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1 Summary of Diagnostic Tools

The performance of modern machine learning techniques depends heavily on the length of

training — which affects the risk of overfitting — and the choice of model hyperparameters

(Probst et al. 2019). To help users of MIDAS assess the fit of the imputation model and

calibrate hyperparameters, we provide two diagnostic tools. The first is the technique of

“overimputation” (Blackwell et al. 2017; Honaker et al. 2011). This involves sequentially

removing observed values from the dataset, generating a large number of imputations

for each value, and checking the accuracy of these imputations. Accuracy is measured

with (1) the RMSE of imputed values versus true values for continuous variables and (2)

classification error for categorical variables. To ensure a good fit, we recommend selecting

the number of training epochs that minimizes the average value of these metrics (weighted

by the proportion of continuous versus categorical variables). By reducing the risk of

overtraining, this “early stopping” rule effectively serves as an extra layer of regularization

in a MIDAS network.

In the MIDASpy class, overimputation can be implemented using the overimpute func-

tion (described in more detail on the MIDAS GitHub page). This function plots values of

the RMSE and classification error metrics for each training epoch. Initially, these values

should decline with additional epochs as the MIDAS network learns increasingly accurate

approximations of the missing-data posterior. As suggested above, if and when error be-

gins to rise, the number of epochs specified in the train.model function should be capped

before this point. The plot_all argument of overimpute compares the distribution of

overimputed versus original values, allowing users to visually inspect whether the former

fall within a reasonable range (implying a good model fit). The default hyperparameter

settings for overimpute are a corruption proportion (spikein) of 0.1 and 100 training

epochs (training_epochs).
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The second diagnostic tool is the generation of entirely new observations using a vari-

ational autoencoder component. Variational autoencoders are another extension of the

classical autoencoder that encode inputs not to a fixed vector z but to a distribution over

the latent space p(z) (Kingma and Welling 2013; Rezende et al. 2014). The loss func-

tion minimized during training includes a regularization term (in addition to the usual

reconstruction term) that constrains the latent distribution to approximate normality, re-

ducing the risk of an irregular latent space in which similar data points can become very

different after decoding. Samples from the latent distribution z ∼ p(z|x) will thus tend to

more closely follow the input density than a regular (deterministic) latent representation

z, rendering them better suited to the task of generative modeling.

In the MIDASpy class, the variational autoencoder component can be activated by

setting vae_layer = True in the Midas function. This inserts a variational autoencoder

layer after the denoising portion of a MIDAS network, which probabilistically maps inputs

to a latent distribution in the manner described above. After training, samples are drawn

from this distribution and decoded to produce new observations. In general, the greater

the similarity between these observations and the input data, the better the fit of the

imputation model. Default settings for vae_layer hyperparameters — which include the

number of normal clusters assumed to characterize the input data (latent_space_size),

the variance of these distributions (vae_sample_var), and the strength of our normal prior

(vae_alpha) — follow standard conventions in autoencoder applications.

We favor overimputation and data generation over customary train/test split approaches

to model validation for two reasons. First, the latter have been found to systematically

underestimate error in autoencoders and other unsupervised methods of nonlinear di-

mensionality reduction where there is no clear target value (Christiansen 2005; Scholz

2012). Second, they prevent us from training the MIDAS network on the full dataset,

which impedes accuracy — and could seriously compromise performance at high levels of
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missingness.

2 Technical Details on MIDAS Model and Algorithm

2A Objective Function

This section offers additional technical details on the MIDAS model’s objective function.

Recall from the main text that a traditional autoencoder first maps an input vector x to a

lower-dimensional representation y via a deterministic series of transformations y = fθ(x),

parameterized by θ = {W,b} (Equation 3), and then maps this representation back to a

reconstructed vector z via a converse series of transformations z = gθ′(y), parameterized

by θ′ = {W′,b′} (Equation 4). Each element i of the input vector xi is thus mapped to

a corresponding element of the hidden representation yi and the reconstruction zi. The

parameters of this model are trained to minimize the average reconstruction error:

θ∗, θ′∗ = arg min
θ∗,θ′∗

1

N

N∑
i=1

L(xi, zi) (A1)

= arg min
θ∗,θ′∗

1

N

N∑
i=1

L(xi, gθ′(fθ(xi))) (A2)

where L is a loss function (such as a mean squared error function).

