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Online Appendix

1 Binarychoicemodelswithspatial, temporal, andspatio-temporal interdepen-
dence (Full description)
This section specifies and derives a mathematical expression of binary choice models, for which
we develop a pseudo maximum likelihood estimator later. We do so for a model with spatial,
temporal, and spatio-temporal interdependence, respectively. Note that, in this specification, we
try tomaintain generalmathematical expressionswithout assuming a specificmarginal distribution
(such as logistic vs. normal). In fact, the PMLE’s estimation feasibility regardless of the error-term
probability distribution is one of the strengths of this approach. In our view, this strength goes
beyond the probit-vs.-logit consideration. This can become useful when onemight need to develop
an estimator, for instance, for a hybrid of a binary spatial model and another model from a di�erent
model class such as duration and count.

1.1 Spatial interdependence
We consider the following model

y ∗i = ρ
N∑
j=1

wi j y
∗
j + xiβ + ui (1)

yi =

{
1 if y ∗i > 0

0 otherwise,
(2)

where y ∗i is a continuous latent outcome variable,wi j is a spatial lag between unit i and j indicating
how closely the two units are connected in a given space (e.g, geographical proximity, membership
in the same organizations etc.), ρ is the spatial autocorrelation parameter, xi is a 1 × k vector
of covariates with parameter vector β , and ui is a zero-mean iid error term with fixed variance.
We call this specification the binary spatial autoregressive model (or binary spatial model as we
sometimes mention interchangeably). Note that in this specification, spatial dependence occurs
on the level of the latent (i.e. not observed) outcome y ∗i . This specification follows Franzese, Hays,
and Cook (2016), implying actors of our interest can observe or know more or less what others’
latent characteristics are, and not only their revealed binary actions.

It is useful to write the latent equation in matrix notation, yielding

y∗
(N×1) = ρWy

∗ + Xβ + u, (3)

where

WN×N =

©«

0 w12 · · · w1N

w21
. . .

. . .
...

...
. . .

. . . wN−1,N

wN 1 · · · wN ,N−1 0

ª®®®®®®®¬
. (4)

W is commonly referred to as the spatial weights matrix. Throughout the paper we assume thatW
is row-standardized. Doing so ensures that the spatial process defined in (3) is stationary as long as
|ρ | < 1 (Kelejian and Prucha 2010). Given (3) we can derive the reduced form as

y∗ = (I − ρW)−1Xβ + (I − ρW)−1u

= (I − ρW)−1Xβ + v,
(5)
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where vector v contains the reduced-form error terms with non-spherical covariance matrix struc-
ture due to the multiplier (I − ρW)−1.

The main component of the (pseudo) likelihood function of our interest will be the joint proba-
bility for the observed random variableY given themodel parameters and regressors. This leads to
the following expression:

P (y = 1) = P (y ∗i > 0)

= P
( [
(I − ρW)−1Xβ

]
i
+ vi > 0

)
= P

(
vi > −

[
(I − ρW)−1Xβ

]
i

)
= 1 − P

(
vi ≤ −

[
(I − ρW)−1Xβ

]
i

)
= 1 − FVi

(
−

[
(I − ρW)−1Xβ

]
i

)
.

(6)

where [·]i indicates the i ’th element of the vector [·]. FVi (·) is the marginal CDF of the random
variableVi (the reduced form error term for unit i ). Therefore, expression FVi

(
−

[
(I − ρW)−1Xβ

]
i

)
is the marginal CDF ofVi evaluated at −

[
(I − ρW)−1Xβ

]
i
. By definition the marginal CDF ofVi is

FVi (−[(I − ρW)
−1Xβ]i )

=

∫ ∞

−∞

· · ·

∫ ∞

−∞

∫ −[(I−ρW)−1Xβ]i

−∞

∫ ∞

−∞

· · ·

∫ ∞

−∞

fV(s1, · · · , s i , · · · , sN )ds1 · · · ds i · · · dsN ,
(7)

where fV(s1, · · · , sN ) is the joint PDF of the reduced-form error. The estimation challenge for binary
choice models arises when evaluating FVi at−

[
(I − ρW)−1Xβ

]
i
is analytically intractable (as long as

ρ , 0) (Anselin 2002). As a consequence, direct maximum likelihood estimation of β and ρ is not
always feasible. Of course, one common exception is spatial probit, where the marginal probability
has a closed-form expression.

