

P (Hk |E I) =

P (Hk |E I)
P (H` |E I)

1 +
∑
j 6=`

P (Hj |E I)
P (H` |E I)

. (C1)

Appendix D: Additional Points on Bayes’ Rule and Iterative Research

(a) As discussed in Section 5, if the evidence inspires a new explanation, we need to expand

the hypothesis set and return to the original background information in order to assign prior

odds for the new pairs. UB’s online appendix instead contemplates three distinct alternatives

for analyzing a newly-conceived hypothesis HC relative to a main hypothesis HM , after having

previously compared HM to a rival HR in light of evidence E1. We consider each in turn in

order to clarify how Bayesian analysis operates:
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• “One option is to analyze how E1 affects HM relative to HC by beginning that analysis

with equal odds placed on the two hypotheses. The choice to revert to equal odds seems

strange because we already know E1 supports HM . Though, it could help avoid bias from

double-counting evidence,” (UB Appendix p.2).

Recall that the likelihood ratio in Bayesian analysis, P (E |Hj I)/P (E |Hk I), tells us that

evidence supports a given hypothesis Hj to the extent that it is less likely under a rival Hk.

The fact that E1 supports HM over HR, that is, P (E1 |HM I) > P (E1 |HR I), tells us nothing

about how E1 bears on HM vs. HC , because we have yet to assess how P (E1 |HC I) compares

to P (E1 |HM I). Therefore, we cannot assert that “we already know E1 supports HM”—at the

present stage of analysis, we know only that E1 supports HM over HR. Furthermore, what

we happen to know at a given moment in time may differ from what we have or have not

already explicitly incorporated as conditioning information in formal probability statements. It

is also important to stress that when applied correctly, Bayesian updating never double-counts

evidence (see Fairfield & Charman 2019: 160 and Appendix A).

• “A second option is to analyze how E1 affects HM relative to HC by beginning that

analysis with a slightly higher prior on HM . This choice seems consonant with respect

to updating our confidence in HM , but problematic in that it double-counts the effect of

E1,” (UB Appendix p.2).

Our same points about the nature of evidentiary support apply here as well. Moreover, whatever

we know about the likelihood ratio P (E1 |HM I)/P (E1 |HR I) tells us nothing about the prior

odds on HM vs. HC . The prior odds, P (HM | I)/P (HC | I), excludes E1 from the conditioning

information and is therefore entirely independent of E1.

• “A third option is to analyze HM relative to HC by examining a different piece of evidence

entirely, E2. This choice is also difficult to justify because then researchers must make

the case for why they chose a given piece of evidence for one analysis, but not another,”

(UB Appendix p.2).

Logical Bayesianism and the principles of rationality upon which it is based never entail

choosing to analyze some pieces of information while ignoring other known pieces of evidence
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that are relevant. Rather, “Information is never intentionally disregarded in logical Bayesian-

ism; any subsequent stage of research following the inspiration of a hypothesis must take all

previously-obtained evidence into account through the prior probability on that hypothesis,”

(F&C-2019:163). In sum, to proceed consistently, scholars should follow the steps explicated in

Section 5 when seeking to include a new explanation in the hypothesis set.

(b) On questions of timing and sequencing, UB (p.7) asks: “Even if the order in which a

researcher analyzes her evidence proves entirely irrelevant to the probabilities she assigns and

conclusions she draws, why encourage her to disregard the sequence in her narrative? If we

do not structure our write-ups to broadly map onto the sequence of iterative updating, what

is the alternative way of structuring them?” The standard way to structure a case narrative

is to follow the sequential causal story that the evidence suggests, independently of the order

in which the evidence was analyzed or learned. The order of events can itself be relevant for

adjudicating among alternative explanations, but this is conceptually separate from the order

in which we receive or analyze evidence or the order in which we present a case narrative to

make it understandable. Just as a director might film the final scene of a movie before shooting

earlier scenes, we might have initially analyzed evidence in a different order than we present

that evidence in a published narrative. Moreover, none of the literature that UB critiques

encourages scholars to disregard causal sequences in narratives.

(c) Confirmation bias is a common pitfall associated with iterative research that goes back

and forth between theory revision, data collection, and data analysis. When applied correctly,

Bayesian reasoning automatically precludes a common form of confirmation bias—namely, fo-

cusing only on a single hypothesis without considering alternatives—because the key inferential

step necessarily involves evaluating likelihood ratios. Instead of asking how expected the ev-

idence would be if the working hypothesis is true, we must ask whether the evidence would

be more expected or less expected under that hypothesis as compared to a rival. UB’s (p.12)

assertion that Bayesianism does not help to control this variant of confirmation bias appears to

result from the same issues regarding the nature of evidentiary support and mutually exclusive

hypotheses that we discussed in Sections 2 and 3.

