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A Properties of the Mechanism

A.1 Proof that it is Constrained Efficient

Suppose that ϕ is not ḡ-constrained efficient, so that for some preference profile %, ϕ(%)
is Pareto-dominated by a feasible ḡ-acceptable matching µ.

For all families i, let Mi = {j < i : j /∈ Ni} be the families ahead of i that were
already assigned a location under ϕ(%), and let i = min{i : µ(i) �i ϕ(%)(i)} be the
first family to which µ assigns it a location that it strictly prefers to the one it gets
under ϕ(%). (Such a family must exist if µ Pareto-dominates ϕ(%).) By construction
µ(i) = ϕ(%)(i) for all i ∈ Mi. So for µ to be feasible and ḡ-acceptable, it must be that
µ(i) ∈ Si ∩ Lḡi (αi), where αi is the completed assignment under ϕ(%) at Step i. This

means that Si ∩ Lḡi (αi) 6= ∅ so ϕ(%) must have assigned the best location l∗i in this set
to family i. But since µ(i) �i ϕ(%)(i) = l∗i , this contradicts the assumption that l∗i is

the best location for i in Si ∩ Lḡi (αi).

A.2 Proof that it is Strategy-proof

Suppose that there is some i for whom reporting a different preference %′i produces a
strictly better location assignment: ϕ(%′i,%−i) �i ϕ(%)(i).

Let l′i = ϕ(%′i,%−i) and note that Sj∩Lḡj (αj) is independent of i’s reported preference
for all j < i. Therefore, Ni = N ′i where Ni is the set of families on hold at Step i
under the truthfully reported profile % and N ′i are those on hold at Step i under the
profile (%′i,%−i). In addition, ϕ(%′i,%−i)(j) = ϕ(%)(j) for all j ∈ Ni. This implies
that α′i = αi, where α′i is the completed assignment at Step i under preference profile
(%′i,%−i) and αi is the completed assignment at Step i under preference profile %.
Therefore, Lḡi (αi) = Lḡi (α

′
i) =: Lḡi .

Let S ′i be the locations that i ranks strictly under %′i and Si the locations that i
ranks strictly under %i. If Si ∩ Lḡi = ∅, then all of the locations in Lḡi are ones that i
ranks worst, and i is guaranteed to be assigned one of these locations regardless of which
location i reports. Therefore it cannot be that ϕ(%′i,%−i) �i ϕ(%)(i).

On the other hand, if Si ∩ Lḡi 6= ∅ then ϕ(%′i,%−i) �i ϕ(%)(i) and Lḡi (αi) = Lḡi (α
′
i)

implies that l′i ∈ Si ∩ Li(αi). But then l′i �i ϕ(%)(i) = l∗i contradicts the fact that l∗i is
the unique best location in Si ∩ Li(αi) under preference %i.

B Verifying ḡ-Acceptability

As described in the main text, implementing the ḡ-constrained priority mechanism in-
volves iteratively verifying that the next assignment of a family to a particular location
can be performed without compromising the possibility of a ḡ-acceptable final matching.
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This process requires solving the maximization problem in Equation 2 of the main text:

Gi(q
i) := max

βi

∑
j∈{i,...,n}∪Ni

gj(βi(j)) subject to |β−1
i (l)| ≤ qil ,∀l (2)

This involves computing the maximum possible total outcome score for any remaining
set of units and the remaining location capacities.

In implementing the mechanism, Equation 2 can be solved by employing a standard
linear sum assignment problem (LSAP) (Burkard et al., 2012). Specifically, the LSAP
formulation is applied to an augmented cost matrix, whereby the rows correspond to
the remaining units and the columns correspond to location capacity slots (i.e. each
column is replicated according to the number of capacity slots belonging to the associated
location). Each element [i, v] of the cost matrix corresponds to the complement of the
outcome score for the ith unit when assigned to the location to which the vth column
pertains.

Various polynomial-time algorithms have been developed for solving the LSAP, be-
ginning with the introduction of the Hungarian algorithm in the 1950s (Kuhn, 1955,
Munkres, 1957). We employ the RELAX-IV cost flow solver developed by Bertsekas
and Tseng (Bertsekas and Tseng, 1994) and implemented in R by the optmatch package
(Hansen and Klopfer, 2006).

