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A Appendix
A.1 Tables with symbols and abbreviations

Table 1. Symbols

Symbol Description Relevant model(s) Location(s)
α Coe�icient vector bcMLM Section 3.2
β Coe�icient vector FE, Group-FE, MLM, RI, regFE, bcMLM Section 2.1
c Scalar FE, Group-FE, MLM, RI, bcMLM Section 3.3

Appendix A.15
êg [i ] Random (residual) variable FE, MLM, bcMLM Section 3.3
êg and ê Random (residual) vector FE, MLM, bcMLM Section 3.3

Appendix A.16
εg [i ] Random (error) variable FE, Group-FE, MLM, RI, regFE, bcMLM Section 2.1
εg and ε Random (error) vector FE, Group-FE, MLM, RI, regFE, bcMLM Section 2.1
ε∗
g [i ] Random (error) variable MLM, RI, bcMLM Section 3.3

ε∗g and ε
∗ Random (error) vector MLM, RI, bcMLM Section 2.4

γg and γ Coe�icient vector FE, Group-FE, MLM, RI, regFE, bcMLM Section 2.1
ω2 Scalar variance RI Section 2.2
Ω andΩblock Covariance matrix MLM, bcMLM Section 2.2
λ Scalar tuning parameter regFE Section 3.1
Λ Matrix tuning parameter regFE Section 3.1
σ2 Scalar variance MLM, RI, bcMLM Section 2.2
Σg andΣ Covariance matrix MLM, RI, bcMLM Section 2.2
Vg andV Covariance matrix MLM, RI, bcMLM Section 2.4

Appendix A.8
Appendix A.16

Xg [i ] Random (covariate) vector FE, Group-FE, MLM, RI, regFE, bcMLM Section 2.1
Xg andX Random (covariate) matrix FE, Group-FE, MLM, RI, regFE, bcMLM Section 2.1
X̄g Random (covariate) vector bcMLM Section 3.2
X̃g [i ] Random (covariate) vector FE, bcMLM Section 3.2

Appendix A.8
Appendix A.16

X̃g and X̃ Random (covariate) matrix FE, bcMLM Section 3.2
Appendix A.8
Appendix A.16

Yg [i ] Random (outcome) variable FE, Group-FE, MLM, RI, regFE, bcMLM Section 2.1
Yg andY Random (outcome) vector FE, Group-FE, MLM, RI, regFE, bcMLM Section 2.1
Zg [i ] Random (covariate) vector FE, MLM, regFE, bcMLM Section 2.1
Zg and Z Random (covariate) matrix FE, MLM, regFE, bcMLM Section 2.1

Table 2. Abbreviations for model-related terms

Abbreviation Full name Location(s)
bcMLM Bias-corrected multilevel model Section 3.2
CRSE Cluster-robust standard error Section 3.3

Appendix A.14
FE Fixed e�ects model Section 2.2
Group-FE Group fixed e�ects model Section 2.2
MLM Multilevel model Section 2.2
regFE Regularized fixed e�ects model Section 3.1
RI Random intercepts model Section 2.2
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A.2 Extensive simulation
We present here an example in which applying the lessons of Section 3 allows users to navigate a
complicated data generating process. We consider a longitudinal setting in which

Yg [t ] = β0 + β1X
(1)
g [t ] + β2U

(1)
g + β3X

(1)
g [t ]U

(1)
g + (5W (1)

g + 5W (1)
g W

(2)
g ) + εg [t ] (DGP 3)

where [W (1)
g W

(2)
g ]>

i i d∼ N(0, 2I2),

X
(1)
g [t ] =W

(1)
g +W (2)

g + δg [t ] where δg [t ] ∼ N (0, 1) and cor(δg [t ], δg [t+k ]) = (0.75)k ,

U
(1)
g =W (2)

g + N (0, 1)g ,

εg [i ] ∼ N (0, [U (1)g ]2σ2) and cor(εg [t ], εg [t+k ]) = (0.75)k

whereW (1)
g andW (2)

g are unobserved and t = 1, . . . ,T , withT varying from 5 to 50 in di�erent
settings. Like DGP 1, the random intercept, (5W (1)

g + 5W (1)
g W

(2)
g ), is correlated with the covari-

ates, specifically the observation-level variable,X (1)
g [t ] , and the cross-level interaction,X

(1)
g [t ]U

(1)
g ,

threatening to bias at least β1 and β3. Like DGP 2, the dependence structure is complex:

cov(Yg [t ],Yg [t+k ] | X , Z ) = var(5W (1)
g + 5W (1)

g W
(2)
g | X , Z ) + [U (1)g ]2σ2 (0.75)k (22)

which shows that covariance arises not only due to the random intercept but also autocorrelation
in εg [t ] , with varying intensity by group.

One choice would be to employ bcMLM through a RI model that additionally includes X̄ (1)g and
X̄
(1)
g U

(1)
g . We consider both choices ofΣ = σ2IN (bcMLM) and an AR(1) structure for eachΣg with

constant variances (bcMLM-AR), to attempt to capture the longitudinal nature of the data.
Additionally, though we emphasize that coe�icients on group-level variables or cross-level

interactions are o�en not clearly linked to causal quantities of direct interest, they are commonly
spoken of in practice. To this end we also employ the per-cluster regression (model+PC, when
relevant) to estimate β2 a�er bcMLM and bcMLM-AR (note that 5W

(1)
g + 5W (1)

g W
(2)
g is uncorrelated

withU (1)g , whileU (1)g and X (1)
g [t ] are correlated, so the per-cluster regression should estimate β2

unbiasedly and bcMLMmay not). Wewill compare these to a simple OLS ofY onX (OLS), Group-FE,
and aRImodelwithout bias-correction andΣ = σ2IN (RI). For standard errors, we usemodel-based
MLM standard errors (Section 2.4; model(mlm), when relevant) with RI, use CRSEs (Section 3.3;
model(crse), when relevant) with bcMLM, OLS, and Group-FE, and try both variance estimators with
bcMLM-AR.28 Furthermore, when employing the per-cluster regression, we use robust standard
errors (White et al. 1980; model(robust)) from the group-level regression in the final step of the
procedure.