In a denoising autoencoder, we again optimize these parameters to minimize the av-

erage reconstruction error. Unlike before, however, z is a deterministic function of x̃, the

corrupted input, instead of x. In a MIDAS model, we only seek to minimize the recon-

struction error on corrupted values that were originally observed. That is, we want z to

be as close as possible to x̃obs (we do not know the original values of x̃mis). If D consists

of two random variables X and Y with joint probability distribution p(X, Y ), the overall
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joint distribution can be characterized as:

q0(X, X̃obs, X̃mis, Y ) = q0(X)qD(X̃obs, X̃mis|X)δfθ(X̃obs,X̃mis)
(Y ) (A3)

where q0(X, X̃, Y ) is parameterized by θ = {Ω,ψ}. This implies that Y is a deterministic

function of both X̃obs and X̃mis. However, the objective function minimized by stochastic

gradient descent only includes the former:

arg min
θ∗,θ′∗

Eq0(X, X̃mis)[L(X, gθ′ , (fθ(X̃obs)))] (A4)

The implication of this result is that the MIDAS model minimizes the expected loss over

the empirical distribution of not only the observed data but also the subset of corrupted

data that were originally observed.

2B Training Steps

As discussed in the main text, a MIDAS network is feedforward: given an initial set of

weights and biases, data are propagated forward through the hidden layer of the network

and aggregate loss is calculated. Weights and biases are then adjusted via the method of

backpropagation. Since the MIDAS network is deep (i.e., it contains more than one hidden

layer), this adjustment is made sequentially from the last layer to the first. This section

provides a more detailed description of the key training steps in the MIDAS algorithm.

Recall that in the pre-training stage, a missingness indicator matrix D is generated for

the input data D, Dmis is set to 0, and a MIDAS network is parameterized using a variant of

Xavier Initialization. In each training epoch, we shuffle and divide D into B mini-batches

B1,B2, ...,BB of size s (default s = 16); R is divided into corresponding mini-batches. This

step has the advantage of reducing training time — storing all training data in memory and
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calculating loss for the whole sample are memory-intensive, whereas mini-batches can be

processed quickly and in parallel — as well as increasing the frequency of model updates,

which ensures more robust convergence (for instance, by avoiding local minima).

In the next step, we partially corrupt the input data by multiplying the B mini-batches

by a Bernoulli vector v with p = 0.8 (resulting in a corruption rate of 20%):

x̃ = [v(0,1)B1, ..., v(0,n)BB]

v(0) ∼ Bernoulli(p = 0.8)

(A5)

We then implement dropout regularization by partially corrupting nodes in the hid-

den layers of the network. This involves multiplying outputs from each layer by another

Bernoulli vector with p = 0.5 (a corruption rate of 50%):

ỹ(h) = y(h)v(h)

v(h) ∼ Bernoulli(p = 0.5)

(A6)

We then perform a full forward pass through the network — using both the corrupted

inputs x̃ and the corrupted hidden nodes ỹ(h) — to generate our input reconstruction

z (described in Equations 5 and 6 in the main text). Loss is calculated with respect to

the subset of corrupted data that were originally observed (x̃obs), which is achieved by

multiplying the RMSE and cross-entropy loss functions by a missingness indicator vector

r (see Equation 7). A weight decay regularization term λ is included in the calculation to

reduce overfitting:

E = L(x, z, r) + λ||E[W]||2 (A7)

In the backpropagation step, we find the gradient of the loss function with respect

to the weights of the network.1 Since the change in error with respect to the weights

1For a more in-depth discussion of the backpropagation procedure, see Goodfellow et al. (2016, Chapter 6).
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in a given layer (W(h)) depends on the weights in the next layer (W(h+1)), this must be

calculated sequentially from the output layer to the input layer. Specifically, for each layer,

we must derive ∂E
∂W(h) . Through two applications of the chain rule, this problem becomes

more tractable:

