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A.1 Computing Starting Values for Bridged Chambers

Suppose that we are bridging together J chambers connected by bridge voters. My approach

first estimates ideal points for each of the J chambers individually. Let α̂jn denote the ideal

point of individual n in chamber j. Let Iαjn be equal to 1 if individual n is in chamber j

and 0 otherwise. The estimates for each chamber will be on a different scale. To pool this

information together, I transform these chamber estimates onto a common scale. I denote

the transformation parameters by C̃j and d̃j and I denote the (commonly-scaled) starting

values by α̃n.

My approach solves the optimization problem,

(α̃, C̃, d̃) = argmin
α,C,d

N∑
n=1

J∑
j=1

Iαnj(α̂nj − Cjαn − dj)
2 (33)

The parameters C̃j and d̃j as chosen such that the chamber-by-chamber estimates are as

close as possible to being linear transformations of the commonly-scaled starting values.

This approach resembles the dynamic ideal point adjustment approach of Groseclose, Levitt

and Snyder (1999), the linear mapping approach of Shor and McCarty (2011), and the

“black box” approach of Poole (1998), but differs in some key ways. Applying Shor and

McCarty (2011)’s linear mapping approach will generally produce good starting values in

the case where a single chamber is connected through bridge voters to every other chamber.

We would like to have an algorithm that works more generally however. For example, in
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connected sessions of the U.S. Senate, no single session contains bridge voters to every other

session. In addition, in Shor and McCarty (2011), the information is not pooled in the same

way—my estimates make use of all available information to estimate the starting values.

Groseclose, Levitt and Snyder (1999) come closer to developing an approach that can

yield starting values for dynamic Senate estimates, but there are two limitations of applying

their approach directly. First, the goal of their approach is to obtain transformed chamber-

by-chamber estimates while we would like to obtain a single estimate for each bridge voter

so that those bridge voters can be used to connect that scales across different chambers.

Second, Groseclose, Levitt and Snyder’s approach involves an iterative solver which itself

can get stuck in a local minimum. Since my goal is to obtain starting values to prevent the

penalized maximum likelihood estimator from getting stuck in a local maximum, employing

a starting value algorithm that itself can get stuck without good starting values would be

problematic.13 Instead, the objective function I suggest is quadratic—meaning the minimum

can be computed by solving a sparse linear system of equations—avoiding the need for an

iterative nonlinear solver. Poole’s (1998) objective function is quadratic, but he nonetheless

employs an iterative solver similar to the one Groseclose, Levitt and Snyder employ.

The objective function specified above does not have a unique minimum and the commonly-

scaled ideal points α̃ can be linearly transformed without affecting the value of the objective

function. I have found two effective approaches approaches for guaranteeing a unique min-

imum. The first is to choose a chamber j∗ and to constrain the transformation to be the

identity transformation for this chamber, i.e. C̃j∗ = I and d̃j∗ = 0. This approach tends to

be effective when there is a single chamber that is connected to most other chambers, as is

the case in Shor and McCarty (2011). This approach tends to perform poorly when some

chambers are only connected to some other chambers through a very long sequence of con-

13To be clear, this should not be read as a criticism of Groseclose, Levitt and Snyder—their approach was
effective on their intended application.
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nections, as is the case when connecting the 1st congress to the 113th congress using bridge

voters. The second approach is to penalize the objective function above for deviations from

Cj = I and dj = 0 for all j, which is more effective when some chambers are only connected

through a long sequence of connections.14

While the approach above will generate starting values for α in the case where all the

chambers are connected by bridge voters, we need to have an approach that also works when

some chambers are only connected by bridge votes. My approach works as follows—I first

identify all clusters of chambers that are connected by bridge voters and apply the above

approach for generating starting values of α. Then, for each cluster of chambers, I estimate

starting values for a and b using vote-specific probits. Each of these chamber clusters will

be connected by bridge votes, which will be characterized by a and b estimated on different

scales. For each chamber-cluster j, let Iδjt = 1 if vote t occurs in chamber-cluster j. To

transform these onto the same scale, I solve,

(ã, b̃, C̃, d̃) = argmin
a,b,C,d

T∑
t=1

J∑
j=1

Iδtj[(âtj − at + b′t(C
−1
j )′dj)2 + (b̂tj − C−1j bt)