The bias, coverage rates, and average standardized test mean square error for each of these
models is shown in Figures 6, 7, and 8, each across choices ofT ∈ {5, 15, 25, 50} andG ∈ {15, 50}.
Due to space limitations, we only show bias plots for the scenario in whichG = 50 andT = 25.
However, the pattern of results is similar across all sample sizes tried.

28. Note that bcMLM-AR still misspecifies the dependence structure, as the idiosyncratic errors are heteroskedastic in
truth, so we should expect its model-based standard errors to be incorrect.
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Figure 6. Comparison of five models on DGP 3: Estimating β1, β2, and β3
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Note: Results across 2000 iterations, each drawn from DGP 3 withG = 50,T = 25, and β0 = β1 = β2 = β3 = 1. The red
dashed-line represents the true β` .
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Figure 7. Comparison of five models on DGP 3: Coverage of β1, β2, and β3
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Note: Results across 2000 iterations, each drawn from DGP 3 with β0 = β1 = β2 = β3 = 1.
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Figure 8. Outcome prediction error for Group-FE, bcMLM, and bcMLM-AR in DGP 3
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Note: Comparison of testing error for the predicted outcome (average standardized test MSE,
(NE(ε2

g [i ] ))
−1 ∑

g ,i (Yg [i ] − Ŷg [i ] )2). Results are averaged across 2000 iterations, each drawn from DGP 3 with
β0 = β1 = β2 = β3 = 1. Testing data are of the same size as are the sample data. Additionally, due to the longitudinal

nature of DGP 3, testing data are for time points immediately a�er those of the sample data (e.g., whenT = 5, the sample
data span 1 ≤ t ≤ 5 and testing data span 6 ≤ t ≤ 10).

Regarding bias and RMSE, bcMLM-AR(+PC), bcMLM(+PC), and Group-FE all show no bias for
β1, β2, and β3. Though RI has slightly lower RMSE for β2 and β3 than do bcMLM(+PC) and Group-
FE, this comes at the cost of noticeable bias for most coe�icients. OLS also shows severe bias.
bcMLM-AR(+PC) and bcMLM(+PC) perform equally well in terms of bias for each coe�icient, but
bcMLM-AR(+PC) produces noticeably more e�icient estimates (lower RMSE) than do bcMLM(+PC)
or Group-FE, likely because the AR(1) structure for Σg more nearly resembles the true structure
than doesΣg = σ2Ing .

Turning to coverage, bcMLM(crse), bcMLM-AR(crse), and Group-FE(crse) all show imperfect but
perhaps acceptable coverage rates for β1, and consistently show undercoverage for β3, particularly
whenG = 15. bcMLM+PC(robust) and bcMLM-AR+PC(robust) also consistently showundercoverage
for β2. bcMLM-AR(mlm) shows acceptable coverage for β1, but is outperformed by bcMLM(crse),
bcMLM-AR(crse), and Group-FE(crse) for β3. OLS(crse) and RI(mlm) perform poorly for all coe�i-
cients due the models’ biased estimates, and in RI(mlm)’s case, a grossly misspecified dependence
structure.

As for predictive accuracy, bcMLM-AR andbcMLMare uniformly superior to Group-FE. bcMLM-AR
largely performs better than bcMLM, especially whenT is larger, likely due to the former’s more
e�icient coe�icient estimates. That the average standardized test mean square error for the three
models first increases fromT = 5 toT = 15 before steadily decreasing asT increases is likely due
to the autocorrelation in both εg [t ] andX

(1)
g [t ] , and should not be expected in other DGPs.

Overall, thesemodels perform as expected: bcMLM is equivalent to Group-FE, and together with
bcMLM-AR these models are clearly the best for estimating β1 and β3. The per-cluster approach
is e�ective in recovering β2 from a bias point of view, but provides poor coverage. OLS and RI
show substantial biases, failing to account for the group level confounding. Additionally, though
more DGP-dependent, bcMLM-AR has an e�iciency advantage over bcMLMwhile showing equally
low bias. The bias-corrected MLMs also have superior predictive accuracy over Group-FE. Finally,
bcMLM(crse), bcMLM-AR(crse), and bcMLM-AR(mlm) all achieve acceptable coverage for β1. But
given the poor coverage of bcMLM-AR(mlm) on β3, bcMLM(crse) and bcMLM-AR(crse) have the best
overall performance, at least whenG is larger.
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A.3 Proof of Theorem 3.2
We prove this by applying properties of β̂MLM and γ̂MLM that are proven in Czado 2017. We then
reframe these properties into the context of regFE to show the equivalence. As shown in Section 2.4,
given (Ω̂MLM, Σ̂MLM), and subsequently V̂MLM by substituting forΩ andΣ ,

β̂MLM = (X >V̂ −1MLMX )
−1X >V̂ −1MLMY (23)

γ̂MLM =


Ω̂MLM 0

. . .

0 Ω̂MLM


Z >V̂ −1MLM (Y − X β̂MLM) (24)

We remind readers that β̂MLM is found before γ̂MLM, specifically by maximizing the likelihood of β
givenY , Z , X , Ω̂MLM, and Σ̂MLM,

β̂MLM = argmax
β

L (β , Ω̂MLM, Σ̂MLM |Y ,X , Z )

= argmax
β

p (Y | X , Z , β , Ω̂MLM, Σ̂MLM) (25)

And γ̂MLM is subsequently found by maximizing the posterior distribution of γ givenY , Z , X , Ω̂MLM,
Σ̂MLM and β̂MLM,

γ̂MLM = argmax
γ

p (γ |Y ,X , Z , β̂MLM, Ω̂MLM, Σ̂MLM) (26)

Now, consider instead an alternate procedure that estimates β and γ simultaneously bymaximizing
the joint distribution ofY and γ:

argmax
β ,γ

p (Y , γ | X , Z , β , Ω̂MLM, Σ̂MLM)

=argmax
β ,γ

p (Y | γ,X , Z , β , Ω̂MLM, Σ̂MLM)p (γ | X , Z , β , Ω̂MLM, Σ̂MLM)

=argmax
β ,γ

(
log p (Y | γ,X , Z , β , Ω̂MLM, Σ̂MLM) + log p (γ | X , Z , β , Ω̂MLM, Σ̂MLM)

)
(27)

BecauseY | γ,X , Z ∼ N(Xβ + Z γ,Σ ) and γ |X , Z ∼ N(0,


Ω 0

. . .