Using this expression for the choice probability, P (y = 1), we have the following expression
that is proportional to the (pseudo) likelihood function for a binary spatial autoregressive model.

L(ρ, β |X, y) =
[ N∏
i=1

P (yi = 1)yi
] [ N∏

i=1

P (yi = 0)(1−yi )
]

=
[ N∏
i=1

P (yi = 1)yi
] [ N∏

i=1

(
1 − P (yi = 1)

) (1−yi )]
.

(8)

1.2 Temporal dependence
As an intermediate step toward the binary spatio-temporal model—for which our proposed estima-
tor would eventually be useful—we first illustrate a binary temporal autoregressive model, where
the latent outcome exhibits a first-order temporal autoregressive process governed by the temporal
autocorrelation parameter γ with |γ | < 1. The structural form error term ut is a zero-mean iid error
term with fixed variance.1

y ∗t = Xtβ + γy ∗t−1 + ut (9)

yt =

{
1 if y ∗t > 0

0 otherwise.
(10)

1. The following results generalize trivially to higher-order processes.
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As it falls out of the main contribution of this paper, we are grossly skipping over the rich time-

series methods literature here and we are aware of it. For a discussion of this class of models in a
political science context, see Beck et al. 2001, for example.

Next, note that we can rewrite themodel inmatrix notation as follows (equation(11)). Onemight
argue that matrix notation of a time-series model is not the most useful expression in terms of
estimating model parameters; and yet, as a stepping stone toward the binary spatio-temporal
model, it is an analytically appealing expression.

y∗
(T ×1) = Xβ + γTy∗ + u, (11)

where T, called the temporal weights matrix, is defined as

T =

©«

0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0
...
...
...
. . .

...

0 0 0 · · · 0

ª®®®®®®®®®¬
. (12)

It is evident that this model is mathematically comparable to the binary spatial model, the sole
di�erence being that nowwe impose a weights matrix where the first subdiagonal (all the 1’s) maps
y ∗t−1 to y

∗
t . The reduced form of the autoregressive model is given by

y∗
(T ×1) = (I − γT)

−1Xβ + (I − γT)−1u (13)

As one might see it already, this gives rise to a similar di�iculties in ML estimation as the binary
spatial model described above.

1.3 Spatio-temporal interdependence
So far, we have illustrated that spatial and temporal interdependence give rise to the same reduced
form expression for the latent outcome vector y∗, and are thus all subject to the same estima-
tion challenge whenever the joint probability P (y = 1) does not have a closed-form expression.
This similarity in functional form allows us to combine di�erent dependency structures relatively
straightforwardly, yielding models exhibiting multiple types of dependencies among observations.
In the following, we consider the binary spatio-temporal autoregressive model (STAR), which com-
bines the binary spatial autoregressive model with the temporal autoregressive model, yielding a
panel setup (see e.g. Franzese, Hays, and Cook 2016). The binary STARmodel is given by

y∗
(NT ×1) = Qy

∗ + Xβ + u, (14)

where y∗ = [y ∗.1, . . . , y
∗
.T ]
′ and y ∗.t = [y

∗
1t , . . . , y

∗
N t ]
′. Hence, the cross-sectional y ∗.t vectors are

stacked “on top of each other”. The X matrix is constructed analogously. Q is given by

QNT ×NT = ρW∗ + γT∗, (15)
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whereW∗ is the block-diagonal panel spatial weights matrix given by

W∗ =

©«

W 0 0 · · · 0

0 W 0 · · · 0

0 0 W · · · 0
...
...
...
. . .

...

0 0 0 · · · W

ª®®®®®®®®®¬
, (16)

and T∗ is the panel temporal weights matrix given by

T∗ =

©«

0 0 0 · · · 0

IN 0 0 · · · 0

0 IN 0 · · · 0
...

...
...
. . .

...