∂E

∂W(h)
=

∂E

∂y(h)
· ∂y(h)

∂W(h)
(A8)

=
∂E

∂y(h+1)
· ∂y(h+1)

∂y(h)
· ∂y(h)

∂W(h)
, (A9)

The first term of Equation A9 indicates that the layer-specific partial derivative of the loss

function depends on the derivative with respect to outputs from the next layer. The middle

term is the partial derivative of the next layer’s outputs with respect to the current layer’s,

which is equivalent to the derivative of the next layer’s activation function ∂f(y(h+1)

y(h+1) . Since

y(h) is the weighted sum of the inputs into layer h, the right term is simply equal to y(h−1).

Note that the latter two terms are straightforward to derive because the functional form of

each layer’s activation function is known a priori.

Once errors have been fully backpropagated through the network, we use the calcu-

lated gradients to update the MIDAS network’s weights. Each weight is adjusted in the

direction of the negative gradient, tempered by some learning rate γ that stabilizes con-

vergence by scaling the step size according to the application at hand:

∆W(h) = −γ ∂E

∂W(h)
(A10)

Once all weights are updated, the training epoch is complete. This procedure is re-

peated iteratively until the loss function converges.
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3 Additional Information on Accuracy Tests

3A MAR-1 Experiment

Figure A1. Coverage of Complete-Data Coefficients Across Trials of MAR-1 Simulation
Experiment
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The solid black lines indicate complete-data (“true”) coefficients in the MAR-1 experiment. The dashed
lines represent 95% confidence intervals for each method’s coefficient estimates across the 100 trials of the
experiment (whose densities are plotted in Figure 3 in the main text).

Figure A1 plots the estimated confidence intervals produced by MIDAS, Amelia, and list-

wise deletion across the 100 trials of the MAR-1 experiment. Similarly to the posterior

densities of the estimated coefficients (Figure 3 in the main text), the Amelia and MI-
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DAS intervals both exhibit good coverage for all three coefficients, encompassing the true

estimate with a probability close to the ideal of 0.95.2 Listwise deletion’s coverage is sub-

stantially worse in every case, excluding this estimate — and hence failing to appropriately

capture uncertainty — in at least 40% of simulations for two of the three coefficients (β0

and β1).3

3B Applied Test with Adult Dataset

Table A1. Summary Statistics for Adult Dataset

Variable Type Missing Distribution Description

class_labels (outcome) Binary 0 >50K: 11,687; ≤50K: 37,155 Annual income
age Continuous 0 Mean = 38.64; SD = 13.71 Age
workclass Unordered

categorical
2,799 Mode = Private (33,906); 7

other categories
Employment type

fnlwgt Continuous 0 Mean = 189,664; SD =
105,604

Final weight (expected
number in population)

education Ordinal 0 Mode = HS-grad (15,784);
15 other categories

Highest level of
education (categorical)

education_num Continuous 0 Mean = 10.08; SD = 2.57 Highest level of
education (numerical)

marital_status Unordered
categorical

0 Mode = Married-civ-spouse
(22,379); 6 other categories

Marital status

occupation Unordered
categorical

2,809 Mode = Prof_speciality
(6,172); 13 other categories

Employment sector

relationship Unordered
categorical

0 Mode = Husband (19,716); 5
other categories

Position in family

race Unordered
categorical

0 Mode = White (41,762) Race

sex Binary 0 Mode = Male (32,650); 1
other category

Sex

capital_gain Continuous 0 Mean = 1079; SD =
7,452.019

Capital gains

capital_loss Continuous 0 Mean = 87.5; SD = 403.00 Capital losses
hours_per_week Continuous 0 Mean = 40.42; SD = 12.39 Hours worked per

week
native_country Unordered

categorical
857 Mode = United-States

(43,832); 41 other categories
Country of origin

The dataset has 48,842 rows representing individuals surveyed in the 1994 United States Census.

2Amelia’s coverage rates are marginally closer (β0 = 0.93, β1 = 0.95, β2 = 0.94) to the ideal than MIDAS’s
(β0 = 0.93, β1 = 0.86, β2 = 0.87), as should be expected under multivariate normal conditions.