0 Ω


), the problem becomes

argmax
β ,γ

(
− 1

2
(Y − Xβ − Z γ)>Σ̂−1MLM (Y − Xβ − Z γ) −

1

2
γ>


Ω̂−1MLM 0

. . .

0 Ω̂−1MLM


γ
)

=argmin
β ,γ

(
(Y − Xβ − Z γ)>Σ̂−1MLM (Y − Xβ − Z γ) + γ

>


Ω̂−1MLM 0

. . .

0 Ω̂−1MLM


γ
)

(28)
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LetQ be the objective function in the above minimization problem, i.e.,

Q (β , γ | Σ̂MLM, Ω̂MLM)

= (Y − Xβ − Z γ)>Σ̂−1MLM (Y − Xβ − Z γ) + γ
>


Ω̂−1MLM 0

. . .

0 Ω̂−1MLM


γ (29)

MinimizingQ for β and γ involves finding β and γ that satisfy ∂Q∂β = 0 and ∂Q
∂γ = 0. It is easily found

that this amounts to

∂Q

∂β
= X >Σ̂−1MLMXβ + X >Σ̂−1MLMZ γ − X

>Σ̂−1MLMY = 0 (30)

∂Q

∂γ
= Z >Σ̂−1MLMXβ+

(
Z >Σ̂−1MLMZ +


Ω̂−1MLM 0

. . .

0 Ω̂−1MLM


)
γ − Z >Σ̂−1MLMY = 0 (31)

One finds that substituting β = β̂MLM and γ = γ̂MLM satisfies the above equations. Therefore,

(β̂MLM, γ̂MLM) = argmin
β ,γ

Q (β , γ | Σ̂MLM, Ω̂MLM) (32)

The results presented so far can be found in Czado 2017. Further inspection ofQ leads to the equiv-
alence between MLM and regFE in the theorem. LettingΣ = σ2IN as in the theorem, maximizingQ
is equivalent to

argmin
β ,γ

Q (β , γ | Σ̂MLM, Ω̂MLM)

=argmin
β ,γ

(
σ̂−2MLM | |Y − Xβ − Z γ | |

2
2 + γ

>


Ω̂−1MLM 0

. . .

0 Ω̂−1MLM


γ
)

=argmin
β ,γ

(
| |Y − Xβ − Z γ | |22 + γ

>


σ̂2
MLMΩ̂

−1
MLM 0

. . .

0 σ̂2
MLMΩ̂

−1
MLM


γ
)

=argmin
β ,γ

( G∑
g=1

ng∑
i=1

[Yg [i ] − X >g [i ]β − Z
>
g [i ]γg ]

2 +
G∑
g=1

γ>g (σ̂2
MLMΩ̂

−1
MLM)γg

)
(33)

LettingΛ = σ̂2
MLMΩ̂

−1
MLM as in the theorem, making this substitution leads to the exact minimization

problem for regFE,

argmin
β ,γ

( G∑
g=1

ng∑
i=1

[Yg [i ] − X >g [i ]β − Z
>
g [i ]γg ]

2 +
G∑
g=1

γ>g Λγg
)

(34)

So, given the conditions for the theorem, β̂MLM and γ̂MLM solve the minimization problem for regFE,
giving the equivalence.

�
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A.4 Simulated example: biased β̂MLM for group-level variables in the presence of corre-
lated random e�ects
Consider the following DGP:

Yg [i ] = β0 + β1X
(1)
g [i ] + β2U

(1)
g + (W (1)

g +W (2)
g ) + εg [i ] (DGP 4)

where [W (1)
g W

(2)
g ]>

i i d∼ N(0, 2I2),

X
(1)
g [i ] =W

(1)
g + N (0, 1)g [i ]

U
(1)
g =W (2)

g + N (0, 1)g

εg [i ]
i i d∼ N (0,σ2)

Here, there is an observed lower-level variable,X (1)
g [i ] , and an observed group-level variable,U

(1)
g ,

which are both correlated with the unobserved random intercept (W (1)
g +W (2)

g ). Comparing the
analogous OLS, Group-FE, and RI models in draws from this DGP with β0 = β1 = β2 = 1, we again
see, in Figures 9 and 10, consistent biases in estimates of β1 and β2 from the RI model.

Figure 9. Comparison of estimates of β1 from OLS, Group-FE, and RI in DGP 4
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Note: Results across 1000 iterations, each drawn from DGP 4 with β0 = β1 = β2 = 1. The red dashed-line represents the true
β` .

RI is between OLS and Group-FE in terms of bias in estimating β1, and improves as ng increases
just like it does in DGP 1. However, in terms of estimating β2, RI is just as poor as is OLS at both
choices of ng , and does not improve as ng increases. This is because the conditional mean ofW

(2)
g

is linear inU (1)g , so that portion of (W (1)
g +W (2)

g ) is explained just as well byU (1)g as the included
random intercept, γg , regardless of ng orG . So, MLM automatically choosesU

(1)
g over γg to explain

that portion ofYg [i ] due to the shrinkage imposed on γg .

