
A Appendix for Torres and Cantú, “Learning to See: Convolutional
Neural Networks for the Analysis of Social Science Data”

Michelle Torres and Francisco Cantú

This Appendix provides additional analyses, diagnoses, and details regarding the description,
application and plots presented in the main text. It is organized into 5 sections.

• Glossary: pp. 2-4

– This section presents a glossary with terms regarding the elements, process, and imple-
mentation of CNNs.

• Image Pre-processing (A.1): p. 5

– This section provides technical details, and extra information and plots regarding the
data pre-processing steps such as zero-padding.

• Feature extraction (A.2): pp. 6-7

– This section provides technical details and extended information regarding feature ex-
traction, dimension reduction, and the different type of layers of a CNN.

• Learning (A.3): pp. 8-9

– This section provides technical details and extra information regarding the training and
learning process, such as an extended discussion of backpropagation, and alternative
optimizing functions.

• Application (A.4): pp. 10-15

– This section provides extra plots and analysis of the classification task presented as
the illustrating example of the article: the coding of handwritten numbers in electoral
tallies.
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Glossary

activation function Function that allows to generate non-linear outputs. In the context of CNNs,
these are mathematical rules or functions that transform the elements of a matrix. 8

backpropagation Long series of nested equations that have the objective of adjusting each weight
in the network in proportion to how much it contributes to overall error. Backpropagation
can be seen as an application the Chain rule to find the derivatives of a function with respect
to any variable in the nested equation. 10

batch normalization Technique for improving the performance and stability of a neural network
via a normalization step that fixes the means and variances of layer inputs. The normal-
ization process occurs in “mini-batches” (e.g. subsets of the training dataset), to make the
process more efficient. This is possible given that 1) the optimized loss over a mini-batch
is an actual estimate of that in the full set whose quality improves as the size of the batch
increases, and 2) takes advantage of parallel computation. For a layer with d-dimensional
input x = (x(1) . . . x(d)), we normalize each dimension with x̂(k) = x(k)�E(x(k))p

Var(x(k))
, where the

expectation and variance are computed over the training dataset. 17

batch size Number of images in a match, or subset of training images. 11

epochs A training iteration consisting on the single pass of the entire training database through-
out the model. 11

feature map The matrix mapping the outputs from convolution of a given filter and the different
regions of an image. 8

filter size Product of height and width, in pixels, of a matrix representing a filter. 7

filter stride Number of pixels that a filter slides through an image. 7

filters In a CNN, the filters represent the neurons of the network. These are matrixes of numbers
representing patterns and combinations of pixels that permit the extraction of features of
an image. The pixel combinations can represent edges, corners, blobs, color combinations,
and textures. Filters are convolved with regions of the image to create feature maps that
represent the prevalence of the patterns they represent in an image. 7

forward propagation The process in which the input data moves in the forward direction through
the network. Each hidden layer accepts the input data, processes it as per the activation
function and passes to the successive layer . 10

generalization The ability of a model to perform well on previously unobserved inputs (Good-
fellow, Bengio and Courville, 2016, p. 110). . 15

gradient descent Optimization algorithm used to to update the weights, or coefficients, of our
model. Its objective is to minimize some function by iteratively moving in the direction of
steepest descent as defined by the negative of the gradient. The gradient is built with the
partial derivatives of the function with respect to its different parameters. It is represented
by x

0
= x� ✏�xf(x). 10
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hyperparameters Hyperparameters are the variables exogenous to the model that determine the
network structure and how it will be trained. The values of the hyperparameters are set
before the training begins and do not depend on the data. 5

L1 and L2 regularization L1 and L2 norms are regularization methods that add to the loss func-
tion an additional penalty term for the magnitude of the weights. The difference between
these two norms lies on how they specify the penalty. In the case of L1, it adds the absolute
value of the coefficient magnitude as a penalty term. Formally, the loss function in a L1 re-
gression is specified by L(x, y) =

Pn
i=1(yI�

Pp
j=1 xij�j)