3The coverage rates are β0 = 0.22, β1 = 0.60, β2 = 0.79.
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Table A2. Missingness Treatments Applied to Adult Dataset

Missingness
Pattern

Step Procedure to Obtain R (Missingness Indicator Vector)

MCAR 1. Randomly select proportion of columns (0.3, 0.5, 0.7, or 0.9) for miss-
ingness treatment. native_country, occupation, and education cannot
be selected (due to computational issues with Amelia).

2. R ∼ Bernoulli(p = 0.5) for each selected column.

MAR 1. MCAR step 1.
2. L = one column randomly sampled from those not selected (latent

missingness indicator).
3a. If L is continuous, select all rows with values at or below median of L.

Sample N/2 rows from this matrix. For each selected column, Ri = 1
if row i’s value is in this sample.

3b. If L is categorical, randomly sample half of all categories. If no. of
rows in this matrix > 50% of N, sample N/2 of rows. For each selected
column, Ri = 1 for all rows in remaining sample.

MNAR 1. MCAR step 1.
2. L = selected column.
3a. If L is continuous, MAR step 3a.
3b. If L is categorical, select modal category. For each selected column,

Ri = 1 for all except randomly sampled 5% percent of this sample.
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4 Applied Accuracy Test on ANES Data

In addition to their multivariate normal simulation exercise (see Section 3.2 of the main

text), Kropko et al. (2014a) conduct an applied accuracy test using the 2008 American

National Electoral Studies (ANES) dataset. The ANES is, in theory, a good fit for MIDAS:

like other electoral surveys, it is a wide and relatively diverse dataset, containing more than

1,000 columns (before any data transformations), many of which are categorical variables

with large numbers of classes. Kropko et al., however, focus on a subset of the ANES

comprising 11 columns — none of which present difficulties for existing MI algorithms

(the categorical variables have few classes) — and the 1,442 complete observations in the

dataset.4 It thus offers another good opportunity to assess MIDAS’s relative performance

under statistical conditions that are well suited to existing MI algorithms.

In the first step of the test, ordinal variables are transformed into continuous integer-

valued variables, binary variables are recoded to 0/1 format, and nominal variables are

one-hot encoded. MAR missingness is then simulated in 10 percent of observations, ex-

cluding one column per data type, and five completed datasets are generated. The test

consists of 20 simulations, across which the two accuracy metrics in Kropko et al.’s multi-

variate normal simulation are averaged.5

We instantiate MIDAS with a three-layer, 512-node network, which we train for 20

epochs. To ensure consistency across missing-data strategies, we make a few minor modi-

fications to the test. First, we supply the one-hot encoded versions of the nominal variables

to the marginal draws and mi-based strategies, which renders the multinomial logit (la-

beled “MI:MNL” by Kropko et al.) and renormalized logit (“MI:RNL”) variants of the latter

indistinguishable. Second, after imputation, we do not convert non-integer predicted prob-

4For detailed information on these variables, see Table 1 in Kropko et al. (2014a).
5Our description and extension of the test follow the code in Kropko et al.’s replication materials (Kropko
et al. 2014b); their article reports a higher number of simulations.
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abilities of binary and nominal variables into realized values through draws from further

random distributions. This practice can lead to misleading results because the random

draws may end up generating realized values with low predicted probabilities, resulting in

large imputation error. Consequently, we maintain the raw predicted probabilities when

comparing strategies.6

As in our applied accuracy test (Section 3.3 of the main text), we do not replicate the

model-based component of the test because we do not know the true joint distribution of

the data. Furthermore, since missingness in the original ANES is not completely random

(according to Little’s (1988) standard test), the parameters of a model estimated on the

test subset may be nontrivially biased.

Figure A2 plots the average RMSE of imputed values generated by each strategy across

the 20 completed datasets simulated in the test. Consistent with the results of our other

accuracy tests, MIDAS’s imputed values are more accurate than those of the remaining

strategies for all 11 variables. This gap is particularly sizable for the nominal religion vari-

ables, where MIDAS’s error is approximately 25% lower than that of every other strategy.