C Simulation Application: Additional Details

The follow describes the data-generating process employed in the simulations.
First a number N is chosen, denoting the number of agents. For simplicity, the same

number of locations is also used, each with capacity for one agent. In addition, ρp and
ρop are both chosen, denoting the pre-specified correlation between preferences across
agents and the correlation between preferences and outcome scores within agents.

Next, N different N -dimensional latent variable vectors are generated, and these
vectors are column-bound into an N x N matrix, which we denote by P, representing a
simulated preference matrix. Specifically, each vector is a multivariate normal random
vector, using a mean vector of 0, and a covariance matrix with 1 for all the diagonal
elements and ρp for all the off-diagonal elements. Let ~zl denote the lth N -dimensional
latent variable vector, which pertains to the lth location and comprises the lth column
of P. For any given vector, the ith element pertains to the ith family.

By generating the N x N matrix P in this way, each row represents a client and each
column represents a location. Thus, the ith row, P[i,], denotes a latent preference vector
for agent i, with higher (more positive) values corresponding to a higher preference and
vice versa. By construction, for any two cleints (rows), the pairwise correlation between
the two vectors will be ρp in expectation, imposing a correlation of ρp across agents’
preferences over locations.

Let ~si denote the ith cleint’s outcome score vector. The outcome score vectors are
constructed such that ~si = sign(ρop) · (P[i, ] + ~ε), where the elements of ~ε are indepen-
dently distributed normal with mean 0 and variance σ2

ε . The value of σ2
ε is determined
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such that it, in combination with the sign(ρop) operator, produces an expected pairwise
correlation of ρop between ~si and P [i, ], thereby inducing the correlation of ρop between a
agent’s preferences and outcome scores. The outcome score vectors are then row-bound
to create an N x N outcome score matrix S, where each row represents a agent and each
column represents a location.

In applying our mechanism to the simulated data, the S matrix is first normalized
such that its elements are in the interval [0, 1], and the P matrix is mapped to preference
ranks (i.e. each row P[i, ] is transformed into ranks such that the most positive value
becomes 1 and the most negative value becomes N).

For simplicity, the simulations presented in the study employ N = 100 (i.e. 100
agents assigned to 100 locations each with one seat). In addition, to mimic reality, in
which agents are likely to be able to report only a limited number of location preferences,
the preference vectors for each agent are truncated such that only the top 10 ranks are
retained and indifference is established among the remaining locations. The simulations
vary both the correlation between preference and outcome vectors (three values of ρop:
-0.5, 0, and 0.5) and the correlation between preference vectors across agents (three
values of ρp: 0, 0.5, and 0.8). This yields nine different scenarios, and in each we apply
our mechanism to make the assignment for various values of ḡ. Figure 1 in the main
text displays the results.

In addition, Figure S1 in this SI shows the results of the same simulations when the
preference rank vectors are not truncated.

D U.S. Refugee Application

D.1 Background Information on U.S. Resettlement

Resettled refugees in the United States are assigned to locations based on collaboration
between the Department of State and nine voluntary resettlement agencies. During
a regular draft, refugees are first allocated to one of the nine agencies according to
specific quotas. Agencies are then responsible for assigning refugees to locations within
their networks. Typically refugees are assigned as cases, where a case is a family. The
assignment varies based on whether the refugee has family ties in the United States.
Refugees with ties are placed at the location most proximate to the tie. Refugees without
such ties, so-called “free cases,” are assigned on a case-by-case basis and can be assigned
to any location in the network. Placement officers consider special characteristics of
the case (nationality, case structure, medical needs) and consult with the local offices
on whether they can accommodate a case (e.g. some offices may lack interpreters for
particular languages). Among the offices that can accommodate a case, the case is
then typically assigned to offices with the smallest proportion of their yearly capacity
currently filled. Note that a different process applies to refugees with Special Immigrant
Visas (SIVs).
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Once a refugee case has been assigned, the local office then provides placement and
reception services for 90 days beginning after arrival as mandated by the U.S. Resettle-
ment Program. The duration is 180 days for refugees assigned to the matching grant
program. Agencies are mandated to report employment outcomes to the Department
of State after the conclusion of the placement and reception period. If a refugee leaves
the area before the placement and reception period ends, they may no longer receive the
benefits associated with the placement and reception service.