2+�
Pp

j=1 |�j |, where � is the size of
the coefficient j, and � is the penalty term. In contrast, l2 specifies the penalty as the sum of
the squared magnitude of the weights. Formally, the cost function in the l2 norm is specified
by: L(x, y) =

Pn
i=1(yI �

Pp
j=1 xij�j)

2 + �
Pp

j=1 �
2. 16

layer depth Number of filters used in a layer. 7

learning rate A positive scalar that defines the magnitude of the steps in which the gradient de-
scends. Formally, the learning rate is defined as the parameter ✏ in the gradient descent
function (see gradient descent). 11

loss function Function that quantifies the differences between the predicted labels from the CNN,
and the true labels of the input data. The loss over a dataset is the sum of the loss of its units.
Formally, L = 1

N

P
i Li(f(xi,W ), yi), where f(xi,W ) is the a function of the weights of the

filters in the CNN layers, and the pixel matrix representing the input image. 10

mini-batches Subsets of the images in the training dataset used in the batch-normalization pro-
cess. 11

receptive field The area where a given filter, or neuron, is positioned to execute a convolution. 7

ReLU The name stands for REctified Linear Unit. It is the most commonly used activation func-
tion in CNNs formally defined as y = max(0, x). It is computationally cheap due to its math-
ematical simplicity, converges faster due to the linearity for positive values and its sparsely
activated given that it is zero for negative values. 9

Sigmoid Activation function defining a “S”-shaped curve, or sigmoid, formally defined as the
inverse logit: 1

1+e�x . Useful when dealing with binary outcomes/labels. The function is
differentiable and monotonic, and can cause a network to get stuck when training. 8

softmax layer A layer with a multinomial function embedded that transforms the output of the
CNN layers up to that into probabilities that the input belongs to each of the potential labels.
This is a fully-connected layer because its neurons are not independent and the output is
based on this dependency (i.e. the probabilities summing to 1). 10

Tahn Also known as hyperbolic tangent, it is an activation function also with a sigmoidal shape
but with a range between -1 and 1. Its formal definition is 22

1+e�x implying that negative
inputs are mapped strongly negative, and zero values would be near to that value when
mapped. 8
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transfer learning Exploiting a model trained in a particular setting to improve the generalization
of the findings of a different setting. This is a valuable resource when the researcher consid-
ers that the factors that explain the variations of the original database are useful for the goal
of the new database (Goodfellow, Bengio and Courville, 2016, p. 526-527). 18

weight The unknown parameter of the neural network that seek to improve the fit between the
model and the data. 9

zero-padding A padding is a “frame” that we add to the border of an image to allow the convo-
lution of the edges and corners of an image, and increase the information that is processed
through the CNN. In this case, the zero-padding adds a vector of zeros with the length of
the width of the image above and below it, and another vector of zeros with the length of
the height of the image to the left and right of it. This is equivalent to adding a black frame
of width 1 px to the image. 6
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A.1 Image Pre-processing

A.1.1 Zero-padding

As we reviewed in the text, the convolution consists on overlaying a small filter, or kernel, with
different areas of the images under analysis by placing the center of the filter on top of a pixel.
However, this operation does not become possible for those pixels at the edge of the image under
analysis. Consider Figure A.1(a) and the pixel highlighted in dark green. A filter of size 3 ⇥
3 centered on it can perform the convolution seamlessly given that all the values surrounding
it exist. However, the convolution is not possible when the filter is placed on the dark red pixel
given that the kernel (in pink) exceeds the dimension of the image. Thus, we can “pad” the missing
values beyond the edges with zeros as illustrated in Figure A.1(b) which shows a zero padding of
p = 1, and thus increasing the size of the numerical array from 13⇥ 13 to 15⇥ 15. With this action,
we also guarantee that the size of the output image will remain the same as the input. However,
if the objective is to use a convolution layer also as a way of reducing the dimensionality of the
image, then padding is not necessary.