It is worth reiterating, moreover, that this test presents favorable conditions for existing MI

strategies; were it to be run on a wider subset of the ANES, MIDAS’s (relative) performance

would likely improve further.

6This is not possible in the case of mi, which automatically converts imputed values of binary variables to 0
or 1.
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Figure A2. Inverse Imputation Accuracy in Kropko et al. Applied ANES Test
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Lower RMSE indicates worse average imputation accuracy across the 20 completed datasets simulated in
the test. Nominal variables (vote, religion) are one-hot encoded, with the residual category omitted. Ordinal
variables (income, jobs_r) are transformed to continuous variables prior to imputation and not converted
back subsequently. female, age, education, married are kept complete across simulations.
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5 Additional Information on Scalability Analysis

5A List of Variables in Column-Wise Test

Binary gender, pew_bornagain, cit1, investor, trans, votereg, edloan, CC18_417a_1, CC18_417a_2,

CC18_417a_3, CC18_417a_4, CC18_417a_5, CC18_417a_6, CC18_417a_7, CC18_417a_8,

CC18_418a, CC18_414A, CC18_414B, CC18_414C, CC18_414D, CC18_414E, CC18_324a,

CC18_324b, CC18_324c, CC18_324d, CC18_415a, CC18_415b, CC18_415c, CC18_415d,

CC18_416, CC18_417_a, CC18_417_b, CC18_417_c, CC18_417_d, CC18_417_e, health-

ins_1, healthins_2, healthins_3, healthins_4, healthins_5, healthins_6, healthins_7, CC18_300_1,

CC18_300_2, CC18_300_3, CC18_300_4, CC18_300_5, CC18_300_6, CC18_303_1, CC18_303_2,

CC18_303_3, CC18_303_4, CC18_303_5, CC18_303_6, CC18_303_7, CC18_303_8, CC18_303_9,

CC18_303_10, CC18_303_11, CC18_320a, CC18_320c, CC18_320d, CC18_321a, CC18_321b,

CC18_321c, CC18_321d, CC18_322a, CC18_322b, CC18_322c_new, CC18_322d_new, CC18_322c,

CC18_322f, CC18_325a, CC18_325b, CC18_325c, CC18_325d, CC18_325e_new, CC18_325f_new,

CC18_326, CC18_327a, CC18_327c, CC18_327d, CC18_327e, CC18_328b, CC18_328d,

CC18_328e, CC18_328f, CC18_331a, CC18_331b, CC18_331c, CC18_332a, CC18_332b,

CC18_332c, CC18_332e

Categorical sexuality, educ, race, employ, internethome, internetwork, marstat, pid3, re-

ligpew, ownhome, urbancity, immstat, union_coverage, unionhh, CC18_309a, CC18_309b,

CC18_309c, CC18_309d, CC18_316, CC18_318a, CC18_335, CC18_350

Ordinal pew_religimp, pid7, ideo5, pew_churatd, pew_prayer, newsint, faminc_new, CC18_421a,

CC18_app_dtrmp_post, CC18_422a, CC18_422b, CC18_422c, CC18_422d, CC18_422e, CC18_422f,

CC18_422g, CC18_426_1, CC18_426_2, CC18_426_3, CC18_426_4, CC18_426_5, CC18_427_a,

CC18_427_b, CC18_427_c, CC18_427_d, CC18_302
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Continuous birthyr, citylength_1

5B List of Variables in Row-Wise Test

Binary gender, pew_bornagain, cit1, investor, trans, votereg

Categorical sexuality, educ, internethome, internetwork, marstat, pid3, ownhome, urbancity,

immstat, unionhh

Ordinal pew_religimp, pid7, ideo5, pew_churatd, pew_prayer, newsint, faminc_new

Continuous birthyr, citylength_1

6 Additional Information on Latent Ideology Estimation

6A List of Policy Questions

As discussed in the main text, we estimate CCES respondents’ latent ideology by regressing

their ideological self-placement on their answers to 19 policy questions in the survey. The

former is based on CCES question CC18_334A (Ideological Placement — Yourself): “How

would you rate each of the following individuals and groups?” Response options range

from 1 for “Very Liberal” to 7 for “Very Conservative.” The 19 policy variables are listed in

Table A3.

