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A1 Question Formats

• Quantile Question

1. We have just shown you election results for similar districts. Now, we want to
know what your expectations are.

Can you determine the median? This is the value where the vote share of
party A is equally likely to be less than or larger than this value.

2. Imagine you were told that the actual result was below your median value.

Can you determine a new value, such that the vote share of party A is equally
likely to be between 0 percent and the new value or between the new value and
the median value?

3. Imagine you were told that the actual result was above your median value.

Can you determine yet another value, such that the vote share of party A is
equally likely to be between the median and this new value or between this new
value and 100 percent?

4. At the end, respondents are shown the four ranges (0-25th, 25th-50th, 50th-
75th, 75th-100) and asked whether a random draw is equally likely to occur
in each of them. If not, respondents can go and adjust their responses.

(a) Consider the following four intervals: [0,P25], [P25, P50], [P50,P75], [P75,
100].
Is it equally likely that party A’s vote share will fall in any of these inter-
vals?
(PXY indicates the respondent’s XY percentile.)

• Interval Question (Narrow and Wide) This question comes in two versions –
a wide and a narrow version.

1. We have just shown you election results for similar districts. Now, we want to
know what your expectations for party A’s vote share are.

What is the most likely vote share of party A? Please give your response in
percentage points.

2. What is the probability that party A will receive a vote share of less than 40
percent? (45% in narrow format)

3. What is the probability that party A will receive a vote share of more than 60
percent? (55% in narrow format)

• Manski Question

1. We have just shown you election results for similar districts. Now, we want to
know what your expectations for party A’s vote share are.

What is the most likely vote share of party A? Please give your response in
percentage points.

2. What do you think is a likely range of the vote share that party A will receive?
Please indicate the lower bound in percentage points.

3. Now, please indicate the upper bound in percentage points.
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4. What is the probability that party A will get a vote share of less than (lower
value indicated by R) percent?

5. What is the probability that party A will get a vote share of more than (upper
value indicated by R) percent?

• Bins and Balls

We implemented this question by inserting Java script into the survey software - a
step that should be easily replicated by anybody. We also provide the JS code here
(link) and have annotated it so that it can be adapted easily.

Figure A1 shows the full question as it is presented to respondents. By clicking
on + and − buttons, the various bins can be filled or emptied. Each respondent
allocates 100 balls into these bins.

Figure A1: Screenshot of Balls and Bins
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A2 Estimation

To estimate beliefs form the different question formats, we develop statistical models that
permit us to estimate the parameters of respondents’ belief distributions. In the following,
we describe the Likelihoods that model the observed outcomes given parametric belief
distributions for the different question formats.

A2.1 Likelihood for the Quantile Question

For the quantile question, we observe three outcomes for each respondent: The lower
quartile, the median value, and the upper quartile of the respondent’s belief. We denote
them with yi = [yi1, yi2,yi3], where i ∈ (1, . . . , N) are respondents and k refers to the
different quartile questions k ∈ (1, 2, 3). We assume that these values are observed with
measurement error, such that:1

yik ∼ N (µik, σ
2). (1)

To estimate a respondent’s average belief, we assume a parametric distribution and
estimate the parameters of the distribution to closely mimic the expected observed indica-
tors. To map the beliefs of/about? the measured values, we require the quantile function
of the belief distribution. Because the sampling space of our experiment is bound be-
tween 0 and 1, we employ a Beta distribution as our parametric distribution. We denote
Q−1(qk, α, β) as the quantile function of the beta distribution. The two shape parameters
α and β define the expectation and the variance of the belief. The distribution is then
linked to the expectation of the observed values. If we denote the three quartiles with
qk = [0.25, 0.5, 0.75], we can write:

µk = Q−1(qk, α, β) (2)

With this model, we define the likelihood of a respondent’s observed answers as:

L(α, β, σ2 | yi) =
3∏

k=1

1√
2πσ2

exp

[
− (yik − µk)2

2σ2

]
(3)

Maximizing the Likelihood for each individual would involve minimizing the squared
distance between the observed quartile measurements and the shape parameters of the
beta-distribution that generate the expected quartiles. If we assume that individual
responses are identical and independently distributed, we can further write the Likelihood
for the full sample as:

L(α, β, σ2 | Y ) =
N∏
i=1

3∏
k=1

1√
2πσ2

exp

[
− (yik −Q−1(qk, α, β))

2

2σ2

]
, (4)

1We assume that the measurement errors are normally distributed with the same error variance and
no covariance between the errors.
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where Y is a (N × K) matrix with all respondents’ responses [y1, . . . , yN ]′. The
function is maximized with respect to the parameters α, β, σ using R’s optim function.