D.2 Registry Data

Our data includes all refugees that were resettled by one of the largest resettlement
agencies and arrived between quarter 1, 2011 and quarter 3, 2016. The same data is
used in Bansak et al. (2018). We restrict the sample to those aged between 18 and
64 years at the time of arrival (i.e. working age). We also remove a small number of
duplicates and locations that have had less than 200 refugees assigned to them over the
entire period. In the final data there are 33,782 refugees from 22,144 cases. Of those,
9,506 refugees are from free cases.

Table S1 shows the descriptive statistics for our sample. Below is a list of variables
and measures used:

� Male: Binary variable coded as 1 for males and 0 for females.

� Speaks English: Binary variable coded as 1 for refugees who speak English at the
time of arrival and 0 otherwise.

� Age at arrival : Age at arrival measured in years.

� Education: Highest level of educational attainment at arrival. Categories include:
None/Unknown, Less than Secondary, Secondary, Advanced, and University.

� Country of origin: Country of origin or nationality.

� Employed : Binary variable coded as 1 for refugees who are employed at 90 days
after arrival, and 0 otherwise.

� Year of arrival : Year of arrival (continuous).

� Month of arrival : Month of arrival (continuous).

� Free case: Binary variable coded as 1 for refugees who are free cases with no U.S.
ties, and 0 otherwise.
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D.3 Applying the Mechanism

We applied our mechanism to the data on the refugee families who arrived in the third
quarter (Q3) of 2016, specifically focusing on refugees who were free to be assigned to
different resettlement locations (561 families, 919 working-age individuals). To generate
each family’s outcome score vector across each of the locations, we employed the same
methodology in Bansak et al. (2018), using the data for the refugees who arrived from
2011 up to (but not including) 2016 Q3 to train gradient boosted tree models that
predict the expected employment success of a family (i.e. the mean probability of finding
employment among working-age members of the family) at any of the locations, as a
function of their background characteristics. These models were then applied to the
families who arrived in 2016 Q3 to generate their predicted employment success at each
location, which comprise their outcome score vectors.

To generate preference rank vectors, we infer revealed location preferences from sec-
ondary migration behavior. Specifically, we use the same modeling procedures used in
the outcome score estimation, simply swapping in outmigration in place of employment
as the response variable. This allows us to predict for each refugee family that arrived
in 2016 Q3 the probability of outmigration at each location as a function of their back-
ground characteristics. For each family, we then rank locations such that the location
with the lowest (highest) probability of outmigration is ranked first (last).

In applying our mechanism to the 2016 Q3 refugee data, we impose real-world assign-
ment constraints, giving each location capacity for the same number of families as were
sent to those locations in actuality. We also truncate each family’s preference rank vec-
tor such that only the first 10 ranks are retained and indifference is established among
the remaining locations. Figure 3 in the main text displays the results. In addition,
Figure S2 in this SI shows the results of the same simulations when the preference rank
vectors are not truncated.

More details on the procedures used to generate the outcome score and preference
rank vectors can be found below.

D.4 Generating Outcome Scores and Preference Ranks

The methods used for estimating the predicted probabilities of employment and out-
migration in this study are the same as those employed in Bansak et al. (2018). The
following material describes the procedures and is modified directly from the Supple-
mentary Materials document of Bansak et al. (2018).

D.5 Training vs. Prediction Data Designation

Let T (training data) be the matrix of refugee data, in which the unit of observation is
a single refugee, that will be used for model training. The T matrix contains the data
for all working age refugees in our data who arrived starting in 2011 and up to (but not
including) the third quarter of 2016. For each refugee we observe her assigned location,
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response variables of interest (employment for the outcome score and outmigration for
the preference rank), and her full set of covariates.

Let R (prediction data) be the matrix of data for the working age, free case refugees
who arrived during the third quarter of 2016. This comprises the set of refugees to
whom we applied our mechanism in this application. In a real-world application, these
R matrix data would correspond to new refugee arrivals and must include the same
set of covariates as in the model training data. In contrast to the model training data,
however, these prediction data need not include refugees’ response variables. In fact, in
a real-world prospective implementation of the mechanism, refugees belonging to these
prediction data will not have yet been assigned to a resettlement location.