6B Comparison with Amelia

Although existing MI algorithms cannot accommodate the full CCES sample on which we

train the MIDAS imputation model, some of them can handle small subsets of this sample
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Table A3. List of CCES Policy Variables Included in Latent Ideology Estimation

Variable Policy.Area Response.Type Missing
CC18_414A Minimum Wage For/Against 8202
CC18_414B Millionaire’s tax For/Against 8216
CC18_414C Sales tax For/Against 8233
CC18_414D Income tax For/Against 8230
CC18_414E Abortion spending For/Against 8223
CC18_324a Government Spending Support/Oppose 8304
CC18_324b Government Spending Support/Oppose 8324
CC18_324c Government Spending Support/Oppose 8298
CC18_324d Government Spending Support/Oppose 8280
CC18_415a Carbon Dioxide regulation Support/Oppose 8517
CC18_415b Fuel efficiency regulation Support/Oppose 8499
CC18_415c Renewable energy policy Support/Oppose 8476
CC18_415d EPA powers Support/Oppose 8456
CC18_416 Financial regulation Support/Oppose 8495
CC18_426_1 State welfare spending Increase/Decrease (1-5) 8311
CC18_426_2 State healthcare spending Increase/Decrease (1-5) 8330
CC18_426_3 State education spending Increase/Decrease (1-5) 8353
CC18_426_4 State law enforcement spending Increase/Decrease (1-5) 8380
CC18_426_5 State transportation/infrastructure

spending
Increase/Decrease (1-5) 8364

that exclude categorical variables with a large number of levels. Importantly, however,

some of these omitted variables — such as respondents’ state of residence and religion

— are likely to be strong predictors of both the policy items and missingness in these

variables. When they are excluded from the imputation model, therefore, estimates of

latent ideology will tend to be closer to those based on listwise deletion.

To illustrate this point, we estimate latent ideology using a subset of the CCES data

with the Amelia package in R. Specifically, we include five demographic variables — gen-

der, sexuality, race, sector of employment, and party identification — in addition to the

19 policy variables included in the regression model (Equation 8).7 As with MIDAS, we

then generate 15 completed datasets and recover latent ideology estimates from the fitted

7We exclude several demographic variables with a higher number of categories to enable convergence.
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Figure A3. Comparison of Latent Ideology Estimates from Different MI Strategies
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Figure A3 plots the latent ideology estimates from listwise deletion, MIDAS, and Amelia.

As expected, Amelia’s estimates are substantially closer to the listwise deletion estimates

than MIDAS’s. While the modal category is 4, there is a more pronounced peak on the

left (liberal) side of the ideology scale and a flatter tail on the right (conservative) side.

Compared to MIDAS, therefore, Amelia yields estimates with a clearly more peaked and

less normal shape. We can reject the null hypothesis that the three sets of estimates are

drawn from the same distribution at the p < 0.01 level in Kolmogorov-Smirnov tests.

These inferential differences are also significant from a practical perspective. In real

datasets such as the CCES, the pattern and specific determinants of missingness are not

known. The best option for users of MI is to leverage as much predictive information

about the missingness mechanism and incomplete variables as possible. MIDAS enables

us to utilize considerably more such information than existing MI strategies — with no
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loss in imputation speed or accuracy — reducing the risk of bias and increasing statistical

efficiency.

7 Imputing Time-Series Cross-Sectional Data: An Illustration

Finally, this appendix provides an illustration of MIDAS’s ability to handle a particularly

common type of non-exchangable data in social science research: time-series cross-sectional

data.8 As Honaker and King (2010) note, the dominant approach to MI tends to perform

poorly with such data, yielding imputed values that are implausible based on substantive

knowledge or that deviate substantially from previous and subsequent observations in a

smoothly varying time series. These problems arise because the approach “assumes that

the missing values are linear functions of other variables’ observed values, observations

are independent conditional on the remaining observed values, and all the observations

are exchangable in that the data are not organized in hierarchical structures” (Honaker

and King 2010, 565).9 Although MIDAS — like most MI strategies — does not include any

special functionalities for non-exchangable data, we have found that its capacity to learn

complex relationships among variables enables it to accurately impute values in time-series

cross-sectional settings with only small adjustments to the imputation model.