A2.2 Likelihood for the Interval Question

We observe three values for the interval question. Respondents report the mean value
of their beliefs and the probabilities of observing a value below and above a certain
threshold. We denote the mean with yi and the two (k ∈ (1, 2)) probabilities with pi1, pi2.
The interval values depend on the question format and are denoted with c = [c1, c2],
where in the wide version c = [40%, 60%] and in the narrow version c = [45%, 55%]. We
assume that the values are measured with normal measurement error.

yi ∼ N (µy, σ
2
y) (5)

pi1 ∼ N (µp1 , σ
2
p) (6)

pi2 ∼ N (µp2 , σ
2
p) (7)

The expectations µy are calculated from the assumed parametric belief distribution.
Here, we use the same distribution as in the data-generating process - a beta distribution.
The beta distribution is relatively flexible and well-suited for our example with vote shares
being constrained on the unit interval. It is generally possible to use other parametric
distributions, like a normal distribution, instead. In practical applications, it would be
sensible to try different distributions and compare their relative fit. The expectation for
the mean from the beta are given by the two shape parameters α and β:

µy =
α

α + β
(8)

The expected probabilities are given by the CDF of the beta distribution, which we
denote with Q(·, α, β).

µp1 = Q(c1, α, β) (9)

µp2 = 1−Q(c2, α, β) (10)

With this model, we can define the Likelihood for the observed data of N respondents
Y = [[y1, pi1, pi2]

′, . . . , [yN , pN1, pN2]
′]′. We assume that all responses are identically and

independently distributed, which yields the following Likelihood:

L(α, β, σ2y , σ
2
p | Y ) =

N∏
i=1

1√
2πσ2y

exp

[
− (yi − µy)2

2σ2y

]
2∏

k=1

1√
2πσ2p

exp

[
− (pk − µpk)

2

2σ2p

]
. (11)

To obtain MLE estimates of the parameters, the function is also maximized using R’s
optim function. The obtained estimates yield an estimate of the average beliefs under a
specific condition. The goal is to identify the question format that will yield estimates
that come closest to the true values.
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A2.3 Likelihood for the Manski Question

For the Manski Question, we observe five measures of respondents’ beliefs. We measure
three k ∈ 1, 2, 3 values: the mean value (which we denote with yi1), and the lower and
the upper bound values (which we denote with yi2 and yi3, respectively). In addition,
we measure two probabilities of observing values below and above the bounds (which we
denote with pi1 and pi2). We assume that the values are measured with error and that
the errors are identical and independently normally distributed.

yik ∼ N (µk, σ
2) (12)

the expectations µk are calculated from the assumed parametric distribution of re-
spondents’ beliefs. In our analysis, we work with the beta distribution, which yields a
simple expression for the mean value. Given the assigned probabilities, the observed lower
and upper bounds can be calculated from the quantile function of the Beta distribution,
which we denote as Q−1(·, α, β). The expectations of the measurement model are given
by:

µi1 =
α

α + β
(13)

µi2 = Q−1(pi1, α, β) (14)

µi3 = 1−Q−1(pi2, α, β) (15)

The Likelihood is given by the normal measurement error and the respective expectation-
generating functions. We collapse the measured values and the probabilities in a matrix
(Y = [[y11, y12, y13, p11, p12]

′, . . . , [yN1, yN2, yN3, pN1, pN2]
′]′. Assuming that the observed

values are independent allows us to write the Likelihood as:

L(α, β, σ | Y ) =
N∏
i=1

3∏
k=1

1√
2πσ2

exp

[
− (yik − µik)2

2σ2

]
, (16)

which is numerically maximized with respect to the parameters using R’s optim func-
tion.