Note that when applying our mechanism both the model training and prediction
data should be subsetted to the group of refugees for whom the outcomes of interest are
relevant. In our application the integration outcome is employment and therefore the
population of interest is working-age refugees. In addition, the prediction data should
be subsetted only to those refugees who are free to be assigned to different resettlement
locations—in contrast to refugees with predetermined geographic destinations due to
family ties and other special circumstances—as this is the subset for whom the mech-
anism is designed to help with the assignment process. That said, the model training
data need not be restricted to only free cases. Free-case and non-free-case refugees might
be sufficiently dissimilar that forecasting free-case refugees’ outcomes with models built
using non-free-case data may seem problematic. This issue is addressed, however, by
including case type as a predictor variable in the model building process (see below).

D.6 Modeling

The training data is used to build a bundle of learners that predict refugees’ probabilities
of the response variables (employment and outmigration), and those learned models are
then applied to the prediction data to generate their predicted probabilities.

The modeling is implemented on a location-by-location basis. For each resettlement
location, the training data are first subsetted to those refugees who were assigned to that
location, and a statistical model is then fit that uses those refugees’ characteristics to
predict the response. That fitted model is then applied to the prediction data (2016 Q3
refugees) to predict the probability of the response for these refugee arrivals if they were
hypothetically sent to the location in question. This process is performed separately for
each individual location, which yields for each refugee in the prediction data a vector of
predicted probabilities, one for each location. Collectively for all refugees in the predic-
tion data, the final result is then a matrix of predicted probabilities (M matrix) with
rows representing individual refugees and columns representing resettlement locations.
Note that there are two M matrices: one for probabilities of employment and one for
probabilities of outmigration.

More formally, for each refugee r = 1, ..., nT , let the response of interest (e.g. employ-
ment) be denoted by yr ∈ {0, 1} and the location assignment denoted by wr ∈ {1, ..., k},
for a total of k possible resettlement locations. Let ~xr denote a p-dimensional feature
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vector comprised of the characteristics of refugee r, and xrm denote the mth feature
in ~xr, where m = 1, ..., p. The goal of the modeling process is to learn the function
θl(~xr) = P (yr = 1|~xr, wr = l). The following describes the steps in the modeling stage.

1. Designate the historical model training data and denote it by the matrix T:

T =


y1 w1 x11 · · · x1m · · · x1p
...

...
...

...
...

yr wr xr1 · · · xrm · · · xrp
...

...
...

...
...

ynT
wnT

xnT 1 · · · xnTm · · · xnT p


2. Train a set of k models, ΘΘΘ = {θ̂1(~xr), ..., θ̂l(~xr), ..., θ̂k(~xr)} as follows.

For l = 1, ..., k:

(a) Subset T to refugees for whom wr = l (i.e. refugees assigned to l-th location),
and call this Tl:

Tl =


y1 x11 · · · x1m · · · x1p
...

...
...

...
yr xr1 · · · xrm · · · xrp
...

...
...

...
ynl

xnl1 · · · xnlm · · · xnlp


w=l

=


y1 ~x1
...

...
yr ~xr
...

...
ynl

~xnl


w=l

where nl denotes the number of refugees for whom wr = l.

(b) Using the data in Tl (the outcome yr and feature vector ~xr for all nl refugees
in Tl), model and estimate the function θ̂l(~xr).

3. Designate the data on new refugee arrivals and denote them by the matrix R:

R =


ẋ11 · · · ẋ1m · · · ẋ1p
...

...
...

ẋr1 · · · ẋrm · · · ẋrp
...

...
...

ẋnR1 · · · ẋnRm · · · ẋnRp

 =



~̇x1
...
~̇xr
...

~̇xnR


where nR denotes the number of new refugee arrivals.

The matrix R corresponds to the 2016 Q3 refugees in this application.

4. For all refugees in R and all resettlement locations, estimate P (ẏr = 1|~̇xr, ẇr = l)
as follows.
For r = 1, ..., nR:
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For l = 1, ..., k:

Estimate P (ẏr = 1|~̇xr, ẇr = l) by applying lth model in ΘΘΘ to ~̇xr:

P̂ (ẏr = 1|~̇xr, ẇr = l) = θ̂l(~̇xr) ≡ πrl

Arrange the πrl into a vector, ~πr = [πr1, ..., πrk].