Figure A.1: Image Pre-processing of a handwritten “1”
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(a) Image Transformation (b) Zero Padding

There exist other types of padding including the one with replicates of the pixels at the edges
(instead of using “0”), or the “wrap around” which consists on examining the opposite side of the
image to “pad” the edge. The latter is preferred in cases where aesthetics is a concern, while the
former is best for overall efficiency. The size of the padding (e.g. the number of rows that you add
to edge) depends on the size of the filter.
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A.2 Feature extraction

A.2.1 Filters

The filters that are at the core of a convolution are simply matrices or kernels that we slide through
an image of interest with the objective of identifying whether the feature that each filter represents
is found in different parts of the image. The convolution achieves that by creating a map indicating
how much a given area resembles the content of the filter. The features conveyed by the filters can
be lines, corners, shapes or combinations of all of these (Figure A.2 shows a few examples).

For example, the features that distinguish handwritten digits are mainly lines with different
orientations, curvatures and magnitudes: a vertical line is a crucial feature for the initial discrim-
ination of a “1” versus a “0.” However, the number and complexity of the features to distinguish
a man from a woman will be much larger.

Figure A.2: Examples of filters

Note: This figure displays examples of filters of size 3 (height)⇥ 3(width) = 9 that were randomly initialized in the first
layer of a CNN.

It is important to remember that these filters and their features are learned throughout the
backpropagation process described in the main text. However, as in any optimization process,
the CNN needs a starting point. For the CNN used in this article, the filters in the first layer
are initialized randomly using the Glorot uniform method. Also known as Xavier, this initializer
draws samples from a uniform distribution: W ⇠ U

⇣
�6

uin+uout
, 6
uin+uout

⌘
, where uin is the number

of input units in the weight tensor, and uout is the number of output units in the weight tensor. In
most canned architectures, it is not necessary to define the initialization of these filters since they
contain default starting points.
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Figure A.3: Examples of Activation Functions
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A.3 Learning

A.3.1 Backpropagation

Suppose that a neuron j in the last layer provides a classification outcome yj .1 To estimate the
prediction error, the model compares such an outcome with the target label, tj . In our digit recog-
nition example, the prediction error of the neuron for the outcome “1” is the difference between
the true outcome and the model’s estimated probability for the image to belong to that category.
After adding up the prediction error of all the neurons in the layer, E = 1

2

P
j210(tj � yj)2, we can

estimate the error function derivative of the last layer:

@E

@yj
= �(tj � yj) (2)

Similarly, we can express the error derivatives in terms of the logit of the neuron, zj :

@E

@zj
=

@E

@yj

@yj
@zj

= yj(1� yj)
@E

@yj
(3)

To minimize this error term, the network goes back to its prior layers and identifies those
weights contributing the most to this error. In other words, it estimates how the neuron outcomes
in layer i affect the outputs of layer j given the weighted connection between both layers, wij :

@E

@yi
=

X

j

@E

@zj

@zj
@yi

=
X

j

wij
@E

@zj
=

X

j

wijyj(1� yj)
@E

@yj
(4)

These partial derivatives allow us to estimate the contribution of a specific weight to the error
term:

@E

@wij
=

@zj
@wij

@E

@zj
= yj(1� yj)

@E

@yi
(5)

The partial derivative in Equation 5 allows the model to gradually modify its weights after
reviewing a set k of examples from the database K:

��wij = �
X

k2K
y(k)i y(k)j (1� y(k)j )

@E(k)

@y(k)i

(6)

1The explanation and notation of this example come from Buduma and Locascio (2017).
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A.3.2 Transfer Learning

Table A.1: Popular CNN architectures that serve as base for transfer learning

Top-1 Top-5 Number Trained
Model Size Accuracy Accuracy Params. Depth on Goal Authors Novelty
VGG16 528 MB 0.713 0.901 138357544 19 Simonyan

and Zisser-
man (2014)

Deeper network with smaller fil-
ters

GoogleLeNet 44 MB 0.64 0.933 6797700 22 Szegedy
et al. (2015)

Building networks using dense
modules/blocks. Instead of
stacking convolutional layers,
we stack modules or blocks,
within which are convolutional
layers.