A2.4 Likelihood for the Bins and Balls Question

The bins and balls question has a slightly different structure compared to the quantile
questions. For this question, we observe the number of balls a respondent decides to place
into K bins that each covers an exclusive interval. The intervals are given by ordered cut
points c1, . . . , cC . There is one cut-point more than categories C = K+1, as the question
format can have lower and upper bounds.2 The number of balls out of B = 100 that a
respondent places in a bin is denoted with yik. We assume that the measured placements
are binomially distributed, with a certain probability πk.

2C is the number of cut-points which, in our question format, is C = 13, and the corresponding cut
points are 0.25, 0.3, 0.35, 0.4, 0.45, . . . , 0.85.

6



yik ∼ B(πk, B) (17)

The probabilities are calculated from the CDF of the assumed parametric belief distri-
bution. The CDF of the Beta distribution is given by Q(·, α, β). With this, we calculate
the probability that a respondent places balls in each bin, as:

πk = Q(ck+1, α, β)−Q(ck, α, β). (18)

Assuming that the observed values are conditionally independent, combining all ob-
served placements Y = [[y11, . . . , y1K ]′, . . . , [yN1, . . . , yNK ]′]′ yields the following Likeli-
hood:

L(α, β | Y ) =
N∏
i=1

K∏
k=1

(
B

yik

)
πyikk (1− πk)B−yik (19)

We numerically maximize the likelihood of obtaining MLE estimates of the shape
parameters.
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A3 Balance

The following four tables present balance checks in terms of covariate averages and stan-
dard deviations for each experimental condition. These checks are based on the full data
before reducing the data set only to observations which passed both attention checks.
Please note that we refrain from the ill-advised practice of statistically testing for mean
differences (Mutz, 2011). Overall, we find treatment conditions to be well balanced.

Format n Female Age University Political Interest
Quantile 196 0.45 41.40 0.61 3.03

(0.50) (11.73) (0.49) (0.76)
Interval (Wide) 205 0.44 40.33 0.60 3.00

(0.50) (13.76) (0.49) (0.82)
Interval (Narrow) 205 0.48 41.39 0.57 3.09

(0.50) (12.26) (0.50) (0.78)
Manski 201 0.49 41.69 0.60 3.04

(0.50) (11.64) (0.49) (0.81)
Bins and Balls 189 0.49 40.81 0.61 2.99

(0.50) (11.63) (0.49) (0.81)

Table A1: Balance Check for a Symmetric Distribution. Means and Standard Deviations
in Parentheses.

Format n Female Age University Political Interest
Quantile 100 0.43 38.04 0.67 2.93

(0.50) (11.74) (0.47) (0.84)
Interval (Wide) 102 0.40 39.29 0.53 2.92

(0.49) (12.29) (0.50) (0.86)
Interval (Narrow) 97 0.40 40.66 0.60 2.95

(0.49) (12.66) (0.49) (0.85)
Manski 106 0.42 41.20 0.56 2.93

(0.50) (12.39) (0.50) (0.80)
Bins and Balls 102 0.41 41.35 0.65 3.08

(0.49) (13.58) (0.48) (0.83)

Table A2: Balance Check for a Symmetric Distribution with a Large Variance. Means
and Standard Deviations in Parentheses

8



Format n Female Age University Political Interest
Quantile 201 0.48 41.29 0.63 3.00

(0.50) (12.24) (0.48) (0.73)
Interval (Wide) 197 0.40 40.43 0.59 3.04

(0.49) (11.61) (0.49) (0.77)
Interval (Narrow) 206 0.47 39.47 0.59 3.02

(0.50) (12.13) (0.49) (0.80)
Manski 203 0.46 39.93 0.59 3.04

(0.50) (12.30) (0.49) (0.78)
Bins and Balls 196 0.43 41.44 0.64 3.10

(0.50) (12.07) (0.48) (0.80)

Table A3: Balance Check for an Asymmetric Distribution. Means and Standard Devia-
tions in Parentheses.