2] (34)

where the form of the objective function is motivated from equations 27 and 28. To obtain

a quadratic objective function, this problem is re-parameterized as,

(ã, b̃, Ẽ, f̃) = argmin
a,b,E,f

T∑
t=1

J∑
j=1

Iδtj[(âtj − at + b′tfj)
2 + (b̂tj − Ejbt)

2] (35)

I then use the linear transformations given by C̃j = Ẽ−1j and d̃ = Ẽ−1j f̃j to transform the

chamber-cluster values of α onto the common scale. Then (as before), I adjust the scale of

14This approach favors orientations which don’t flip the signs of the ideal points. Before this approach
is applied, I normalize the chamber-by-chamber ideal points to have mean zero and variance equal to the
identity matrix. I then flip the signs of the ideal points along each dimension by applying a singular value
decomposition to the ideal points and then flip the sign of the ideal points whenever the SVD weights have
a negative sign. It is possible to avoid this pre-processing step if the penalty terms are formed differently.
In the one-dimensional case, my approach penalized deviations from Cj = 1. One could instead penalize
deviations from C2

j = 1 or |Cj | = 1, but each of these would lead to a non-quadratic objective function.
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the starting values (α, a, b) to match that scale of the prior using equation 29.

One question to ask is whether this two stage approach is necessary—can α and (a, b)

be transformed in one step rather than two? While it is possible to form such an objection

function, the objective function will not be quadratic. Absent the quadratic form, the

starting value optimization problem may be vulnerable to the same problem of local solutions,

making the approach less than helpful.

A.2 Proof of Proposition 1

For an m× n matrix A, define the matrix norm ‖A‖max = max
1≤i≤m,1≤j≤n

|Aij|. Note that,

1
T
H =

⎛
⎜⎝ 1

T
H11

1
T
H12

1
T
H21

1
T
H22

⎞
⎟⎠ (36)

and define,

1
T
H0 =

⎛
⎜⎝ 1

T
H11 0

0 1
T
H22

⎞
⎟⎠ (37)

To prove the result, I make the following assumptions:

Assumption A.1. αn ∈ A for all n and (at, bt) ∈ Δ for all t, where A and Δ are bounded.

Assumption A.2. N, T →∞ with N
T
→ κ where κ > 0.

Assumption A.1 assumes that the parameters live in a bounded set and is standard when

deriving theoretical properties of nonlinear estimators. Assumption A.2 assumes that both

the number of individuals and the number of items are growing and also assumes that they

grow at the same rate.

The result is given below:
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Proposition A.1. Suppose that Assumptions A.1 and A.2 hold. Then
∥∥ 1
T
(H −H0)

∥∥
max

prob.−→
0.

Proof. Define,

znt = 1{ynt = 2}Φ(at + b′tαn)φ
′(at + b′tαn)− φ(at + b′tαn)

2

Φ(at + b′tαn)2
(38)

+ 1{ynt = 1}−(1− Φ(at + b′tαn))φ
′(at + b′tαn)− φ(at + b′tαn)

2

(1− Φ(at + b′tαn))2
(39)

wnt = 1{ynt = 2}φ(at + b′tαn)

Φ(at + b′tαn)
− 1{ynt = 1} −φ(at + b′tαn)

1− Φ(at + b′tαn)
(40)

and note that −1 < znt < 0. We have that,

H11,nn =
T∑
t=1

zntbtb
′
t (41)

H22,tt =
1
N

N∑
n=1

znt(1, αn)(1, αn)
′ (42)

H12,nt = zntbt(1, αn)
′ + (0, wnt, ..., wnt) (43)

H21 = H ′
12 (44)

Note that,

1
T
H − 1

T
H0 =

⎛
⎜⎝ 0 1

T
H12

1
T
H21 0

⎞
⎟⎠ (45)

38



The elements of H involve bounded random variables (ynt) multiplied by continuous func-

tions, which by Assumption A.1, take values on a bounded set. It follows that there exists

a C > 0 such that |Hij| ≤ C for all i and j. We have that,

∥∥ 1
T
H − 1

T
H0

∥∥
max

=

∥∥∥∥∥∥∥
⎛
⎜⎝ 0 1

T
H12

1
T
H21 0

⎞
⎟⎠
∥∥∥∥∥∥∥
max

= 1
T

∥∥∥∥∥∥∥
⎛
⎜⎝ 0 H12

H21 0

⎞
⎟⎠
∥∥∥∥∥∥∥
max

≤ 1
T
C (46)

Setting δ = 1
T
C, we have that,

Pr
(∥∥ 1

T
H − 1

T
H0

∥∥
max

> δ
)
= 0 (47)

Therefore, it follows that for all ε > 0 and δ > 0, there exists an N and T large enough so

that Pr
(∥∥ 1

T
H − 1

T
H0

∥∥
max

> δ
)
< ε, proving the result.