A.5 Proof of the unbiasedness of an OLS including X̄g in DGP 1
This result stems from an equivalence between the β̂1 from an OLS including X̄g (Equation (13))
and that from a regression ofYg [i ] on (Xg [i ] − X̄g ), which is also unbiased (and, in fact, the same
as that from a Group-FE model). Letting X ⊥

g [i ] = Xg [i ] − X̄g andWg =W (1)
g +W (2)

g , a β̂1 from a
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Figure 10. Comparison of estimates of β2 from OLS and RI in DGP 4
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Note: Results across 1000 iterations, each drawn from DGP 4 with β0 = β1 = β2 = 1. The red dashed-line represents the true
β` .

regression ofYg [i ] onX ⊥g [i ] yields (by the FWL theorem)

β̂1 =

∑
g ,i Yg [i ] (X ⊥g [i ])∑
g ,i (X ⊥g [i ])2

=

∑
g ,i

(
β0 + β1Xg [i ] +Wg + εg [i ]

)
(X ⊥

g [i ])∑
g ,i (X ⊥g [i ])2

=

∑
g ,i

(
β0 + β1 (Xg [i ] − X̄g + X̄g ) +Wg + εg [i ]

)
(X ⊥

g [i ])∑
g ,i (X ⊥g [i ])2

=

∑
g ,i

(
β1X

⊥
g [i ] + (β0 + β1X̄g +Wg ) + εg [i ]

)
(X ⊥

g [i ])∑
g ,i (X ⊥g [i ])2

= β1 +

∑
g ,i (β0 + β1X̄g +Wg ) (X ⊥g [i ])∑

g ,i (X ⊥g [i ])2
+

∑
g ,i εg [i ] (X ⊥g [i ])∑
g ,i (X ⊥g [i ])2

(35)

∑
g ,i (β0 + β1X̄g +Wg ) (X ⊥g [i ]) = 0 because within each group, X̄g andWg are constant andX ⊥g [i ] is

mean-zero. More rigorously,

G∑
g=1

ng∑
i=1

(β0 + β1X̄g +Wg ) (X ⊥g [i ]) =
G∑
g=1

(β0 + β1X̄g +Wg )
( ng∑
i=1

X ⊥g [i ]

)
=

G∑
g=1

(β0 + β1X̄g +Wg )
( ng∑
i=1

(Xg [i ] − X̄g )
)

=
G∑
g=1

(β0 + β1X̄g +Wg )
(
ng X̄g − ng X̄g

)
= 0 (36)
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So, continuing Equation (35),

β̂1 = β1 +

∑
g ,i εg [i ] (X ⊥g [i ])∑
g ,i (X ⊥g [i ])2

(37)

Because E(εg [i ] | X , Z ) = 0 in DGP 1, taking the expectation of the above yields E(β̂1) = β1.
Finally, because X̄g and X ⊥g [i ] are uncorrelated (as X

⊥
g [i ] is mean-zero and

∑
g ,i X̄g (X ⊥g [i ]) = 0 for

the same reason as why Equation (36) simplifies to 0) and β1Xg [i ] + α1X̄g can be rewritten as
β1X

⊥
g [i ] + (α1 + β1)X̄g , this β̂1 is the the same as the estimate one would obtain from running an

OLS including X̄g as in Equation (13), proving the latter’s unbiasedness.

�

A.6 Simulated example: adding group-levelmeansmaynot debias β̂MLM for group-level
variables in the presence of correlated random e�ects
Consider again DGP 4 from Appendix A.4. As adding Ū (1)g = U

(1)
g to a model a second time is

impossible, adding the group-level means of all included variables to a RI model will not eliminate
the bias in estimating β2. However, adding X̄

(1)
g [i ] does debias estimates of β1. See Figures 11 and

12 for the bias and RMSE of coe�icient estimates in DGP 4 a�er adding X̄ (1)
g [i ] to a RI model. For

comparison, we also show the results from anOLSmodel that includes X̄ (1)
g [i ] and a Group-FEmodel.

However, the estimates fromeachmodel are exactly the same,with the exception of the nonexistent
estimate of β2 for Group-FE.

Figure 11. Comparison of estimates of β1 fromaRImodel including X̄ (1)g , anOLS including X̄ (1)g , andGroup-FE
in DGP 4
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Note: The RI and OLSmodels have been debiased for β1 by including X̄
(1)
g as a covariate. Results across 1000 iterations,

each drawn from DGP 4 with β0 = β1 = β2 = 1. The red dashed-line represents the true β` .
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Figure 12. Comparison of estimates of β2 from a RI model including X̄ (1)g and an OLS including X̄ (1)g in DGP 4
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Note: The RI and OLSmodels including X̄ (1)g as a covariate are still referred to here as "debiased" because they unbiasedly
estimate β1, unlike RI and OLSmodels that omit X̄

(1)
g , as can be seen in Figure 9. However, including X̄ (1)g clearly does not

debias their estimates of β2. Results across 1000 iterations, each drawn from DGP 4 with β0 = β1 = β2 = 1. The red
dashed-line represents the true β` .

A.7 Simulated example: adding group-level means may induce bias in β̂MLM for group-
level variables when they are correlated with lower-level variables
Consider the following DGP:

Yg [i ] = β0 + β1X
(1)
g [i ] + β2U

(1)
g + (W (1)

g +W (1)
g W

(2)
g ) + εg [i ] (DGP 5)

where [W (1)
g W

(2)
g ]>

i i d∼ N(0, 2I2),

X
(1)
g [i ] =W

(1)
g +W (2)

g + N (0, 1)g [i ]

U
(1)
g =W (2)

g + N (0, 1)g

εg [i ]
i i d∼ N (0,σ2)

Here, there is an observed lower-level variable, X (1)
g [i ] , and an observed group-level variable,U

(1)
g .

X
(1)
g [i ] is correlated with the unobserved random intercept, (W (1)

g +W (1)
g W

(2)
g ), but even though

U
(1)
g is correlated withW (2)

g , it is uncorrelated with the random intercept because it is independent
ofW (1)

g . The inclusion of X̄ (1)g in a RI model will therefore correct the bias in estimating β1, and
becauseU (1)g is uncorrelated with the random intercept, one would imagine that such a model
would also produce unbiased estimates of β2. However, because X

(1)
g [i ] andU

(1)
g are correlated, the

inclusion of X̄ (1)g in fact induces bias in estimates of β2, which we see in Figure 13. All of the models
show biases in estimates of β2 at all sample sizes tried, with the RI model including X̄

(1)
g showing

the most bias. However, unlike the estimates from an OLS and the RI model including X̄ (1)g , the
estimates from the RI modelwithout X̄ (1)g here actually improve as ng increases.