5. Produce a matrix of predicted probabilities, with rows corresponding to new
refugees and columns corresponding to resettlement locations, as follows.
Arrange vectors ~πr into rows of the matrix M:

M =


~π1
...
~πr
...

~πnR

 =


π11 · · · π1l · · · π1k
...

...
...

πr1 · · · πrl · · · πrk
...

...
...

πnR1 · · · πnRl · · · πnRk


This is the final modeling stage output.

We follow Bansak et al. (2018) and use boosted trees (Friedman et al., 2009, Fried-
man, 2001) to estimate θ̂l(~xr) in step 2(b). See Bansak et al. (2018) for more details on
the selection criteria and model performance metrics leading to the choice of boosted
trees. Specifically, we use stochastic gradient boosted trees (bag fraction of 0.5) with
a binomial deviance loss function (Friedman, 2002, Friedman et al., 2009), which we
implemented in R using the gbm package (Ridgeway, 2017). Tuning parameter values,
including the interaction depth, learning rate, and number of boosting iterations (the
early stopping point) are selected via cross-validation within the training data for each
location-specific model.

We use the following predictors: Free case, Speaks English, Age at arrival, Male,
Education (ordered variable differentiating between no/unknown education, less than
secondary, secondary, technical/professional, and university), Country of origin (one
binary variable for each of the largest origin groups including Burma, Iraq, Bhutan,
Somalia, Afghanistan, Democratic Republic of Congo, Iran, Eritrea, Ukraine, Syria,
Sudan, Ethiopia, and Moldova), Year of arrival, and Month of arrival.

D.7 Mapping to Case-Level

Since the assignment of refugees typically takes place at the level of the case (typically
a family), we need to map the refugee-level predicted probabilities from the modeling
process to a case-level metric. For each case-location pair, we apply the mapping function
to the refugee-location predicted probabilities for all refugees belonging to that case,
yielding a single value for that case-location pair. This results in a new matrix (M∗

matrix) with the same number of columns (locations) as previously but now as many
rows as cases rather than refugees.
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Formally, let i = 1, ..., n denote the refugee case, with a total of n cases, where
n ≤ nR. The mapping process then proceeds as follows:

1. Perform mapping of individual predicted probabilities to case-level metric as fol-
lows.
For i = 1, ..., n:

For l = 1, ..., k:

Let π̃il = {πrl ∀ r ∈ i}. (That is, π̃il is the set of all πrl for the lth
location and refugees belonging to the ith case.)

Compute γil = ψ(π̃il) where ψ is a predetermined mapping function.

Arrange the γil into a vector, ~γi = [γi1, ..., γik].

2. Produce a matrix containing the case-level metric for all case-location pairs, with
rows corresponding to cases and columns corresponding to resettlement locations,
as follows.
Arrange vectors ~γi produced in step 1 into rows of the matrix M∗:

M∗ =


~γ1
...
~γi
...
~γn

 =


γ11 · · · γ1l · · · γ1k
...

...
...

γi1 · · · γil · · · γik
...

...
...

γn1 · · · γnl · · · γnk


This is the final mapping stage output.

In step 1, the function ψ must be specified. In our application, we employ the mean
for both the predicted probabilities of employment and the predicted probabilities of
outmigration (see Bansak et al. (2018) for alternative choices).

D.8 Final Construction of Outcome Scores and Preference Ranks

The M∗ matrix pertaining to the predicted probabilities of employment directly provides
the outcome scores for use in the mechanism. However, the M∗ matrix pertaining to
the predicted probabilities of outmigration must be further transformed to provide the
(inferred) preference ranks. Specifically, for each row (case), we rank locations such that
the location with the lowest (highest) average probability of outmigration is ranked first
(last), producing a preference rank vector for each case.

D.9 Alternative Method for Estimating Preferences via Struc-
tural Adjustment

We also examined an alternative method to estimate location preferences using a model
that explicitly corrects for potential bias due to relocation costs. Note that in our data
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we only observe whether a refugee out-migrates from her initial resettlement location
or not. This decision will be a function of both location preferences (i.e. outmigration
should be higher in less desirable locations) and the costs of relocation (e.g. varying
geographic and economic factors may result in higher costs of relocating from certain
locations).