0 0 0 · · · 0

ª®®®®®®®®®¬
, (17)

where IN is the N × N identity matrix.
The reduced form of the spatio-temporal autoregressive model is given by

y∗
(NT ×1) = (I − Q)

−1Xβ + (I − Q)−1u, (18)

which again gives rise to the familiar complication.

2 Apseudomaximumlikelihoodestimator for interdependentbinaryoutcomes
(Full description)
This section describes the PMLE estimator to tackle spatial, temporal, and spatio-temporal forms of
interdependence for binary outcome data. Our analytical point of departure is a pseudomaximum
likelihood estimator (PMLE) for binary spatially autoregressive models described in Smirnov (2010),
for which the remaining computational burden amounts to inverting an N-dimensional matrix
we refer to as the “interdependence multiplier.” We extend the PMLE to cases of temporal and
spatio-temporal interdependence, which is a tool that is so far only o�ered by the Franzese’ et
al.’s RIS estimator (2016). We further reduce the estimation costs by proposing an implementation
strategy that avoids directmatrix inversion, and instead relies on a combination of iterative gradient
procedures and approximations that yield an estimation algorithmwith almost linear complexity
in N . This additional procedure we propose will be detailed separately in the following section.

When direct ML estimation is infeasible for binary models featuring interdependence of the
outcome variables (due to the lack of a closed-form cdf that goes into P (y = 1)), it is clear that
we require an alternative approach. One option is simulation. Franzese, Hays, and Cook (2016)
and Calabrese and Elkink (2014b) provide extensive reviews of the spatial probit literature, and
useful comparisons of several simulation-based estimationmethods such as recursive-importance-
sampling (RIS) and Bayesian MCMC approaches (see also Calabrese and Elkink (2014a) for cases
with asymmetric link functions accommodating rare events). Similarly, Beck et al. 2001 discuss a
Bayesian estimation strategy for the binary temporal autoregressive model. However, simulation-
based approaches place a number of burdens on the researchers. First, they are computationally
intensive and it usually takes a long time to estimate them. Estimation time can be prohibitive if
researchers work with big data and do not have access to high-performance computing clusters.
Second, convergence problems in MCMC simulations o�en require tedious hyperparameter tuning
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and exacerbate the estimation-time problem. Third, and as perhaps the most broadly relevant
point, currently, applied researchers do not have access to more than the most basic tools, for
example, cross-sectional spatial probit estimators. For these reasons, we now introduce a pseudo
maximum likelihood (PML) method as a feasible way to reduce estimation time, minimize conver-
gence problems, and enable applied researchers to run models that more clearly address their
research problems. Our estimator builds on Smirnov’s (2010) spatial PML estimator and extends it
to temporal and spatio-temporal interdependence.

2.1 PMLE for the binary spatial model
Recall the reduced form for the binary spatial model is given by

y∗ = (I − ρW)−1Xβ + (I − ρW)−1u

= (I − ρW)−1Xβ + v.
(19)

Denote the spatial multiplier by Z,

Z(N×N ) = (I − ρW)−1, (20)

and, by D, an N × N matrix that contains diagonal elements of Z. All o�-diagonal elements of D
are zero. The spatial multiplier indicates the degree of local and global spillovers of an exogenous
shock that unit i receives (Anselin 2003); in other words, zi j =

∂y ∗
i

∂u j
, where zi j is the i j th element of

Z. The diagonal matrix D indicates “private e�ects," borrowing Smirnov’s (2010) term, of exogenous
shocks on the individual latent outcomes. The relative e�ect captured by D is “private" in that it
indicates the magnitude of the e�ect that unit i receives from an exogenous shock that occurred to
unit i itself; in other words, di =

∂y ∗
i

∂ui
.

On the other hand, the o�-diagonal elements ofZ, i.e. Z−D, represent “aggregate spatial e�ects”
of an exogenous shock. Note that all diagonal elements of Z − D are zero. One could interpret it as
an aggregate spillover e�ects that unit i receives from an exogenous shock through all the other
units.