Inception V3 92 MB 0.779 0.937 23851784 159 Szegedy
et al. (2016)

Evolution of Inception V1 with
added parameters

ResNet50 98 MB 0.749 0.921 25636712 - He et al.
(2016)

Popularised skip connections.
Among the first to use batch
normalisation.

Xception 88 MB 0.79 0.945 22910480 126 Chollet
(2017)

Introduced CNN based entirely
on depthwise separable convo-
lution layers.

InceptionResNetV2 215 MB 0.803 0.953 55873736 572 Szegedy
et al. (2017)

Converting Inception modules
to Residual Inception blocks.

ResNetXt50 96 MB 0.777 0.938 25097128 - Xie et al.
(2017)

Scaling up the number of paral-
lel towers (“cardinality”) within
a module

AlexNet 223 MB 0.625 0.830 60000000 8

ImageNet: 1.2
million training
images, 50K
validation, and 150K
testing.

Image
classification
into 22000
classes

Krizhevsky,
Sutskever
and Hinton
(2012)

First to implement ReLu as ACT

LeNet 0.993 - 60000 5 MNIST: 60K training,
10K validation

OCR and
character recog-
nition

LeCun et al.
(1998)

Iconic CNN with CONV and POOL

stacking, followed by FC

Note: Top-1 Accuracy indicates the proportion of images correctly classified as the top-1 label manually attached to the image. Top-5 Accuracy indicates the
proportion of images in the testing set correctly classified as one of the top-5 labels manually attached to the each image. Depth corresponds to the number of
layers in the network. The ImageNet are images of several random objects and scenes taken from the Internet and manually labeled in Amazon MTurk. The
MNIST dataset contains images of handwritten numbers.
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A.4 Application 1: Coding electoral results from tallies

A.4.1 Extracting digits from tallies

We decided to develop a function that identifies the coordinates of three focal points of the tally:
the yellow banner at the top of the page, the bright pink rectangle at the bottom left of the tally,
and the pink circle below the table. The coordinates of these elements, shown inside red rect-
angles in the first element of Figure 3, allow us to identify the bottom, top and left lines of the
table containing the digits. The green dashed lines and yellow area in the second element of the
diagram illustrates this process. Once we isolate the table, we divide it into 3 ⇥ the number of
parties/candidates in the district cells. We then cut and save each cell under the assumption that it
contains a digit.2

A.4.2 Network architectures for digit detection

Figure A.4: Network Architecture: base model
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Notes: Figure A.4 illustrates the CNN structure applied to identify digit numbers. This is the base model
whose inputs consis of numerical arrays of 28 (height) ⇥ 28 (width) pixel values. The network was trained

in 60,000 digits from the MNIST data. Batch size is 200 and number of epochs is 15.

A.4.3 Hyperparameter grid search

To find the most “optimal” CNN, we ran different sets of model specifications. The training sam-
ple is composed of 60,000 digits MNIST, while our validation sample included 2,000 digits from

2This, however is not fulfilled in some cases. Although polling staff is supposed to fill all cells and use leading zeros
for 1 and 2-digit numbers, or parties with no support, several ballots have empty cells.
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Figure A.5: Network Architecture: revised model
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Notes: Figure A.5 illustrates the CNN structure applied to identify digit numbers after conducting a
hyperparameter search grid. The network was trained with 60,000 digits from MNIST and then tested on
2,000 digits from the validation set of the tallies. We froze the first convolutional layer (blue rectangle) of

the architecture, and retrained the rest. Batch size is 200 and number of epochs is 20.

our tallies. We use the Keras Tuner (keras-tuner library in Python) to conduct the 180 trials. The
space of potential values for the hyperparameters are the following:

Table A.2: Hyperparameter grid search set-up

Hyperparameter Default Min. value Max. value Interval Selected

Number CONV blocks 2 1 3 1 3
Filters Layer 1 - 16 128 16 64
Filters Layer 2 - 16 128 16 96
Filters Layer 3 - 16 128 16 112

Dropout 0.5 0.1 0.5 0.1 0.1
Size FC 1 128 50 200 20 150
Size FC 2 50 10 100 10 70