(d) Occam factors are an intrinsic feature of Bayesianism that mediates the tradeoff between

parsimony and accuracy (Western 2001),9 in accord with Einstein’s dictum that things should

9 Bruce Western, 2001, “Bayesian Thinking about Macrosociology,” American Journal of Sociology 107(2):353-
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be as simple as possible, but no simpler. In essence, Occam factors are a mathematical represen-

tation of Occam’s Razor that is built into Bayes’ rule (Jaynes 2003, Jefferys 2003).10 However,

UB (p.13) proposes that Occam’s Razor is not an appropriate principle for social science: “Oc-

cam’s Razor is infrequently well-suited to social phenomena—and until someone demonstrates

that the simpler explanation tends to be the right one where politics is concerned, penalizing

marginal complexity is unsubstantiated.” Here UB seems to overlook the fact that Bayesianism

penalizes complex explanations only “if they do not provide enough additional explanatory

power relative to simpler rivals,” (Fairfield & Charman 2019:161 and forthcoming: Chapter 6).

How does this work? A complex hypothesis incurs an Occam penalty relative to simpler rivals

via its prior odds (see Fairfield & Charman 2019:161 for an intuitive illustration). If the more

complex hypothesis is actually the “right explanation,” its posterior odds should win out thanks

to the improved inferential leverage that it provides compared to the simpler alternatives. More

precisely, the likelihood ratio for the evidence will overwhelm the initial Occam penalty in the

prior odds (see Fairfield & Charman 2019: Appendix C for a mathematical illustration).

UB (p.13) asks for “pragmatic guidelines for evaluating what constitutes enough explanatory

power” and suggests that there is somehow an “inherent contradiction” here within Bayesian

analysis. On the latter point, we stress again that Bayes’ rule is universally valid and never

produces contradictions if properly applied. On the former point, the pragmatic guideline is

simply to apply Bayes’ rule, and examine the posterior odds to see whether the more complex

hypothesis comes out ahead of the rivals. As discussed in Fairfield & Charman (2019), while

Occam factors arise automatically in quantitative Bayesian model comparison, there are no

cookie-cutter rules for assessing Occam factors in qualitative research, and we must use our

judgment when assessing the relative complexity of our hypotheses (see also Western 2001:375).

Nevertheless, readily applicable practical guidelines include starting with reasonably simple

theories and adding complexity incrementally as justified by the data, scrutinizing whether all

of the causal factors in a hypothesis actually improve explanatory leverage compared to simpler

rivals, and asking if the hypothesis might apply more broadly. If a given hypothesis invokes

many more causal factors or very elaborate conjunctions of causal factors, good practice entails

penalizing its prior relative to the rivals. If an author fails to treat an especially complex

hypothesis with adequate prior skepticism, other scholars should take notice and call attention

78.
10 William Jefferys, 2003, “Bayes’ Theorem,” Journal of Scientific Exploration 17(3:537-42).
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to the problem.

(e) UB (p.12) worries that: “Beyond the argument that using explicit probabilities forces us

to justify our choices and allows other scholars to evaluate them in the review process, the

approach lacks any mechanism to enforce the recommendations.” Here UB seems to want to hold

Bayesianism to an unattainable standard. No method—Bayesian, frequentist, or otherwise—

contains in and of itself any mechanism to enforce the recommendations it prescribes. The

point is that Bayesianism provides guidelines and consistency checks to help scholars improve

their reasoning and better communicate their judgments, while also helping other members of

the research community to more effectively scrutinize their reasoning.

UB’s (p.9, 16) call for a moratorium on teaching Bayesian process tracing until social scientists’

ability to “reliably implement” the method has been definitively demonstrated likewise proposes

a standard to which no other methodology has been or should be held. As an alternative, UB

(p.14) simply recommends good data gathering, analysis, and writing—but does not offer any

principled guidance by which their efficacy should be evaluated.

On these points, we might end with a salient quotation from E.T. Jaynes (1983:250-51):

It is as true in probability theory as in carpentry that introduction of more powerful

tools brings with it the obligation to exercise a higher level of understanding and

judgment in using them. If you give a carpenter a fancy new power tool, he [sic]

may use it to turn out more precise work in greater quantity; or he may just cut

off his thumb with it. It depends on the carpenter.11

That is, training is required before scholars can effectively implement Bayesian reasoning, but

that fact certainly does not justify withholding the training and the tool.

11 E.T. Jaynes, 1983, “Where Do We Stand on Maximum Entropy?” in Papers on Probability, Statistics, and
Statistical Physics, Kluwer Academic Publishers.