The reduced form can now be re-written as

y∗
(N×1) = ZXβ + (Z − D)u

“Social e�ects"

+ Du
“Private e�ects"

, (21)

or, for each unit i ,
y ∗i =

∑
j

βzi j xj +
∑
j

[Z − D]i ju j + diui . (22)

We can now rewrite the probability of unit i seeing a positive outcome as

P (yi = 1) = P (y ∗i ≥ 0)

= P (
∑
j

βzi j xj +
∑
j

[Z − D]i ju j + diui ≥ 0)

= P

(
ui ≤

∑
j βzi j xj

di
+

∑
j [Z − D]i ju j

di

)
.

(23)

Note that there is a stochastic element le� in the argument of the probability in the above
expression:

∑
j [Z − D]i ju j . In order to allow for an analytical formulation of a (pseudo) likelihood,

we assume that higher-order e�ects can be “ignored". Behaviorally, this means that observations
may simplify their choice by not worrying about aggregate spatial e�ects of a random shock that
are experienced by other (connected) observations. That is, mathematically, we do not expect a

JW, AK, NCB, & PH | Political Analysis 6



PA
systematic e�ect of a random shock on unit i that is carried through the o�-diagonal elements of
the spatial multiplier; i.e., it does not a�ect the choice probability systematically. The assumption
is warranted because ui t are i.i.d with mean 0. Smirnov’s (2010) key proposal is to approximate∑
j [Z − D]i ju j in (23) by its expectation, i.e., zero. This step simplifies the likelihood function. To see

why, note that P (yi t = 1) can now be written as follows:

P (yi = 1) = P (y ∗i ≥ 0)

= P

(
ui ≤

∑
j βzi j xj

di

)
= Fu

(∑
j βzi j xj

di

)
,

(24)

where Fu (.) is the cdf of the univariate distribution of ui , which is typically the standard normal
(yielding a Probit model) or a standard logistic (yielding a Logit model).

With this approximation, we can write the pseudo likelihood in closed form. If ui follows the
standard logistic distribution, for instance, we have

P L(ρ, β |X, y) =

[
N∏
P (yi = 1)yi

] [
N∏
(1 − P (yi = 1))(1−yi )

]
∝

[(
N∏ exp ((

∑
j βzi j xj )/di )

1 + exp ((
∑
j βz

yi
i j
xj )/di )

) yi ]
×


(
N∏ 1

1 + exp ((
∑
j βzi j xj )/di )

) (1−yi ) .
(25)

2.2 PMLE for the temporal autoregressive model
Recall the reduced form for the binary temporal autoregressive model, given by

y∗
(T ×1) = (I − γT)

−1Xβ + (I − γT)−1u. (26)

Next, let
Z(T ×T ) = (I − γT)−1, (27)

denote the dependency multiplier. Applying the logic of the previous section, we can decompose
the reduced-form error term into two parts

y∗ = ZXβ + Zu

= ZXβ + (Z − D)u
distributed

+ Du
contemporaneous

. (28)

The distributed e�ect captures the e�ect of exogenous shocks that occurred in the past and were
carried over to the outcome of time t . These are distributed because this term focuses on the
e�ect that is carried across multiple time periods (“neighbors" in time). On the other hand, the
contemporaneous e�ects capture the e�ect of an exogenous shock that occurred in the current
time period on the current outcome. Note that due to the lower-diagonal structure of T, D = I, and
thus di = 1. Again substituting (Z − D)uwith its expectation and given that u is i.i.d., we arrive at
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the following expression for the probability of a positive outcome:

P r (yt = 1)

= P r (y ∗t > 0)

= P r (ut < [ZXβ ]t ) ,

(29)

and the pseudo likelihood function, for instance with a logit link function, is given by

P L(γ, β |X, y) =

[
T∏
P (yt = 1)yt

] [
T∏
(1 − P (yt = 1))(1−yt )

]
∝

[(
T∏

1 −
1

1 + exp (−[ZXβ ]t /dt )

) yt ]
×


(
T∏ 1

1 + exp (−[ZXβ ]t /dt )

) (1−yt ) .
(30)

2.3 PMLE for the spatio-temporal autoregressive model
Similarly to the above model, recall the reduced form:

y∗
(NT ×1) = (I − Q)