A.8 Proof of the unbiasedness of bcMLMwithΣ = σ2IN under the conditional inde-
pendence assumption
This proof has been adapted from Snijders and Berkhof 2008. For simplicity, we prove the result
for when we have correctly assumed that β0 = 0 in Equation (3), so the intercept term has been
removed fromXg [i ] ,Xg ,X , and β . Note that this does not prohibit an intercept term from being
included in Zg [i ] .
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Figure 13. Comparison of estimates of β2 from an OLS, a RI model without X̄ (1)g , and an RI model including

X̄
(1)
g in DGP 5
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across 1000 iterations, each drawn from DGP 5 with β0 = β1 = β2 = 1. The red dashed-line represents the true β` .

First consider the projections ofYg andXg onto Zg :

Ỹg = Zg (Z >g Zg )−1Z >g Yg (38)

X̃g = Zg (Z >g Zg )−1Z >g Xg (39)

and then partialing out these projections from bothYg and Xg , givingY ⊥g andX ⊥g :

Y ⊥g =Yg − Ỹg
= [Ing − Zg (Z >g Zg )−1Z >g ]Yg (40)

X ⊥g = Xg − X̃g
= [Ing − Zg (Z >g Zg )−1Z >g ]Xg (41)

Then let Ỹ , X̃ ,Y ⊥, andX ⊥ be the (ordered) block matrices of the Ỹg , X̃g ,Y ⊥g , andX ⊥g respectively
(asX is to the Xg ). These matrices can also be written as

Ỹ = Z (Z >Z )−1Z >Y (42)

X̃ = Z (Z >Z )−1Z >X (43)

and

Y ⊥ =Y − Ỹ
= [IN − Z (Z >Z )−1Z >]Y (44)

X ⊥ = X − X̃
= [IN − Z (Z >Z )−1Z >]X (45)

Then, consider an OLS predictingY ⊥ withX ⊥. The resulting estimate of β would be

β̂ = [(X ⊥)>X ⊥]−1 (X ⊥)>Y ⊥ (46)

We will show that this β̂ is unbiased, and is exactly equal to the estimate of β obtained from bcMLM.
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Using thatY = Xβ + Z γ + ε and the definition ofY ⊥ in Equation (44), one finds

β̂ = [(X ⊥)>X ⊥]−1 (X ⊥)> [IN − Z (Z >Z )−1Z >] (Xβ + Z γ + ε)
= [(X ⊥)>X ⊥]−1 (X ⊥)> [IN − Z (Z >Z )−1Z >] (Xβ + ε) (47)

where the second equality in the above comes from the fact that [IN − Z (Z >Z )−1Z >]Z = 0.
Then, using the definition of X ⊥ in Equation (45) and that [IN − Z (Z >Z )−1Z >] is idempotent,
the above becomes

β̂ = [(X ⊥)>X ⊥]−1 [(X ⊥)>X ⊥]β + [(X ⊥)>X ⊥]−1 (X ⊥)>ε
= β + [(X ⊥)>X ⊥]−1 (X ⊥)>ε (48)

whichmeans thatE(β̂ ) = β , becauseE(ε |X , Z ) = 0by theconditional independenceassumption.
So, we have shown that an OLS ofY ⊥ on X ⊥ yields an unbiased estimate of β .

Now we consider the optimization problem solved in bcMLM to find an estimate of β , and
show it yields the unbiased β̂ above. bcMLMwithΣ = σ2IN operates under the assumption that
Yg | X , Z i i d∼ N(Xgβ + X̃gα ,Vg ) whereVg = ZgΩZ

>
g + σ2Ing . This implies that contribution of

the g th group to the assumed log likelihood for the model is:

`
(bcMLM)
g = −1

2
log |Vg | −

1

2
[Yg − Xgβ − X̃gα]>V −1g [Yg − Xgβ − X̃gα] (49)

Using that

V −1g = σ−2Ing − ZgAgZ >g
where Ag = σ−2 (Z >g Zg )−1 − (Z >g Zg )−1 [σ2 (Z >g Zg )−1 +Ω]−1 (Z >g Zg )−1 (50)

and thatYg − Xgβ − X̃gα = [Y ⊥g − X ⊥g β ] + [Ỹg − X̃g (β + α)], it can be shown that

`
(bcMLM)
g = −1

2

(
log |Vg | + σ−2 | |Y ⊥g − X ⊥g β | |22 + [Ỹg − X̃g (β + α)]>V −1g [Ỹg − X̃g (β + α)]

)
(51)

So, the whole likelihood maximization procedure, givenΩ and σ2 (which one estimates first in
bcMLM before finding estimates of β and α ) is

argmax
α ,β

G∑
g=1

`
(bcMLM)
g

= argmax
α ,β

− 1

2

G∑
g=1

(
log |Vg | + σ−2 | |Y ⊥g − X ⊥g β | |22 + [Ỹg − X̃g (β + α)]>V −1g [Ỹg − X̃g (β + α)]

)
= argmin

α ,β

G∑
g=1

(
| |Y ⊥g − X ⊥g β | |22 + σ

2 [Ỹg − X̃g (β + α)]>V −1g [Ỹg − X̃g (β + α)]
)

= argmin
α ,β

(
| |Y ⊥ − X ⊥β | |22 + σ

2
G∑
g=1

[Ỹg − X̃g (β + α)]>V −1g [Ỹg − X̃g (β + α)]
)

(52)

We see in the above minimization problem that when choosing β , the only part of the objective
function that matters is | |Y ⊥ − X ⊥β | |22 , which is the same objective function as that in an OLS
predictingY ⊥ withX ⊥. This means that the estimate of β from bcMLM here is exactly the β̂ defined
earlier in the proof (Equation (46)), which we have shown is unbiased. Therefore, bcMLM with
Σ = σ2IN will produce an unbiased estimate of β .
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�

A.9 Proof of the equivalance of FE and bcMLMwithΣ = σ2IN
Another consequence of the proof of the unbiasedness of bcMLM with Σ = σ2IN provided in
Appendix A.8 is that there is an exact equivalence between the estimates of β from bcMLM and FE.
This is because, like bcMLM, FE produces the same estimate of β as does an OLS regression ofY ⊥

onX ⊥ (defined in Appendix A.8), as FE can be reparametrized as

Y = Xβ + Z γ + ε

= [IN − Z (Z >Z )−1Z >]Xβ + [Z (Z >Z )−1Z >]Xβ + Z γ + ε

= X ⊥β + Z γ̃ + ε (53)

where γ̃ = (Z >Z )−1Z >Xβ + γ. BecauseX ⊥ and Z are orthogonal (i.e., Z >X ⊥ = 0), the estimate
of β obtained by FE is therefore

β̂FE = [(X ⊥)>X ⊥]−1 (X ⊥)>Y
= [(X ⊥)>X ⊥]−1X > [IN − Z (Z >Z )−1Z >]Y
= [(X ⊥)>X ⊥]−1X > [IN − Z (Z >Z )−1Z >]2Y
= [(X ⊥)>X ⊥]−1 (X ⊥)>Y ⊥ (54)

wherewehaveused in the third lineof Equation (54) above that [IN −Z (Z >Z )−1Z >] is idempotent.

�

A.10 Simulated example: biased β̂MLM with a random slope
While we are primarily concerned with the RI specification of MLM, we also consider here when
MLM produces biased β̂MLM due to a random slope. Consider the DGP

Yg [i ] = β0 + (β1 +W (1)
g )X (1)g [i ] + εg [i ] (55)

whereW (1)
g is an unobserved group-level variable. If the above were fit by a simple OLS of Y on X or

MLM, we would expect a biased estimate of β1 when cov(X (1)g [i ],W
(1)
g X

(1)
g [i ]) , 0. Assuming X (1)

g [i ]
andW (1)

g are both mean-zero, this occurs when

cov(X (1)
g [i ],W

(1)
g X

(1)
g [i ]) = E

(
[X (1)

g [i ]]
2W

(1)
g

)
−E(X (1)

g [i ])E(W
(1)
g X

(1)
g [i ])

= E
[
W
(1)
g E

(
[X (1)

g [i ]]
2 |W (1)

g

)]
, 0 (56)

There are many ways for the above to hold, but ifXg [i ] =W
(1)
g N (0, 1)g [i ] + N (0, 1)g [i ] , then the

above would requireE( [W (1)
g ]3) , 0, i.e.,W (1)

g has an asymmetric distribution. We consider such
a case in DGP 6 below:

Yg [i ] = β0 + (β1 +W (1)
g )X (1)g [i ] + εg [i ] (DGP 6)

where W
(1)
g

i i d∼ X2
1 − 1

X
(1)
g [i ] =W

(1)
g N (0, 1)g [i ] + N (0, 1)g [i ]

εg [i ]
i i d∼ N (0,σ2)
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InDGP6,W (1)
g is a centeredchi-squaredwithonedegreeof freedom, and thus satisfiesE( [W (1)

g ]3) ,
0. We see biases in estimates of β1 from a simple OLS and a MLMwith a random intercept and slope
forX (1)

g [i ] across draws from DGP 6 with β0 = β1 = 1 in Figure 14.

Figure 14. Comparison of estimates of β1 from OLS and a MLM with a random intercept and slope for X (1)
g [i ] in

DGP 6
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Note: Results across 1000 iterations, each drawn from DGP 6 with β0 = β1 = 1. The red dashed-line represents the true β` .

A.11 Simulated example: including (X̄g − X̄ )> ⊗ Zg [i ] in MLM does not alleviate bias
from DGP 6
We consider here the proposed solution to correlated randome�ects of including (X̄g − X̄ )>⊗Zg [i ]
as fixed e�ect variables presented in Snijders and Bosker 2011 and Wooldridge 2013.

In DGP 6 from Appendix A.10, this proposal would imply the MLM

Yg [i ] = β0 + β1X
(1)
g [i ] + α0 (X̄

(1)
g − X̄ (1) ) + α1 (X̄ (1)g − X̄ (1) )X (1)

g [i ]

+ γ0g + γ1gX
(1)
g [i ] + εg [i ]

where [γ0g γ1g ]> i i d∼ N(0,Ω) (57)

and εg [i ]
i i d∼ N (0,σ2). However, the above model does not correct the bias shown by a MLM with a

random intercept and slope in DGP 6, as we see Figure 15. Estimates from a per-cluster regression
(introduced by Bates et al. 2014, and described in Appendix A.13), on the other hand, are unbiased.

A.12 Simulated example: per-cluster regression to unbiasedly estimate coe�icients of
group-level variables that are uncorrelated with random e�ects
Consider again DPG 5 introduced in Appendix A.7. A�er estimating β1 with an unbiased β̂1 obtained
by FE or adding the group-mean ofX (1)

g [i ] to a RI model, one can apply the per-cluster regression to

unbiasedly estimate β2 becauseU
(1)
g is uncorrelatedwith the random intercept, (W (1)

g +W (1)
g W

(2)
g ).

The first step in the per-cluster regression is to subtract the estimatedmarginal e�ect ofX (1)
g [i ]

fromYg [i ] , like so:

Y ⊥g [i ] =Yg [i ] − β̂1X
(1)
g [i ] (Per-cluster Regression: Step 1)
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Figure 15. Comparison of estimates of β1 from a standard MLM, the MLM in Equation (57), and a per-cluster
regression in DGP 6