Here we leverage a structural model of outmigration to isolate the component of
outmigration that is likely attributable to location preferences, rather than the costs of
relocation. In particular, we follow standard models in the literature on immigrant and
refugee location choices and estimate the following structural model of outmigration:

yijt = α + βXjt + θj + φt + θj × t+ εijt

where yijt is the outcome of whether refugee i who arrived in year t out-migrates from
her initial resettlement location j, Xjt are a set of time-varying location specific char-
acteristics (e.g. rental prices, unemployment rates, ethnic networks, welfare generosity,
etc.) that affect the costs of relocation with coefficients β, θj is a set of location specific
fixed effects that capture all time-invariant factors that affect the costs of relocation
(e.g. remote location), φt is a set of year fixed effects that capture common shocks (e.g.
changes in transportation costs), and θj× t is a set of location-specific linear time trends
that capture changes in location-specific relocation costs that have a linear effect on out-
migration (e.g. local economic decline, changes in local transportation infrastructure,
etc.).

We include in X a set of location characteristics that are commonly included in
structural models of location choices (Borjas, 1999, Zavodny, 1999, Damm, 2009, Åslund
and Rooth, 2007, Mossad et al., 2020). In particular, we include the local unemployment
rate and personal income per capita to proxy for economic opportunities (Åslund and
Rooth, 2007, Damm, 2009, Mossad et al., 2020), rental prices to proxy for cost of living
(Damm, 2009, Mossad et al., 2020), ethnic shares to proxy for enclave effects (Beaman,
2012, Mossad et al., 2020), and welfare spending per capita to proxy for welfare magnet
effects (Damm, 2009, Borjas, 1999). A list of definitions and sources are provided below.
To merge in this information, we first identified the county of each resettlement location
and then merged in the location-specific characteristics measured at the refugee’s time
of arrival.

We fit the model with a logistic link function on the training data of refugees that
arrived prior to the third quarter of 2016. Note that to fit this model we restrict the
training data to only refugees who arrived as free cases. Since free cases do not choose
their initial resettlement location but are exogenously placed by the resettlement agen-
cies, this sample restriction limits potential bias due to individuals sorting into initial
locations based on unobserved characteristics such as location preferences (see Åslund
and Rooth (2007) for a similar identification that leverages a placement policy in Sweden
to estimate location preferences).

We then use the fitted model to generate the predicted probabilities for outmigration
for each family in the test set of quarter 3 2016 arrivals for each resettlement location.
These predictions capture the probabilities of outmigration that we would expect for a
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given family purely based on the location specific relocation costs as captured by the
structural model.

In the next step, we then compute the difference between the predicted probabili-
ties from our previous model that was based on individual-level characteristics and the
predicted probabilities from the structural model. The resulting differences can then be
interpreted as variation in outmigration that is mostly driven by location preferences
because it is adjusted for the variation in outmigration that is driven by structural
relocation costs.

For example, consider a family who has a very low predicted probability of outmi-
gration in a given location based on the individual model, but based on the structural
model the predicted probability of outmigration in the same location is very high. This
would indicate that this family has a strong preference to remain in this location even
though based on the structural factors they would be pulled towards relocating. On the
flip side, a family that has a very high predicted probability of outmigration based on
the individual model but a very low probability of outmigration based on the structural
model would suggest that they have a strong preference against living in this location
given that the structural factors would pull them towards staying.

Accordingly, as a last step for each family, we rank the locations based on the dif-
ferences in predicted probabilities such that the location with the most negative (most
positive) difference is ranked as most (least) preferred.

The list of geographic factors and data sources is as follows:

� Annual unemployment rate in county. Data retrieved from the Local Area Unem-
ployment Statistics (LAUS) from the Bureau of Labor Statistics.

� Monthly Rental Price Index in county. Data retrieved from Zillow Rent Index
(ZRI) (Time Series Multifamily, SFR, and Condo/Coops). The Zillow Rent Index
is a smoothed measure of the typical estimated market rate rent across a given
region and housing type. We linearly interpolated for missing values.

� Personal annual income per capita in county. Data retrieved from the Bureau of
Economic Analysis.

