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Regression discontinuity (RD) designs are increasingly common in political science. They have
many advantages, including a known and observable treatment assignment mechanism. The
literature has emphasized the need for “falsification tests” and ways to assess the validity of the
design. When implementing RD designs, researchers typically rely on two falsification tests, based
on empirically testable implications of the identifying assumptions, to argue the design is credible.
These tests, one for continuity in the regression function for a pre-treatment covariate, and one
for continuity in the density of the forcing variable, use a null of no difference in the parameter of
interest at the discontinuity. Common practice can, incorrectly, conflate a failure to reject evidence
of a flawed design with evidence that the design is credible. The well known equivalence testing
approach addresses these problems, but how to implement equivalence tests in the RD framework
is not straightforward. This paper develops two equivalence tests tailored for RD designs that allow
researchers to provide statistical evidence that the design is credible. Simulation studies show
the superior performance of equivalence-based tests over tests-of-difference, as used in current
practice. The tests are applied to the close elections RD data presented in Eggers et al. (2015)
and Caughey and Sekhon (2011a).
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SI-1 Simulation Details

SI-1.1 Data-Generating Process Details

Step 1 For N ∈ {50, 100, 1000, 5000, 10000}

Step 2

Scenario 1: zτ ∈ {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5} and dτ = 1

Scenario 2: zτ = 0 and dτ ∈ {1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7}

Step 3 Repeat 1000 times:

• Draw:
x ∼ N(0, 1)

Construct discontinuity in density (dτ ):

x [x < 0] = x [x < 0] ∗ dτ

Construct Z with discontinuous jump (zτ ):

φ ∼ N(0, 1.295)

y =

{
48 + 12.7( x

10) + 71.8( x
10)

2 + 202.1( x
10)

3 + 215.4( x
10)

4 + 73.3( x
10)

5 + φ, x < 0
τ + 48 + 8.4( x

10)− 30( x
10)

2 + 79.9( x
10)

3 − 90.1( x
10)

4 + 35.6( x
10)

5 + φ, x ≥ 0

• Conduct the following test for sorting:

– Equivalence density test (εL = 2/3, εU = 1.5)
– Cattaneo, Jansson, and Ma (2019) difference-based density test
– McCrary (2008) difference-based density test

• Conduct the following test for continuity:

– Equivalence continuity test (εL = −2.5, εU = 2.5)
– Interval inclusion continuity test (εL = −2.5, εU = 2.5)
– Calonico, Cattaneo, and Titiunik (2014) difference-based test for continuity

SI-1.2 Example of Data-Generating Process

Figure SI-1 shows an example of the simulated data generating process. Details can be found in
the appendix. The left column shows scenarios in which there is no sorting, where as the right
column shows sorting in which individuals can increase their probability of treatment. The upper
row exhibits continuity in variable Z , whereas the lower row has a discontinuity of 2, amounting to
about 20% of the range of Z .

When there is a discontinuous jump, you can see that the conditional expectation function for
the treated units jumps at the cutoff. Changes in density are visible as a discontinuous density of
points just above the cutoff.
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Figure SI-1: Sample draws from the simulated data-generating process. The top panels show the
estimation of the regression function of a pre-treatment covariate, and the lower panels show the
density of observations. The left columns have no sorting, and the right columns have sorting. Top
rows have a continuous regression function, whereas the bottom rows have a discontinuous jump
in the regression function at the cut-point.
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SI-1.3 Re-analysis of Caughey and Sekhon, 2011a Falsification Tests

As an example of testing across numerous pre-treatment outcomes, I conduct a re-analysis of the
25 pre-treatment covariates originally analyzed in Caughey and Sekhon (2011a) for US House
races from 1942-2008.1 Figure SI-2 presents the results using the equivalence-based tests. Fol-
lowing De la Cuesta and Imai (2016), I standardize all non-binary variables. Following the rec-
ommendations in Wellek (2010), I use the conservative equivalence range of ±0.36 standard
deviations for the standardized non-binary variables, and a range of ±0.1 for binary variables. The
observed mean difference and equivalence confidence interval are presented on the scale of the
original variable. Overall, using the local linear regression, similar to De la Cuesta and Imai (2016),
I find less evidence of an invalid design. However, when applying the multiple testing correction, I
find that there are still 8 outcomes that fail to reject the null of an invalid design, and it is concerning
that this includes the probability of a democratic win at t − 1 (e.g. incumbency).

Dem Spending % (n_eff = 912)
Rep's # Prev Terms (n_eff = 918)
Dem Donation % (n_eff = 1062)

CQ Rating {−1, 0, 1} (n_eff = 1219)
Dem's # Prev Terms (n_eff = 1701)

Dem Inc in Race (n_eff = 2137)
Dem Win t − 1 (n_eff = 2137)

Rep Inc in Race (n_eff = 2200)
Dem Experience Adv (n_eff = 2234)
Rep Experience Adv (n_eff = 2252)
Inc's D1 NOMINATE (n_eff = 2578)

Pct Gov't Worker (n_eff = 2857)
Dem Pres % Margin (n_eff = 2872)

Pct Black (n_eff = 2878)
Dem Sec of State (n_eff = 3043)

Dem Governor (n_eff = 3104)
Rep−held Open Seat (n_eff = 3242)

Pct Foreign Born (n_eff = 3302)
Partisan Swing (n_eff = 3336)

Dem % t − 1 (n_eff = 3399)
Open Seat (n_eff = 3503)
Pct Urban (n_eff = 3940)

Dem % Margin t − 1 (n_eff = 3988)
Voter Turnout % (n_eff = 4118)

Dem−held Open Seat (n_eff = 5748)
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Figure SI-2: Equivalence test for continuity in the Caughey and Sekhon (2011a) data, sorted by
effective sample size. Non-binary variables are standardized. The equivalence range is 0.36
standard deviations for non-binary variables, and 0.1 for binary variables. The observed mean
difference and equivalence confidence interval are presented on the scale of the original variable.
Black diamonds correspond to the point estimate. Gray bars indicate the equivalence confidence
interval. The p-value includes a false discovery race correction.

Many of the variables that fail to reject the null of data inconsistent with a valid design are
binary, indicating that, perhaps, the equivalence range for binary variables is too conservative, or
the range for non-binary variables is too large. For example, if the equivalence range for non-binary
variables is set at 0.2, an additional three variables would fail to reject the null of a discontinuity,
before the multiple testing correction. Given the sensitivity of the p-values to the definition of
the equivalence range, we can focus on the equivalence confidence range. A researcher should
evaluate each variable to determine if the equivalence confidence range is sufficiently small to
mitigate concerns for bias.

1Data available from Caughey and Sekhon (2011b).
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