Format n Female Age University Political Interest
Quantile 102.00 0.54 41.49 0.72 3.09

(0.50) (12.40) (0.45) (0.76)
Interval (Wide) 104.00 0.44 38.80 0.72 2.88

(0.50) (10.72) (0.45) (0.75)
Interval (Narrow) 101.00 0.45 39.73 0.65 2.99

(0.50) (12.18) (0.48) (0.83)
Manski 98.00 0.48 41.00 0.68 2.91

(0.50) (13.26) (0.47) (0.90)
Bins and Balls 95.00 0.53 42.15 0.49 3.00

(0.50) (12.26) (0.50) (0.77)

Table A4: Balance Check for an Asymmetric Distribution with Large Variance. Means
and Standard Deviations in Parentheses.
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A4 Evaluating Adequacy Check for the Quantile Ques-

tion

Variance Distribution AdequacyCheck alpha beta KL N

Large Variance Asymmetric Yes 49.08 27.64 0.13 118
Large Variance Asymmetric No 158.50 91.07 0.98 130
Large Variance Symmetric Yes 48.41 47.90 0.01 119
Large Variance Symmetric No 34.21 34.59 0.07 115

Table A5: Estimates for the Elicited Beliefs. Comparing Quantile with and without
Adequacy Check for the Large Variance Scenarios
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A5 No Screening

These two tables present the same information that is shown in Table 2. The data here
is based on all results, i.e the raw data before reducing the data set only to observations
which pass both attention checks.

method alpha beta KL lr N

Quantile 45.54 47.29 0.07 0.14 100
Bins and Balls 15.27 15.04 0.10 0.00 102
Manski 13.57 13.34 0.13 0.00 106
Interval (Wide) 8.80 8.53 0.27 0.00 97
Interval (Narrow) 7.13 6.78 0.36 0.00 102

(a) Symmetric, Large Variance

method alpha beta KL lr N

Manski 22.79 13.46 0.12 0.00 98
Bins and Balls 11.49 7.16 0.24 0.00 95
Interval (Wide) 5.82 3.34 0.42 0.00 101
Quantile 60.58 35.75 0.54 0.00 102
Interval (Narrow) 3.40 1.82 0.67 0.00 104

(b) Asymmetric, Large Variance

method alpha beta KL lr N

Quantile 59.69 60.15 0.00 0.85 196
Manski 50.73 49.12 0.02 0.04 201
Bins and Balls 26.76 26.82 0.13 0.00 189
Interval (Wide) 15.98 15.40 0.31 0.00 205
Interval (Narrow) 11.56 11.36 0.43 0.00 205

(c) Symmetric, Small Variance

method alpha beta KL lr N

Manski 38.79 20.29 0.05 0.00 203
Quantile 56.95 31.47 0.10 0.00 201
Bins and Balls 18.27 12.45 0.54 0.00 196
Interval (Wide) 7.85 3.98 0.60 0.00 206
Interval (Narrow) 6.56 3.12 0.70 0.00 197

(d) Asymmetric, Large Variance

Table A6: Estimates for Elicited Beliefs. No Screen
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Symmetric

Small Variance

Symmetric

Large Variance

Asymetric

Small Variance

Asymetric

Large Variance

Bins and Balls

Interval (Wide)

Interval (Narrow)

Manski

Quantile

0.2 0.4 0.6 0.80.2 0.4 0.6 0.80.2 0.4 0.6 0.80.2 0.4 0.6 0.8
Vote Share

Scenario Elicited Beliefs Data Distribution

Figure A2: Comparison of Question Formats. No screen. The dotted line indicates the
true distribution and the black solid line shows the average of the elicited distributions.
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A5.1 Individual Beliefs

The question formats and estimation method can also be used to obtain individual beliefs.
We use the same Maximum Likelihood approach as described in section A2, but allow
for individual shape parameters: α = [α1, . . . , αN ] and β = [βi, . . . , βN ]. To illustrate,
consider the Individual Likelihood for the Quantile question:

L(α,β, σ | Y ) =
N∏
i=1

3∏
k=1

1√
2πσ2

exp

[
− (yik −Q−1(qk, αi, βi))2

2σ2

]
, (20)

where we now introduce a subscript for the shape parameters of the Beta quantile
function Q−1(qk, αi, βi).