−1Xβ + (I − Q)−1u. (31)

We denote the spatio-temporal multiplier (I − Q)−1 again as Z(NT ×NT ) and define the matrix
DNT ×NT as a matrix that captures the diagonal elements of Zwith all other elements being zeros.

y∗
(NT ×1) = ZXβ + Zu

= ZXβ + (Z − D)u
higher-order e�ects

+ Du
zero-order e�ects

. (32)

Substituting (Z − D)uwith its expectation, we arrive at the following expression for the proba-
bility of a positive outcome:

P r (yi t = 1)

= P r (y ∗i t > 0)

= P r (ui t < [ZXβ ]i t )

(33)

and the pseudo likelihood function again with a logit link function, is given by

P L(ρ, γ, β |X, y) =

[
N∏ T∏

P (yi t = 1)yi t

] [
N∏ T∏

(1 − P (yi t = 1))(1−yi t )

]
∝

[(
N∏ T∏

1 −
1

1 + exp (−[ZXβ ]i j ,t /di t )

) yi t ]
×


(
N∏ T∏ 1

1 + exp (−[ZXβ ]i j ,t /di t )

) (1−yi t ) .
(34)

Alternatively, for any binomial link function g (·), we have

P L(ρ, γ, β |X, y) ∝
N∏
i=1

T∏
t=1

[
g−1

(
[ZXβ ]i j ,s
di t

) yi t [
1 − g−1

(
[ZXβ ]i j ,s
di t

)] (1−yi t )]
. (35)
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Note that this expression requires an estimate for the values for y∗i0, i.e. the values preceding the
first observed period in order to calculate the first period y∗i1.

2 Assumingmean stationarity, we draw
on Kauppi and Saikkonen (2008) and use what can be viewed as the unconditional expectation of
y∗ across all time period (and units): E [y∗] = (I − ρW − γ)−1X̄β , where X̄ are the sample means.

3 Speeding up computation further
3.1 Why still costly...

In the previous section, we have derived pseudo likelihood functions for binary (inter-)dependence
models that can be evaluated directly, thus permitting a pseudomaximum likelihood (PML) strategy
that does not require simulation. However, naive implementations of the proposed PML estimator
may still be prohibitively costly to run. To see why, let us assume that we attempt to fit a model on
data covering N units overT periods with reduced form

y∗NT ×NT = ZXβ + Zu, (36)

where Z = A−1 = (I − Q)−1. This specification yields a pseudo likelihood function consisting of NT
terms of the following form

P (yj = 1) = P (y ∗j ≥ 0)

= Fu

(
µj

dj

)
,

(37)

with j ∈ {1, 2, . . . ,NT }, µ = ZXβ , and dj = Zj j . Perhaps the most straightforward implementation
of expression (37) is to invert A directly using a decomposition-based solver, then multiplying Z
with Xβ to yield µ, and dividing by d i ag (Z). However, this strategy is typically very slow, as most
decomposition-based solvers operate with near cubic time complexity. Instead, we propose a
strategy that avoids the full inversion of A, but computes µ and d separately.

3.2 Computing µ
To compute µ we solve the linear system Aµ = Xβ for µ using an iterative method. In particular,
we propose using the Biconjugate gradient stabilized method (Bi-CGSTAB), which yields similar
performance to themorewidely known conjugate gradientmethod, but is applicable even ifA is not
symmetric (Van der Vorst 1992). Doing so yields a substantial speed-up over decomposition-based
solvers, especially when A is sparse, which will be the case as long as any spatial weights matrices
entering A are neighborhood based.3

If A is block-diagonal, which is the case for all panel models that do not feature a temporal
autoregressive term, then we canmake use of the fact that the inverse of a block-diagonal matrix is
the block diagonal matrix of block-wise inverses. In other words, instead of solving the full system,
we can solve Atµt = Xtβ for all t ∈ {1, 2, . . .T }, whereas At represents a block in A.