●

●

●

●

●

●
●
●

●

●

●

●

●
●●●●

●

●

●

●
●
●

●

●
●
●

●

●

●●
●●

●

●●

●

●●●●●●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●
●●

●

●

●●

●

●

●
●

●

●●●
●
●

●
●

●
●
●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●●

●
●
●

●
●●●
●

●

●
●
●●●

C
oe

ffi
ci

en
t E

st
im

at
e

MLM interactive
MLM

PC
−6

−4

−2

0

2

4

6

8

10

Bias: 0.472
RMSE: 0.977

Bias: 0.413
RMSE: 0.938

Bias: −0.008
RMSE: 1.047

(a)G = 50, ng = 5

●
●
●
●
●

●●●●
●●●●
●
●
●●●●●●●
●
●
●
●●●●●●●●
●

●
●
●
●
●
●●●
●●●●●
●
●●●●●●
●
●
●
●●●●●●●●
●

●●●

●

●
●●
●●●●●●●●●●●●●●●●
●●
●

●

●●●

●

●●●

●

●●

C
oe

ffi
ci

en
t E

st
im

at
e

MLM interactive
MLM

PC
−6

−4

−2

0

2

4

6

8

10

Bias: 0.142
RMSE: 0.399

Bias: 0.135
RMSE: 0.392

Bias: 0.01
RMSE: 0.296

(b)G = 50, ng = 50

Note: "PC" refers to the per-cluster regression, and the MLM in Equation (57) is referred to as "interactive" because it
includes the interaction of (X̄g − X̄ ) with all variables in Zg [i ] . Results across 1000 iterations, each drawn from DGP 6 with

β0 = β1 = 1. The red dashed-line represents the true β` .

The next step is to calculate the group-means ofY ⊥
g [i ] :

η̂0g =
1

ng

ng∑
i=1

Y ⊥g [i ] (Per-cluster Regression: Step 2)

Finally, regressing η̂0g onU
(1)
g and an intercept term in a group-level OLS provides an unbiased

estimate of β2:

Estimate η̂0g = β0 + β2U
(1)
g + δ0g by OLS (Per-cluster Regression: Step 3)

where δ0g acts as the residual. In Figure 16, we see that the estimate of β2 from a per-cluster
regression is unbiased in DGP 5, unlike that from OLS, and RI including or without X̄ (1)g .

Figure 16. Estimates of β2 from a per-cluster regression in DGP 5
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Note: Results across 1000 iterations, each drawn from DGP 5 with β0 = β1 = β2 = 1. The red dashed-line represents the true
β` .
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A.13 Per-cluster regression for varying slopes and cross-level interactions
As noted in the text, another example of over-identification in bcMLM is when the slope forX (`)

g [i ]
is allowed to vary, i.e., X (`)

g [i ] is included in Zg [i ] . Because bcMLM includes as extra covariates

the predictions of X (`)
g [i ] using Zg [i ] , and Zg [i ] predicts X

(`)
g [i ] perfectly, including this “prediction"

as an extra variable simply includes X (`)
g [i ] in the model twice. Therefore, one of the X

(`)
g [i ] will be

droppedout of themodel, and the “prediction" ofX (`)
g [i ] cannot soakup thebias fromanypotentially

correlated random e�ects when estimating β` . This is also true of coe�icients for any cross-level
interactions,X (`)

g [i ]U
(k )
g .

The per-cluster regression provides an option for users who are interested in those coe�icients.
Let X (sub)

g [i ] be the sub-vector of Xg [i ] containing the variables that are not predicted perfectly by
(i.e., colinear with) Zg [i ] (e.g., neither the variables in both Xg [i ] and Zg [i ] nor their cross-level
interactions included in Xg [i ] ) with corresponding coe�icients β (sub) , and let X

(sub)
g be the corre-

sponding sub-matrix ofXg . Furthermore, letX
(`)
g [i ] , the (`+1)th element ofXg [i ] with coe�icient β` ,

also be the (` + 1)th element Zg [i ] (i.e., Z (`)g [i ] = X
(`)
g [i ] ), and let (X

(`)
g [i ]U

(1)
g , . . . ,X

(`)
g [i ]U

(r )
g ) be the r

cross-level interactions ofX (`)
g [i ] included inXg [i ] with corresponding coe�icients (β`+1, . . . , β`+r ).

A per-cluster regression approach proceeds by first unbiasedly estimating β (sub) , using bcMLM
or FE. The estimated marginal e�ects of X (sub)g must then be purged from Yg , forming Y ⊥g =

Yg − X (sub)g β̂ (sub) . Next, regress each of theG vectorsY ⊥g on Zg individually by OLS, obtainingG
coe�icient vectors η̂g = (Z >g Zg )−1Z >g Y ⊥g . Finally, letting η̂`g be the (` + 1)th element of each η̂g
(i.e., the coe�icient for Z (`)

g [i ] from the OLS in the previous step), regress η̂`g on an intercept term

and (U (1)g , . . . ,U (r )g ) in a group-level regression fit by OLS, as in an assumedmodel:

η̂`g = β` +
r∑
k=1

β`+kU
(k )
g + δ`g (58)

where δ`g acts as the residual. IfE(γ`g |U (1)g , . . . ,U (r )g ) = 0, the estimated coe�icients from this
final step are unbiased for (β` , . . . , β`+r ). Note that in the case where there are no cross-level
interactions with X (`)

g [i ] , this final step amounts to simply taking the mean of η̂`g over theG groups
as the estimate of β` , and the condition for its unbiasedness is that the γ`g are unconditionally
mean-zero. Furthermore, note that if X (`)

g [i ] = 1, then (β`+1, . . . , β`+r ) are the coe�icients for the
group-level variables, (U (1)g , . . . ,U (r )g ).

A.14 Discussion of cluster-robust standard errors
To see why CRSEs work in theory, consider forming them a�er an OLS ofY on X , whereYg =

Xgβ + ε∗g and the ε∗g ∈ Òng are mutually independent andmean-zero given X , but have unknown
covariance matrices, var(ε∗g | X ) = E(ε∗gε∗>g | X ). The OLS estimate of β is β̂OLS = (X >X )−1X >Y ,
meaning

var(β̂OLS | X ) = (X >X )−1X > var(Y | X )X (X >X )−1

= (X >X )−1X >


E(ε∗1ε

∗>
1 | X ) 0

. . .