We obtain estimates for respondent-specific shape parameters by numerically maxi-
mizing the Likelihood function. We first estimate the shape parameters for each respon-
dent, and afterwards estimate the error variance terms for the Likelihood function. We
repeat until convergence in the error variances.3

3Some response patterns do not yield estimates of sensible shape parameters. For example, if a
respondent reports a lower quartile of 0.50 and a Median of 0.45, the maximization of the function will
be impossible. We exclude respondents with such inconsistent answering behaviors.
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A5.2 Results

Symmetric

Small Variance

Symmetric

Large Variance

Asymetric

Small Variance

Asymetric

Large Variance

Bins and Balls

Interval (Wide)

Interval (Narrow)

Manski

Quantile

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Vote Share

Figure A3: Individual Beliefs. The grey lines indicate individual elicited beliefs. The red
line indicates the true distribution.
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type method median qlow qhigh

Symmetric Bins and Balls 0.13 0.06 0.26
Symmetric Interval (Narrow) 0.27 0.05 0.81
Symmetric Manski 0.36 0.23 0.66
Symmetric Interval (Wide) 0.45 0.14 1.33
Symmetric Quantile 0.50 0.15 1.92

(a) Symmetric, Large Variance

type method median qlow qhigh

Asymetric Bins and Balls 0.27 0.12 0.62
Asymetric Manski 0.27 0.09 0.53
Asymetric Quantile 0.51 0.16 1.48
Asymetric Interval (Wide) 0.64 0.63 0.73
Asymetric Interval (Narrow) 0.84 0.37 2.26

(b) Asymmetric, Large Variance

type method median qlow qhigh

Symmetric Bins and Balls 0.10 0.03 0.23
Symmetric Manski 0.25 0.11 0.45
Symmetric Interval (Wide) 0.36 0.12 1.27
Symmetric Interval (Narrow) 0.37 0.11 1.11
Symmetric Quantile 0.48 0.17 1.17

(c) Symmetric, Small Variance

type method median qlow qhigh

Asymetric Manski 0.15 0.05 0.38
Asymetric Quantile 0.44 0.14 0.91
Asymetric Interval (Wide) 0.96 0.95 0.96
Asymetric Interval (Narrow) 0.96 0.95 0.96
Asymetric Bins and Balls 0.99 0.55 1.54

(d) Asymmetric, Large Variance

Table A7: KL Divergence for Individual Beliefs in different Scenarios

method median qlow qhigh

Manski 0.25 0.09 0.49
Bins and Balls 0.30 0.09 0.90
Quantile 0.48 0.14 1.20
Interval (Wide) 0.92 0.43 0.96
Interval (Narrow) 0.93 0.25 0.98

Table A8: KL Divergence for Individual Beliefs over different Scenarios
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A6 Sub-Samples Political Interest

Symmetric

Small Variance

Symmetric

Large Variance

Asymetric

Small Variance

Asymetric

Large Variance

Quantile

Interval (Wide)

Interval (Narrow)

Manski

Bins and Balls

0.2 0.4 0.6 0.80.2 0.4 0.6 0.80.2 0.4 0.6 0.80.2 0.4 0.6 0.8
Vote Share

name NotHardlyQuite Very

Figure A4: Estimated Beliefs for Sub-Groups of Political Interest
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method NotHardlyQuite alpha NotHardlyQuite beta NotHardlyQuite KL Very alpha Very beta Very KL

Quantile 46.80 46.33 0.06 31.01 34.63 0.10
Interval (Wide) 8.11 7.79 0.31 10.56 9.83 0.23
Interval (Narrow) 7.16 7.12 0.35 13.78 13.24 0.13
Manski 13.13 12.55 0.15 12.62 11.98 0.16
Bins and Balls 13.65 13.40 0.13 13.57 13.81 0.12