Learning rate 0.0001 0.0001 0.01 - ⇡0.0001
Epochs - - 45 - 20

Table A.3 below shows the results for a selected number of those trials:

A.4.4 Loss and accuracy history

The following plots show the loss and accuracy history of the revised model with transfer learn-
ing throughout the training process. The red line shows the loss/accuracy across epochs for the
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Table A.3: Results from the hyperparameter search grid (selected)

Number Filters Filters Filters Dropout Size Size Number Validity
CONV layers Layer 1 Layer 2 Layer 3 rate FC 1 FC 2 Epochs Accuracy

3 64 32 32 0.200 110 20 45 0.332
3 96 32 112 0.300 70 50 5 0.335
3 112 80 80 0.200 70 50 45 0.338
3 80 64 96 0.200 50 20 5 0.340
...

...
...

...
...

...
...

...
...

3 96 112 48 0.300 130 50 45 0.352
3 80 112 112 0.500 170 30 15 0.350
3 32 32 112 0.200 110 30 5 0.346
3 96 32 112 0.300 70 50 15 0.343
3 32 32 112 0.200 110 30 15 0.342

Note: This is a selection of some models tested using the hyperparameter search grid. The specification
of these models can be found in Table_A3.txt in the CodeOcean capsule. However, the column of “Validity
accuracy” is included exclusively in the output file of such repository.

training data, whereas the blue ones show those indicators for the validation sample. While the
training loss accuracy show a trend of classification improvement, the blue line started to appear
stable, suggesting that the improvement of the model comes from learning features specific to the
training set (overfitting). Thus, we can stop the training process at around 20 epochs.

A.4.5 Classification errors

There are substantial differences between the digits that belong to the MNIST data that are used
to train and test most architectures for digit recognition, and digits taken from other contexts like
those from the electoral tallies under analysis. The former are clearly defined, without stains,
lines or blobs that do not belong to the digit, centered and placed in a black background. In
contrast, the digits from the tallies contain certain irregularities such as stains from the scanning
process, bounding boxes, and other lines and edges in ink or pencil. Below we present a few of the
digits from each dataset to illustrate the differences and provide initial evidence of the potential
challenges for classification that using a model trained entirely on the MNIST data pose.

A.4.6 Vote counts per party in District 15: predicted vs. observed

Figure A.9 presents the comparison of detected and real vote counts in the tallies of the district.
Because of the right skewed distribution, we applied a logarithmic transformation to both the
predicted and real vote counts.

Each point in the plot represents the comparison between the predicted vote counts of each of
the parties (including null votes, non-registered candidates, and coalitions) and the actual votes.
The size of the point indicates the frequency of each potential combination.

Notice that we also added to the plot information about the quality of the predictions of the
digits. Recall that the last layer of the CNN, the softmax layer, outputs a list with the probabilities
that each input digit has of belonging to each of the 10 possible outcomes (0-9). To classify the
number, we take the category with the highest probability of the list. For most of these numbers,
the maximum probabilities are pretty high (above 0.99). However, in cases where the number is
ambiguous, or the model does not have enough information (e.g. the digits in the tally are not
legible), the predictions that the CNN makes are less likely to be accurate. Therefore, we created
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Figure A.6: Performance history of revised model for digit classification

(a) Loss

(b) Accuracy
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Figure A.7: Digits from MNIST vs. Electoral tallies

(a) MNIST dataset

(b) Tallies

Figure A.8: Examples of digit predictions

an indicator for each vote count registered in each tally that we then use to evaluate its overall
quality. The triangles in Figure A.9 show the vote counts in the tallies identified as “moderate
quality”, whereas the blue circles show the “high quality” ones. If the CNN is yielding accurate
predictions, we should see a high density of observations concentrated along the 45 degree dashed
line indicating that the prediction and the official vote counts are equal. We indeed observe a
dense distribution of a large number of observations along the red line. This is especially true for
the high quality tallies: very few deviate from the line. The “moderate quality” observations show
greater deviations, but these do not follow a pattern that would suggest a systematic bias.
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Figure A.9: Number of votes registered in tallies: Official vs. Predicted
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