A.3 Additional Theoretical Result

In Appendix A.2, I provided conditions under which the Hessian converges to a block diagonal

form in large samples. Standard errors would usually be calculated by inverting the projected

Hessian (where the projection handles the fact that parameter constraints must be imposed

in order to achieve identification). Here, I provide conditions under which the inverse of

the projected Hessian converges to the inverse of the block diagonal approximation of the

projected Hessian.

Before presenting the next result, I introduce some useful notation and definitions. For an

m×nmatrix A, define the matrix norms ‖A‖max = max
1≤i≤m,1≤j≤n

|Aij|, ‖A‖1 = max
1≤j≤n

∑m
i=1 |Aij|,

‖A‖∞ = max
1≤i≤n

∑n
j=1 |Aij|, and ‖A‖2 = σmax(A), where σmax(A) denotes the largest singular

value of A. Note that all four matrix norms satisfy the triangular inequality, but only ‖.‖1,
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‖.‖∞, and ‖.‖2 are sub-multiplicative, i.e. ‖AB‖1 ≤ ‖A‖1 ‖B‖1, ‖AB‖∞ ≤ ‖A‖∞ ‖B‖∞,
and ‖AB‖2 ≤ ‖A‖2 ‖B‖2 for conformant matrices A and B. If A is symmetric negative

definite, then ‖A‖2 = −λmin(A) where λmin(A) is the minimum eigenvalue of A. Note that

‖A‖1 ≤
√
m ‖A‖2, ‖A‖1 ≤ n ‖A‖max, ‖A‖max ≤ ‖A‖2, and if A is symmetric, ‖A‖1 = ‖A‖∞

(Golub and Van Loan, 1996).

In the proof below, I make use of the following result.

Lemma A.1. ‖AB‖max ≤ ‖A‖max ‖B‖1 and ‖AB‖max ≤ ‖A‖∞ ‖B‖max

Proof. ‖AB‖max = max
i,j
|[AB]ij| = max

i,j
|∑k AikBkj| ≤ max

i,j

∑
k |Aik| ∗ |Bkj| ≤ max

i,j,l

∑
k |Ail| ∗

|Bkj| = ‖A‖max max
j

∑
k |Bkj| = ‖A‖max ‖B‖1. Similar logic implies the second result.

For symmetric matrices, it is also the case that ‖AB‖max ≤ ‖A‖1 ‖B‖max and ‖AB‖max ≤
‖A‖max ‖B‖∞. Throughout, let S = ND + T (D + 1) denote the dimension of H.

Consider now the projected Hessian which would be inverted in order to yield the

asymptotic variance matrix. Consider a set of constraints on α of the form Cα = d

necessary to achieve identification, where d has D(D + 1) rows. For simplicity, I con-

sider the case where D = 1. There exists a basis for the space of α satisfying the linear

equation. Let w be the vectors that make up a basis. There exists a projection ma-

trix Z such that {α : Cα = d} = {α : α = Zw + θ, w ∈ R
N−2}. The projected Hes-

sian is given by H̃ =

⎡
⎢⎣ Z ′ 0

0 I

⎤
⎥⎦H

⎡
⎢⎣ Z 0

0 I

⎤
⎥⎦ and the projected version of H0 is given by

H̃0 =

⎡
⎢⎣ Z ′ 0

0 I

⎤
⎥⎦H0

⎡
⎢⎣ Z 0

0 I

⎤
⎥⎦. We choose a basis such that Z =

⎡
⎢⎣ I

τ

⎤
⎥⎦. We partition

H11 =

⎡
⎢⎣ H11pp 0

0 H11qq

⎤
⎥⎦ and H12 =

[
H12p H12q

]
in which case,
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H̃ =

⎡
⎢⎣ I τ ′ 0

0 0 I

⎤
⎥⎦
⎡
⎢⎢⎢⎢⎣

H11pp 0 H12p

0 H11qq H12q

H ′
12p H ′

12q H22

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

I 0

τ 0

0 I

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎣ H11pp + τ ′H11qqτ H12p + τ ′H12q