� Share of co-nationals in metro area. Share of co-nationals in each county year
is estimated based on ACS 5 year and 3 year samples (downloaded from IPUMs,
using the BLP and MET2013 variables). For some resettlement locations that
were outside a metro area we merge based on city or PUMA instead of metro area.

� Total annual state and local welfare spending per capita. Data retrieved from
Annual Survey of State and Local Government Finances US Census.

The results of applying our mechanism to the 2016 Q3 refugee data using these new
preference estimates is shown in Figure S3.
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E Education Application

E.1 Background Information on Application

Here we illustrate our mechanism by applying them to a hypothetical example of choice
of elementary schools. We consider a case where a school district might be interested
to assign incoming Kindergarten students to elementary schools in the district with the
goal to maximize academic achievement as measured by scores on standardized tests that
are administered at the end of the Kindergarten grade. Students have preferences over
schools and so the goal of the mechanism is to optimize on test scores and preferences
subject to the minimum expected average level of test score set by the district.

E.2 Tennesse Star Data

We leverage data from the Tennessee’s Student Teacher Achievement Ratio (STAR)
project conducted by the Tennessee State Department of Education. This data include
student level data on from a longitudinal experiment in Tennessee that began in 1985
and tracked a cohort of students progressing from kindergarten through third grade (for
details on the data and sample see Achilles et al. (2008)). The data includes demographic
information on the students, indicators for the schools that they attended, as well as
information on achievement tests that were administered annually at the end of each
grade. We focus on the sample of 1,674 students from 33 schools that are observed for all
grades from Kindergarten through 3rd grade and have non-missing data for tests scores
and background characteristics.

Table S2 shows the descriptive statistics for our sample. Below is a list of variables
and measures used:

� Month of birth: This variable is coded with values from 1 to 12.

� Year of birth: This variable is coded with values including 1978, 1979, 1980, and
1981

� Race: The student’s race coded as six categories including White, Black, Asian,
Hispanic, Native American, and Other.

� Free lunch: Binary variable coded as 1 if the student was eligible for free/reduced
lunch in Kindergarten and zero otherwise.

� Special Education: Binary variable coded as 1 if the student was eligible for special
education status in Kindergarten and zero otherwise.

� Female: Binary variable coded as 1 for female students and zero otherwise

� SAT Score Reading : Total reading scaled score on the Stanford Achievement Test
at the end of Kindergarten.
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� SAT Score Math: Total math scaled score on the Stanford Achievement Test at
the end of Kindergarten.

� SAT Score Listening : Total listening scaled score on the Stanford Achievement
Test at the end of Kindergarten.

� Sum of SAT Scores : Sum of the three SAT scores for Reading, Math, and Total
listening scaled score at the end of Kindergarten.

� Left Kindergarten: Variable used to measure outmigration from the Kindergarten
school. Higher values indicate that the student left the Kindergarten school faster
which can be interpreted as a stronger preference for another school. Coded 0 if
student remained in the Kindergarten school for 1st, 2nd, and 3rd grade; coded 1
if student stay in Kindergarten school for grade 1 and 2 but left for another school
for grade 3; coded 2 if student stay in Kindergarten school for grade 1, but left
for another school for grade 2; and coded 3 if students left for another school for
grade 1.

E.3 Applying the Mechanism

To generate each student’s outcome score vector across each of the schools, we used the
same stochastic gradient boosted tree models as in the refugee application to predict the
expected tests score of a student at any of the schools, as a function of their background
characteristics. The background characteristics included the students’ age, gender, race,
as well as information on whether they are eligible for free school lunches (a proxy
for socioeconomic status) or special education. The test score outcome was defined as
the sum of reading, math, and listening scaled SAT scores for the Kindergarten level.
Given the small sample size for some schools we used the same data for the training
and validation set and increased the bag fraction to 1. We look for the best fitting tree
models over interactions depth of 3 to 8 using 5-fold cross-validation with total of 1,500
trees.