Building on an experiment conducted by Honaker and King (2010, 565-569) with

Amelia, we demonstrate this capacity using data from the World Bank’s World Devel-

opment Indicators (WDI), a collection of almost 1,600 time-series indicators of social and

economic development covering 217 countries since 1960.10 We select six African coun-

tries — Cameroon, Côte D’Ivoire, Congo Republic, Ghana, Niger, and Zambia — over the
8Data are non-exchangeable if observations cannot be reordered without altering their joint distribution.
More formally, a sequence of random variables X1, X2, ..., Xn is non-exchangeable if its joint distribution is
not identical to that of any (finite) permutation of its indices: p(X1, X2, ..., Xn) 6= p(Xπ(1), Xπ(2), ..., Xπ(n)).

9Amelia seeks to avoid these problems by allowing users to construct a general model of temporal patterns
with a sequence of polynomials of the time index. Such a sequence could, of course, be included in a MIDAS
model.

10http://datatopics.worldbank.org/world-development-indicators/.
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period 1970-2000, drop all entirely missing columns, and sequentially remove a single

country-year observation of GDP (measured in constant 2010 United States dollars) from

each cross-section (31 years × six countries).11 This yields 186 different subsets of the

WDI, each comprising 186 observations and 1251 variables — samples that are too wide

for any existing MI algorithm to process. Note, however, does this setup does not play to

MIDAS’s strengths either, given that the accuracy of neural networks generally increases

with the number of observations.

For each sample, we generate lags and leads of all (non-index) variables, since both past

and future values of a given variable tend to be correlated with its present value (Honaker

et al. 2011, 19). Based on an overimputation analysis (see Section 1), we instantiate

MIDAS with two hidden layers of 1024 and 512 nodes, a learning rate of 3e− 5, a dropout

rate of 0.95, and 2000 training epochs. We include country dummies as well as the lags

and leads in the imputation models, bringing the total number of variables to 3756.12 200

completed datasets are then produced with each model.

Figure A4 compares real versus MIDAS-imputed values of GDP for the six countries.

In general, the latter data track the former remarkably closely through each time series,

even capturing trends that were missed by Amelia, such as Côte d’Ivoire’s cocoa crisis

in the late 1970s and Cameroon’s strong economic recovery in the mid-1980s (Honaker

and King 2010, 569). Only a handful of real values fall outside the interquartile range

of MIDAS’s imputations, most of which are at the extremities of the time series. This is

probably a consequence of the absence both of lags at the beginning of the time series and

of leads at the end. Incorporating into the imputation model data from shortly before and

after the time period of interest — if available — may help to avoid this problem.

11We deviate from Honaker and King’s selection of countries by substituting Niger for Mozambique, since
the latter lacks a complete GDP time series in the WDI.

12Given the large number of imputation models in this exercise, we pass all variables other than country,
year, and GDP to the additional_data argument in MIDAS, which excludes them from the cost function
and hence accelerates training.
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Figure A4. Real Versus MIDAS-Imputed GDP for Six African Countries, 1970-2000
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MIDAS imputations are based on variants of the WDI dataset in which country-year observations of GDP are
sequentially removed. Each imputation model includes all variables in the WDI that are not entirely missing
for the six countries, leads and lags of all non-index variables, and country dummies.

In sum, MIDAS can successfully recover smooth temporal trends in GDP for all six coun-

tries. This is particularly notable in light of the absence of explicit features for modeling

time and the high ratio of variables to observations, which often leads to poor imputation

accuracy with existing MI strategies. To be sure, MIDAS would not perform as well in the

presence of longer periods of missingness and sharper inflection points in the time series.

However, provided that the imputation model contains sufficiently rich information about
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how observed values are related at different points in time, posterior uncertainty should

be low enough to permit valid statistical inference. The inclusion of additional features in

the model, such as polynomials of the time index and flexible basis functions, could further

improve MIDAS’s performance.
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