H ′
12p +H ′

12qτ H22

⎤
⎥⎦

H̃0 =

⎡
⎢⎣ I τ ′ 0

0 0 I

⎤
⎥⎦
⎡
⎢⎢⎢⎢⎣

H11pp 0 0

0 H11qq 0

0 0 H22

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

I 0

τ 0

0 I

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎣ H11pp + τ ′H11qqτ 0

0 H22

⎤
⎥⎦

Further suppose that the columns of τ , τn, have τn ∈

⎧⎪⎨
⎪⎩
⎡
⎢⎣ −1

0

⎤
⎥⎦ ,

⎡
⎢⎣ 0

−1

⎤
⎥⎦ ,

⎡
⎢⎣ 0

0

⎤
⎥⎦
⎫⎪⎬
⎪⎭, where

1
N

∑N
n=1 1{τn =

⎡
⎢⎣ −1

0

⎤
⎥⎦} → p1 > 0 and 1

N

∑N
n=1 1{τn =

⎡
⎢⎣ 0

−1

⎤
⎥⎦} → p2 > 0 as N → ∞.

This would be the case if the constraints Cα = d took the form of setting the means of two

groups equal to fixed values, with the proportion in each of those two groups being bounded

away from zero as the sample size increases.

Let λi(A) denote the eigenvalues of matrix A, let λmin(A) denote the minimum eigenvalue

of A, and let λmax(A) denote the maximum eigenvalue of A. Recall that for a symmetric

matrix with non-zero eigenvalues, the eigenvalues of A−1 are the reciprocals of the eigenvalues

of A. This means that for a negative definite matrix, λmin(A
−1) = 1

λmax(A)
and λmax(A

−1) =

1
λmin(A)

.

Assumption A.3. There exist C2 > C1 > 0 such that −C2 ≤ λi(
1
T
H0) ≤ −C1 and

λi(
1
T
H̃) ≤ −C1 for all i with probability approaching 1.

Proposition A.2. Suppose that Assumptions A.1 through A.3 hold. Then
∥∥∥T (H̃−1 − H̃−1

0 )
∥∥∥
max

prob.−→
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0.

Proof. We start by noting that,

TH̃−1 − TH̃−1
0 = TH̃−1( 1

T
H̃0 − 1

T
H̃)TH̃−1

0 (48)

Applying various norm properties,

∥∥∥TH̃−1 − TH̃−1
0

∥∥∥
max

=
∥∥∥TH̃−1( 1

T
H̃0 − 1

T
H̃)TH̃−1

0

∥∥∥
max

(49)

≤
∥∥∥ 1
T
H̃0 − 1

T
H̃
∥∥∥
max

∥∥∥TH̃−1
∥∥∥
1

∥∥∥TH̃−1
0

∥∥∥
1
‘

≤
∥∥∥ 1
T
H̃0 − 1

T
H̃
∥∥∥
max

√
S
∥∥∥TH̃−1

∥∥∥
2

∥∥∥TH̃−1
0

∥∥∥
1
=
∥∥∥√S

T
H̃0 −

√
S
T
H̃
∥∥∥
max

∥∥∥TH̃−1
∥∥∥
2

∥∥∥TH̃−1
0

∥∥∥
1

Note that,

∥∥∥√S
T
H̃0 −

√
S
T
H̃
∥∥∥
max

=
√
S
T

∥∥∥∥∥∥∥
⎡
⎢⎣ 0 H12p + τ ′H12q

H ′
12p +H ′

12qτ 0

⎤
⎥⎦
∥∥∥∥∥∥∥
max

(50)

Using a similar argument to the one used in the proof of Proposition A.1, we have that

|Hij| ≤ C3 for C3 ≥ 0. Note that, [τ ′H12q]ij =
∑

k τki[H12q]kj. Since the number of rows of τ

is 2 and the elements of τ are either zero or negative one, we have that |[τ ′H12q]ij| ≤ 2C3 from

which we obtain |[H12p + τ ′H12q]ij| ≤ 3C3. We therefore have
∥∥∥√S

T
H̃0 −

√
S
T
H̃
∥∥∥
max

≤
√
S
T
3C3.