3.3 Computing d
First, we note that for panel models, d can always be computed in a period-wise fashion. This is
obviously the case ifQ does not include the panel temporal weights matrix T∗, because then A is
block-diagonal, and thus d is the concatenation of the period-wise diagonals dt = d i ag ((At )−1).
Crucially, however, d can be computed analogously even if Q does include T∗, and thus A is not
block-diagonal. In the following, we provide a theorem to this end for the case whereQ represents

2. Because y∗ is latent, dropping the first period from the likelihoodmerely shi�s the problem to the next period, rather
than solving it (cf. Franzese, Hays, and Cook 2016).
3. Note that the weights matrices for temporal dependence (A) and outcome-interdependence (M) are sparse by con-

struction.
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a spatial weights matrix; we note, however, that the results extends to the case whereQ represents
a panel outcome weights matrix (i.e. anM∗ term), or a mixture of the two.

Theorem 3.1 Let W∗ be a NT × NT block-diagonal panel spatial matrix as defined in (16), and
T∗ be the panel temporal weights matrix as defined in (17). Then d = d i ag ((I − γT∗ − ρW∗)−1) =
d i ag ((I − ρW∗)−1).

Define a strictly lower block triangular (SLBT) matrix as any square matrix with the following
structure ©«

0N
0

0N
. . .

, 0
0N

0N

ª®®®®®®®®®¬
,

whereas 0N is theN ×N matrix of zeros. It follows that γT∗ is SLBT. Note that (I− γT∗ − ρW∗)−1 can
be written as a Neumann series (LeSage and Pace 2009, ch. 2):

(I − γT∗ − ρW∗)−1 = I +
L∑
l=1

(γT∗ + ρW∗)l (38)

= I + (γT∗ + ρW∗)

+ (γ2T∗2 + γρT∗W∗ + γρW∗T∗ + ρ2W∗2)

+ . . .

Note that the product of two SLBTmatrices is SLBT. Further note that the product of an SLBTmatrix
with a block-diagonal (BD) matrix is SLBT, regardless of the order of multiplication. It follows that
the only terms in (38) with non-zero diagonals are of the form ρ lW∗l for l > 1. Thus,

d i ag ((I − γT∗ − ρW∗)−1) = d i ag (I) +
L∑
l=1

d i ag ((γT∗ + ρW∗)l )

= d i ag (I) +
L∑
l=1

d i ag ((ρW∗)l )

= d i ag ((I − ρW∗)−1).

Thanks to the above theorem, we now only need an e�icient method for calculating dt =

d i ag ((At )−1). Here we propose two approaches. The first (preferred) one applies whenever At is
composed of only a single weights parameter and weights matrix, e.g. At = I − ρW or At = I − λM.
In this case, we make use of the fact that (At )−1 can be written as a Neumann series, e.g. for the
spatial case

(At )−1 = I +
∞∑
l=1

(ρW)l . (39)

Thus, an approximation for dt may be obtained via

dt ≈ d̃t = d i ag (I) +
L∑
l=1

d i ag
(
ρ lWl

)
, (40)

with L suitably large; we use L = 8. Note that we can precompute the series {W,W2, . . . ,WL} prior
to optimization. Thus, the time complexity of evaluating d̃t during optimization is linear in N .
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The second approach for computing dt comes into play when At is composed of multiple

weights matrices and parameters, as for instance in the binary simultaneous equation spatial
model discussed in Section 1.3. In this case, we use the method of Takahashi, Fagan, and Chin
1973, and examined by Erisman and Tinney 1975, which relies on a recursive algorithm to calculate
the diagonal of a matrix inverse. Importantly, using the Takahashi equations to calculate dt is
considerably faster than computing the full decomposition-based inverse if At is sparse, which will
generally be the case as long as any spatial weights matrices entering into At are neighborhood-
based.

4 Evaluation and comparison of estimation strategies
In the remainder of the Online Appendix, we present all the MC simulations referred to in the main
text. In all cases, we compare the performance of our estimator to that of some well-recognized
alternatives.

5 Notes on replicationmaterial
Tables A3&A4 compare the spatio-temporal estimation resultswhenusingdi�erent approximations
for y ∗ for the initial period. Table A4 is equivalent to Table 1 reported in the main paper, and we
recommend using this estimation procedure. Replication results for Table A3 are available on
request.