To generate the school preferences we inferred revealed school preferences of students
from the observed transfers out of the schools. Specifically, we used the same modeling
procedure of stochastic gradient boosted tree model as for the test scores but instead
used a response variable that measured whether a student had transferred to another
school by the first, second, or third grade. Based on these models we can then predict
for each student the propensity for leaving each school as a function of their background
characteristics. For each student, we then rank schools such that the school with the
lowest (highest) propensity for transferring out is ranked first (last). In contrast to the
refugee application there is no mapping to a case level since assignments are done at
the student level. We impose the constraint that every school can only receive as many
students as the did in actuality.
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F Tables

Table S1: Descriptive Statistics for United States Refugee Sample

Mean SD

Male 0.53 0.50
Speaks English 0.42 0.49
Age:
18-29 0.44 0.50
30-39 0.28 0.45
40-49 0.16 0.37
50+ 0.11 0.31

Education:
None/Unknown 0.18 0.39
Less than Secondary 0.39 0.49
Secondary 0.21 0.41
Advanced 0.10 0.30
University 0.12 0.33

Origin:
Burma 0.23 0.42
Iraq 0.20 0.40
Bhutan 0.13 0.34
Somalia 0.11 0.31
Afghanistan 0.07 0.25
Other 0.26 0.44

Employed 0.23 0.42

Sample consists of refugees of working age that were
resettled by one of the largest resettlement agencies and
arrived in the period from quarter 1, 2011 to quarter
3, 2016. N = 33,782.
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Table S2: Descriptive Statistics for Student Sample

Mean SD

Month of Birth 6.22 3.45
Year of Birth 1979.74 0.45
Race:
White 0.82 0.38
Black 0.17 0.38
Asian 0.00 0.05
Hispanic 0.00 0.02
Native American 0.00 0.00
Other 0.00 0.03
Free Lunch 0.34 0.47
Special Education 0.02 0.13
Female 0.51 0.50
SAT Score Reading 445.34 31.17
SAT Score Math 499.43 43.41
SAT Score Listening 547.18 30.38
Sum of SAT Scores 1491.95 88.22
Left Kindergarten 0.06 0.37

Sample consists of students from the Tennessee Star
data. N = 1,674. Note that the “Left Kindergarten”
variable denotes the number of years during K-3 that
a student was in a school that was different from their
Kindergarten school.
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Figure S1: Results from applying our ḡ-Constrained Priority Mechanism to simulated
data (without truncated preferences) that varies the correlations between location pref-
erence and integration outcome vectors and the correlations between preference vectors
across families. This figure shows the results of the same simulations as in the main text
Figure 1, except that the simulated families’ preference rank vectors were not truncated
in the simulations illustrated here. Upper panel shows the average probability that a
family was assigned to one of its top three locations. Lower panel shows the realized
average integration outcomes, i.e. the average projected probability of employment.
N = 100.
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Figure S2: Results of applying our ḡ-Constrained Priority Mechanism to refugee families
in the United States (without truncated preferences) for various specified thresholds for
the expected minimum level of average integration outcomes (ḡ). This figure shows
the results of applying the mechanism to the same data as in the main text Figure 3,
except that the families’ preference rank vectors were not truncated in the application
illustrated here. Upper panel shows the average probability that a refugee got assigned
to one of their top three locations. Lower panel shows the realized average integration
outcomes, i.e. the average projected probability of employment. N = 561 families who
arrived in Q3 of 2016.
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Figure S3: Results of applying our ḡ-Constrained Priority Mechanism to refugee families
in the United States for various specified thresholds for the expected minimum level of
average integration outcomes (ḡ), with structurally adjusted preference estimates. This
figure shows the results of applying the mechanism to the same data as in the main
text Figure 3, except that the families’ preference rank vectors were adjusted using
a structural model design to account for differential relocation costs across locations.
Upper panel shows the average probability that a refugee got assigned to one of their
top three locations. Lower panel shows the realized average integration outcomes, i.e.
the average projected probability of employment. N = 561 families who arrived in Q3
of 2016.
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Figure S4: Results from re-running simulations discussed in the main text Simulation
Data Section and shown in Figure 1, where at each level of ḡ, the mechanism is applied
100 separate times and the order of the agents is re-randomized each time. The dots
denote the results—the proportion assigned to a top-3 location in the panels on the
left, and the mean outcome score on the right—averaged across the 100 re-orderings,
and the intervals denote the maximum and minimum results obtained across the 100
re-orderings. xix
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