Next, applying Assumption A.3 and the properties of eigenvalues of negative definite

matrices, we have,
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∥∥∥TH̃−1
∥∥∥
2
= −λmax(TH̃

−1) =
1

−λmin(
1
T
H̃)

≤ 1
C1

(51)

with probability approaching 1.

Finally, we consider,

∥∥∥TH̃−1
0

∥∥∥
1
=

∥∥∥∥∥∥∥
⎡
⎢⎣ T (H11pp + τ ′H11qqτ)

−1 0

0 TH−1
22

⎤
⎥⎦
∥∥∥∥∥∥∥
1

(52)

≤ max
{∥∥T (H11pp + τ ′H11qqτ)

−1∥∥
1
,
∥∥TH−1

22

∥∥
1

}
We have,

∥∥TH−1
22

∥∥
1
= max

1≤t≤T

∥∥TH−1
22tt

∥∥
1
≤
√
2 max
1≤t≤T

∥∥H−1
22tt

∥∥
2
=
√
2 max
1≤t≤T

(−λmin(TH
−1
22tt)) (53)

=
√
2 max
1≤t≤T

1

(−λmax(
1
T
H22tt))

≤
√
2

C1

with probability approaching 1. Using the Woodbury matrix identity (Golub and Van Loan,

1996), we can write,

T (H11pp + τ ′H11qqτ)
−1 = TH−1

11pp − TH−1
11ppτ

′(TH−1
11qq + τTH−1

11ppτ
′)−1τTH−1

11pp (54)

Taking norms,

∥∥T (H11pp + τ ′H11qqτ)
−1∥∥

1
=
∥∥TH−1

11pp − TH−1
11ppτ

′(TH−1
11qq + τTH−1

11ppτ
′)−1τTH−1

11pp

∥∥
1

(55)
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≤ ∥∥TH−1
11pp

∥∥
1
+
∥∥TH−1

11ppτ
′(H−1

11qq + τTH−1
11ppτ

′)−1τTH−1
11pp

∥∥
1

≤ ∥∥TH−1
11pp

∥∥
1
+
∥∥TH−1

11pp

∥∥2
1

∥∥τ ′(TH−1
11qq + τTH−1

11ppτ
′)−1τ

∥∥
1

Using an argument similar to the one we provided for
∥∥TH−1

22

∥∥
1
, we have

∥∥TH−1
11pp

∥∥
1
≤ 1

C1

with probability approaching 1. We then have,

∥∥τ ′(TH−1
11qq + τTH−1

11ppτ)
−1τ

∥∥
1
≤ N

∥∥τ ′(TH−1
11qq + τTH−1

11ppτ)
−1τ

∥∥
max

(56)

= N max
m,n

∥∥τm(TH−1
11qq + τTH−1

11ppτ)
−1τ ′n

∥∥
max

= N max
m,n

∥∥∥∥∥τm(TH−1
11qq +

N−2∑
r=1

τ ′rTH
−1
11rrτr)

−1τ ′n

∥∥∥∥∥
max

≤ N max
m,n

‖τm‖1 ‖τn‖1
∥∥∥∥∥(TH−1

11qq +
N−2∑
r=1

τ ′rTH
−1
11rrτr)

−1
∥∥∥∥∥
max

= N

∥∥∥∥∥(TH−1
11qq +

N−2∑
r=1

τ ′rTH
−1
11rrτr)

−1
∥∥∥∥∥
max

=

∥∥∥∥∥( 1
N
TH−1

11qq +
1
N

N−2∑
r=1

τ ′rTH
−1
11rrτr)

−1
∥∥∥∥∥
max

≤
∥∥∥∥∥( 1

N
TH−1

11qq +
1
N

N−2∑
r=1

τ ′rTH
−1
11rrτr)

−1
∥∥∥∥∥
2

= −λmin

(
( 1
N
TH−1

11qq +
1
N

N−2∑
r=1

τ ′rTH
−1
11rrτr)

−1
)