(a) Symmetric, Large Variance

method NotHardlyQuite alpha NotHardlyQuite beta NotHardlyQuite KL Very alpha Very beta Very KL

Quantile 39.09 23.07 0.24 166.57 99.32 2.70
Interval (Wide) 5.01 2.68 0.49 6.75 3.60 0.36
Interval (Narrow) 5.04 2.90 0.48 9.27 5.17 0.25
Manski 25.16 14.05 0.06 13.69 7.38 0.12
Bins and Balls 10.98 6.91 0.26 26.79 16.02 0.16

(b) Asymmetric, Large Variance

method NotHardlyQuite alpha NotHardlyQuite beta NotHardlyQuite KL Very alpha Very beta Very KL

Quantile 51.63 52.38 0.01 40.24 36.87 0.12
Interval (Wide) 10.18 10.08 0.48 13.15 12.84 0.38
Interval (Narrow) 15.88 15.20 0.32 23.63 22.84 0.18
Manski 49.91 47.72 0.03 45.31 47.19 0.03
Bins and Balls 33.50 33.21 0.07 44.41 44.11 0.02

(c) Symmetric, Small Variance

method NotHardlyQuite alpha NotHardlyQuite beta NotHardlyQuite KL Very alpha Very beta Very KL

Quantile 39.07 22.54 0.17 159.98 82.26 0.38
Interval (Wide) 24.78 12.82 0.15 38.88 20.56 0.06
Interval (Narrow) 9.79 4.90 0.50 8.38 4.17 0.57
Manski 38.64 19.43 0.04 38.58 19.17 0.04
Bins and Balls 25.90 17.20 0.50 30.70 20.06 0.48

(d) Asymmetric, Small Variance

method NotHardlyQuite KL Very KL

Quantile 0.12 0.83
Interval (Wide) 0.36 0.26
Interval (Narrow) 0.41 0.28
Manski 0.07 0.09
Bins and Balls 0.24 0.20

(e) Summary Kullback-Leibler divergence over four applications

Table A9: Estimates for Sub-groups of Political Interest

.
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A7 Additional Survey Trump Vote Share

In section 5 of the paper, we show the results from an additional survey where we ask re-

spondents about their beliefs regarding Donald Trump’s popular vote share in November.

Table A10 shows the beliefs according to the different formats. In addition, the results

are also shown for sub-samples of Republicans and Democrats.

Table A10: Parameter Estimates & Moments of Belief Distribution

α β mean variance
Manski 39.70 43.38 0.48 0.00
Manski (D) 49.47 62.74 0.44 0.00
Manski (R) 19.34 17.61 0.52 0.01
Quantile 19.91 22.81 0.47 0.01
Quantile (D) 32.39 39.05 0.45 0.00
Quantile (R) 18.57 19.00 0.49 0.01
Bins & Balls 5.57 7.58 0.42 0.02
Bins & Balls (D) 6.43 10.93 0.37 0.01
Bins & Balls (R) 7.46 7.35 0.50 0.02
Interval wide 3.36 3.46 0.49 0.03
Interval wide (D) 3.70 4.67 0.44 0.03
Interval wide (R) 5.03 4.22 0.54 0.02
Interval narrow 3.94 4.40 0.47 0.03
Interval narrow (D) 4.47 5.56 0.45 0.02
Interval narrow (R) 2.39 2.19 0.52 0.04
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A8 Timing of Elicitation Methods

The time variable accounts for time for the entire survey. As all respondents have the

same introduction questions and identical demographic questions, the remaining differ-

ences are due to the different belief elicitation question formats. Since these additional

variables are constant in all elicitation methods, the timing variable gives us a sense of

the relative performance of the five elicitation methods. However, a simple F-test reveals

that these differences are not statistically significant.

Table A11: Median amount of time spent per elicitation in seconds

Elicitation Method Experiment Trump
Vote

Manski Question 170.0 132.0
Quantile Question 200.0 162.0

Interval Question Wide 149.0 106.0
Interval Question Narrow 157.0 108.5

Bins and Balls 199.0 155.0

F-value 0.89 1.56
Pr(>F) 0.4682 0.1833
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