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1 cERGM Estimation
The normalizing constant in Equation 1 of the main text is intractable. For example, in the simple
case of adding three cases to a network inwhich six cases already exists—like that depicted in Figure
4 of themain text—there are 16,777,216 unique configurations ofCt that could be observed. The
typical Supreme Court term involves adding hundreds of cases to a network that already includes
thousands of previous cases. This means that straightforward methods of maximum likelihood
estimation (MLE) are infeasible with the cERGM.

The common alternative relies on Monte Carlo methods to approximate the normalizing con-
stant by simulating a large set of networks (Hunter and Handcock 2006; Hummel, Hunter, and
Handcock 2012). The resulting estimator, theMonteCarloMLE (MCMLE), is approximately consistent,
meaning that it converges to the MLE as the sample size, i.e., the number of simulated networks,
increases. However, one drawback is that with the number of nodes in the Supreme Court citation
network being in the order of 10, 000, obtaining the MCMLE is computationally expensive (Schmid
andDesmarais 2017) and the success of the algorithmheavily relies on the starting parameter vector
θ0, which is ideally chosen in the proximity of the unknown MLE (Hummel, Hunter, and Handcock
2012). The prevailing choice for θ0 is the maximum pseudo-likelihood estimation (MPLE) (Strauss
and Ikeda 1990), a fast estimation method that is defined as maximizing the log product of the
conditional probability of each citation (and non-citation), conditional on the other elements of
the observed citation network. The joint probability of all citations is replaced by the product over
conditional probabilities, which, as we demonstrated in themain text, assume a logit form. The
MPLE is simple to obtain, but does not guarantee a starting value close to the MLE (Schmid and
Hunter 2020).

The MCMLE of networks up until the 90s was obtainable in a reasonable time frame starting
at the MPLE and sampling 10, 000 networks to approximate the normalizing constant. However,
the estimation of most networks in the 90s with the MPLE as starting values was not feasible in
an reasonable time frame anymore. Instead, we improved the choice of starting value θ0 by fixing
it at the MCMLE of the previous term t − 1 and successfully obtained the MCMLE of the network
at term t . But even this approach started to fail for networks around the turn of the millennium.
Neither the MPLE nor the MCMLE of previous terms as starting values led to successful estimation,
and neither did the Stepping algorithm (Hummel, Hunter, and Handcock 2012). The MCMLE for
these large citation networks was obtained by setting the starting value according to an novel
approach introduced by Schmid and Hunter (2020). This method is based on the fact that the MLE
of exponential family distributions is solely a function of the vector of su�icient statistics h (Ct ,C<t ),
meaning that the MLE of two networks A and B is equal if h (A) = h (B). However, the MPLE of
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networks with the same su�icient statistics is not necessarily the same. Instead of starting the
MCMLE algorithm at the network’s MPLE, Schmid and Hunter (2020) propose searching for a new
networkC ∗t on the samenodes as the observed network that satisfiesh (Ct ,C<t ) = h (C ∗t ,C<t ), and
has aweak dependence structure among unfixed ties. Such a network can be found using simulated
annealing algorithms (Kirkpatrick, Gelatt, and Vecchi 1983). For networks with a weak dependence
structure among unfixed ties, theMPLE is similar to theMLE, in addition, the same su�icient statistic
betweenC ∗t and the observed networkCt guarantees the same MLE between these two networks.
This makes the MPLE of C ∗t an e�ective starting value for the MCMLE algorithm. Since for some
networks theMCMLEwas only obtainable using simulated annealingmethod to find a starting value,
the final results in the paper have all been estimated using simulated annealing. The simulated
annealing algorithm for finding an improved starting value for cERGMs was implemented in the
cERGM-package forR (R Core Team 2020) and can be found at http://github.com/schmid86/cERGM.

2 Goodness-of-Fit
We evaluate the goodness-of-fit of the model following Hunter, Goodreau, and Handcock (2008)
by examining the distribution of four hyper statistics, e.g., the out- and indegree distribution and
the distribution for two di�erent edgewise shared partners statistics. OTP stands for outgoing
two-paths and refers to the number of cases r that are cited by case i and that cite case j , while j is
also directly cited by i . The second ESP statistic is the OSP specification that has been introduced
in section 4.1.2 in the paper. Figure 1 visualizes the goodness-of-fit results for the citation network
for the 1950 (top) and 2015 (bottom) term. The solid black line indicates the statistic’s distribution
in the Supreme Court citation network of that given term and the boxplots depict the statistic’s
distribution of 1000 networks that have been simulated from the ERGM defined by the MCMLE. This
means that in the ideal case the solid black line passes through ever single boxplot.

We see that ourmodels do a good job capturing the out and indegree distribution of the citation
network, since the black line falls almost exclusively within the ranges spanned by the boxplots.
For the ESP distributions we can observe that the number of ties with r = 0 shared partners is
captured well for both the OTP as well as for the OSP statistic. However, the model overestimates
the number of r = 1 shared partners and then, especially in the 2015 term network, underestimates
the number of ties with more than r = 1 shared partners.

3 Checking for Model Degeneracy
A common challenge when fitting ERGMs is model degeneracy. Model degeneracy occurs when the
probability distribution defined by the parameter vector does not predominantly yield networks
with similar statistics as the observed network. Generally, model degeneracy results in simulated
networks with no ties or all possible ties. In a non-degenerate model the statistics of the networks
that were simulated from the probability distribution defined by the MCMLE fall in the proximity of
the observed network’s statistics. Figures 2 and 3 depict trace and density plots for the dependence
terms in the 1950 and 2015 term citation network. The histograms on the le� visualize a statistic’s
density from 1000 simulated networks, while the right side shows the statistic’s trace plot of the
same 1000networks. The solid black line indicates the statistic’s value in the actual citationnetwork.
Both figures indicate that this model is non-degenerate and that the simulated network’s statistics
fall almost evenly around the observed statistic. The density and trace plots for the ERGM of the
terms not depicted provide similar results.
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Figure 1. Goodness-of-fit diagnostic for the 1950 network (top) and the 2015 network (bottom).
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Figure 2. Density and trace plots for the dependency terms of the 1950 term citation network.
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Figure 3. Density and trace plots for the dependency terms of the 2015 term citation network.
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