Further note that our replication material does not replicate Figure A3, which demonstrates
estimation times. Unless the code is rerun on exactly the same hardware setup, estimation times
will obviously di�er.
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PA
Table A5. Summary statistics for ρ parameter in common spatial probit estimators from 500 Monte Carlo
iterations (100 iterations for RIS with N=1,024).

ρ = 0 ρ = 0.25 ρ = 0.5

N 256 1,024 4,096 256 1,024 4,096 256 1,024 4,096
Bayes Mean Bias 0.154 0.075 0.038 0.139 0.062 0.032 0.111 0.050 0.025

RMSE 0.197 0.094 0.048 0.183 0.080 0.040 0.149 0.064 0.030
Overconfidence 1.002 0.985 1.026 1.062 0.974 1.005 1.011 0.955 0.931
Non-convergence 0 0 0 0 0 0 0 0 0

GMM Mean Bias 0.205 0.098 0.185 0.088 0.135 0.070
RMSE 0.267 0.122 0.243 0.110 0.188 0.088
Overconfidence 1.065 0.960 1.160 1.060 1.009 1.072
Non-convergence 0 0 2 0 76 16

Naive Mean Bias 0.548 0.278 0.139 0.712 0.626 0.654 1.405 1.465 1.493
Probit RMSE 0.692 0.345 0.176 0.849 0.694 0.673 1.532 1.496 1.500

Overconfidence 1.271 1.279 1.311 1.275 1.210 1.219 1.188 1.106 1.087
Non-convergence 0 0 0 0 0 0 0 0 0

RIS Mean Bias 0.099 0.046 0.147 0.121 0.255 0.229
RMSE 0.129 0.057 0.182 0.131 0.280 0.236
Overconfidence 3.141 1.468 5.051 4.213 10.756 12.421
Non-convergence 0 0 0 0 0 0

SPMLE Mean Bias 0.205 0.097 0.051 0.183 0.086 0.045 0.139 0.069 0.036
RMSE 0.269 0.122 0.065 0.244 0.108 0.056 0.188 0.089 0.046
Overconfidence 1.080 0.954 1.007 1.178 1.060 1.090 1.223 1.209 1.251
Non-convergence 1 1 0 0 1 5 3 6 10
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Figure A1. Distribution of ρ estimates from Monte Carlo simulations for Bayes, GMM, MLE, RIS, and PMLE
estimator.
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Figure A2. Distribution of γ estimates fromMonte Carlo simulations for RIS and PMLE estimator.
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Table A9. Replication of Franzese, Hays, and Cook’s (2016) simulation results for spatio-temporal RIS (100
iterations). The experiments here use the DGP (incl.W) of Franzese et al. (2016). The implementation code is
the authors’ own—a direct translation of the original MATLAB code to our own R code.

β0 = −1.5 β1 = 3 ρ γ

Experiment #1: ρ = 0.1, γ = 0.3

Mean Coe�icient Estimate -1.434 2.859 0.088 0.270
Bias 0.115 0.219 0.037 0.032
RMSE 0.145 0.263 0.045 0.038
Actual SD of estimates 0.130 0.224 0.043 0.022

Experiment #2: ρ = 0.1, γ = 0.5

Mean Coe�icient Estimate -1.270 2.487 0.070 0.448
Bias 0.239 0.523 0.060 0.053
RMSE 0.277 0.601 0.107 0.061
Actual SD of estimates 0.156 0.316 0.104 0.033

Experiment #3: ρ = 0.25, γ = 0.3

Mean Coe�icient Estimate -1.401 2.798 0.220 0.274
Bias 0.122 0.232 0.042 0.029
RMSE 0.152 0.283 0.051 0.035
Actual SD of estimates 0.116 0.199 0.041 0.023

Experiment #4: ρ = 0.25, γ = 0.5

Mean Coe�icient Estimate -1.190 2.374 0.231 0.456
Bias 0.320 0.639 0.046 0.048
RMSE 0.373 0.747 0.064 0.062
Actual SD of estimates 0.209 0.409 0.061 0.044
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Figure A3. Mean Estimation Times for Spatial, Temporal and Spatio-Temporal Estimators
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