=
1

−λmax

(
1
N
TH−1

11qq +
1
N

∑N−2
r=1 τ ′rTH

−1
11rrτr

)

44



Define Rr1 = 1

⎧⎪⎨
⎪⎩τr =

⎡
⎢⎣ −1

0

⎤
⎥⎦
⎫⎪⎬
⎪⎭ and Rr2 = 1

⎧⎪⎨
⎪⎩τr =

⎡
⎢⎣ 0

−1

⎤
⎥⎦
⎫⎪⎬
⎪⎭. We have,

1
N
TH−1

11qq +
1
N

N−2∑
r=1

τ ′rTH
−1
11rrτr (57)

=

⎡
⎢⎣ 1

N
TH−1

11,N−1,N−1 +
1
N

∑N−2
r=1 Rr1TH

−1
11rr 0

0 1
N
TH−1

11,N,N + 1
N

∑N−2
r=1 Rr2TH

−1
11rr

⎤
⎥⎦

Using the fact that for diagonal matrices, the eigenvalues are equal to the diagonal elements,

− λmax

(
1
N
TH−1

11qq +
1
N

N−2∑
r=1

τ ′rTH
−1
11rrτr

)
(58)

= −max

{
1
N
TH−1

11,N−1,N−1 +
1
N

N−2∑
r=1

Rr1TH
−1
11rr,

1
N
TH−1

11,N−1,N−1 +
1
N

N−2∑
r=1

Rr2TH
−1
11rr

}

= min

{
1
N
(−TH−1

11,N−1,N−1) +
1
N

N−2∑
r=1

Rr1(−TH−1
11rr),

1
N
(−TH−1

11,N−1,N−1) +
1
N

N−2∑
r=1

Rr2(−TH−1
11rr)

}

We can bound,

− TH−1
11rr = −λi(TH

−1
11rr) =

−1
λi(

1
T
H11rr)

≥ 1

C2

(59)

with probability approaching 1, so that,

− λmax

(
1
N
TH−1

11qq +
1
N

N−2∑
r=1

τ ′rTH
−1
11rrτr

)
(60)
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≥ 1

C2

min
{
1 +

∑N−2
r=1 Rr1, 1 +

∑N−2
r=1 Rr2

}
N

and,

1

−λmax

(
1
N
TH−1

11qq +
1
N

∑N−2
r=1 τ ′rTH

−1
11rrτr

) (61)

≤ C2

1
N
min

{
1 +

∑N−2
r=1 Rr1, 1 +

∑N−2
r=1 Rr2

}
Note that by assumption,

1
N
min

{
1 +

N−2∑
r=1

Rr1, 1 +
N−2∑
r=1

Rr2

}
→ min{p1, p2} > 0 (62)

as N → ∞. Continuity of division when the denominator is not zero means that for each

γ > 0, there exists an N, T large enough so that,

∥∥τ ′(TH−1
11qq + τTH−1

11ppτ)
−1τ

∥∥
1
≤ C2

min{p1, p2} + γ (63)

Under these conditions, we have ‖T (H11pp + τ ′H11qqτ)
−1‖1 ≤ 1

C1
+ 1

C2
1

C2

min{p1,p2} +
1
C2

1
γ with

probability approaching 1. Combined, these results yield,

∥∥∥TH̃−1
0

∥∥∥
1
≤ max

{√
2

C1

, 1
C1

+ 1
C2

1

C2

min{p1, p2} + 1
C2

1
γ

}
(64)

so that for each γ > 0, there exists an N, T large enough so that,

∥∥∥TH̃−1 − TH̃−1
0

∥∥∥
max

≤
√
S
T

3C3

C1
max

{√
2

C1

, 1
C1

+ 1
C2

1

C2

min{p1, p2} + 1
C2

1
γ

}
(65)

Under Assumption A.2, we have that the right-hand side can be made arbitrarily small by
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increasing N and T . Selecting δ =
√
S
T

3C3

C1
max

{√
2

C1
, 1
C1

+ 1
C2

1

C2

min{p1,p2} +
1
C2

1
γ
}
, for all ε > 0,

there exists an N, T large enough so that Pr
(∥∥∥TH̃−1 − TH̃−1

0

∥∥∥
max

≤ δ
)
≥ 1 − ε, proving

the result.

47