0 E(ε∗Gε
∗>
G | X )


X (X >X )−1 (59)
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That CRSEs use ÊCRSE (ε∗g [i ]ε
∗
g [i ′ ] | X ) = c × êg [i ] êg [i ′ ] where êg [i ] =Yg [i ] − X

>
g [i ] β̂OLS implies

ÊCRSE (ε∗gε∗>g | X ) = c ×



ê2
g [1] êg [1] êg [2] . . . êg [1] êg [ng ]

êg [2] êg [1] ê2
g [2] . . . êg [2] êg [ng ]

...
...

. . .
...

êg [ng ] êg [1] êg [ng ] êg [2] . . . ê2
g [ng ]


= c × êg ê>g (60)

where êg =Yg − Xg β̂OLS. Therefore, v̂arCRSE (β̂OLS) is

v̂arCRSE (β̂OLS) = c × (X >X )−1X >


ê1ê
>
1 0

. . .

0 êG ê
>
G


X (X >X )−1 (61)

Remembering that X =


X1

...

XG


allows one to rewrite this as

v̂arCRSE (β̂OLS) = c × (
G∑
g=1

X >g Xg )−1 (
G∑
g=1

X >g êg ê
>
g Xg ) (

G∑
g=1

X >g Xg )−1

=
c

G
× ( 1
G

G∑
g=1

X >g Xg )−1 (
1

G

G∑
g=1

X >g êg ê
>
g Xg ) (

1

G

G∑
g=1

X >g Xg )−1 (62)

and the averaging over theG groups in each of the summations above is why CRSEs can “learn"
any dependence structure whenG is su�iciently large.29

A.15 Choice of c for CRSEs with MLM and bcMLM
In choosing c, Cameron and Miller 2015 write that the common choice for a simple OLS ofY onX is
c = G

G−1
N−1
N−p . This is the typical c employed in MLM as well, but the decision is more complicated

for bcMLM. In the case of solely varying intercepts, it would be tempting to employ c = G
G−1

N−1
N−(p+p̄)

in bcMLM, where p̄ is the number group-level means that have been added. However, since there is
an exact equivalence between estimates of β from Group-FE and bias-corrected RI whenΣ = σ2IN ,
we suggest using c = G

G−1
N−1

N−(p+G−1) . This is the common choice for Group-FE (Cameron and Miller
2015), as it accounts for the extra G − 1 group indicator variables included in the model. For a
general bcMLM, wemake a similar recommendation. Every extra group-varying slope in a FEmodel
requires an extraG − 1 variables, asG − 1 group indicator variables are interacted with the variable
whose slope is to vary. Therefore, an FE model that allows d varying coe�icients would require
c = G

G−1
N−1

N−[p+d (G−1) ] . For a general bcMLM with d varying slopes or intercepts, we also suggest
this choice of c.

A.16 Proof of the equivalance of CRSEs from bcMLMwithΣ = σ2IN and FE
Like in Appendix A.8, we prove this for the case where intercept term has been removed fromXg [i ] ,
Xg , X , and β , meaning β = (β1, . . . , βp−1). Additionally, we largely here use the notation from

29. As mentioned in Section 3.3,G = 50 is generally viewed as the large enough (Cameron and Miller 2015). However,
there is far from a consensus, and the true benchmark will di�er by the situation.
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Appendix A.8, but review it for convenience.
Let [(Xg −X̃g ) X̃g ] be thematrix, for group g , of variables included as fixed e�ect variables in an

equivalent form of bcMLMwhere Xg has been centered by X̃g = Zg (Z >g Zg )−1Z >g Xg . Then, let X̃
be the stackedmatrix of X̃g (asX is toXg ), and let (β , α) be the coe�icient vector for [(Xg−X̃g ) X̃g ]
to be estimated. X̃ can also be expressed as X̃ = Z (Z >Z )−1Z >X . Furthermore, let the bcMLM
estimate of var(Y | X , Z ) =V be

V̂ = Z


Ω̂ 0

. . .

0 Ω̂


Z > + σ̂2IN

=


Z1Ω̂Z

>
1 + σ̂2In1 0

. . .

0 ZG Ω̂Z
>
G + σ̂2InG


=


V̂1 0

. . .

0 V̂G


(63)

where V̂g = Zg Ω̂Z
>
g + σ̂2Ing and (Ω̂, σ̂2) is the bcMLM estimate of (Ω,σ2).

Similarly, we consider the alternate, but isomorphic, form of FE whereXg has been centered by
X̃g . Note that this form of FE is equivalent to that introduced in Section 2.2 because:

(Xg [i ] − X̃ >g [i ])
>β + Z >g [i ]γg = X >g [i ]β − Z

>
g [i ] (Z

>
g Zg )−1Z >g Xgβ + Z >g [i ]γg

= X >g [i ]β − Z
>
g [i ] γ̃g (64)

where γ̃g = (Z >g Zg )−1Z >g Xgβ + γg . Note that we consider the X̃g [i ]-centered versions of bcMLM
and FE because Xg − X̃g is orthogonal to Zg and X̃g (i.e., (Xg − X̃g )>Zg = (Xg − X̃g )>X̃g = 0),
and likewiseX − X̃ is orthogonal to Z and X̃ . This greatly simplifies the matrix algebra.

Finally, let β̂ be the estimate of β that comes from bcMLM and FE (as a reminder, they are
equivalent), let γ̂g be the estimate of γg from FE, and let α̂ be the estimate of α from bcMLM. With
this notation, the residual vectors for group g from eachmodel are

ê
(bcMLM)
g =Yg − (Xg − X̃g )β̂ − X̃g α̂ (bcMLM Residual)

ê
(FE)
g =Yg − (Xg − X̃g )β̂ − Zg γ̂g (FE Residual)

For FE, the CRSE estimator of the variance of β̂ is the first p − 1 rows and columns of

c × B (FE) ×M (FE) × B (FE) (65)
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where

B (FE) =
( [
(X − X̃ )>

Z >

] [
(X − X̃ ) Z

] )−1
=

[∑G
g=1 (Xg − X̃g )> (Xg − X̃g ) (X − X̃ )>Z

Z > (X − X̃ ) Z >Z

]−1

=


( ∑G

g=1 (Xg − X̃g )> (Xg − X̃g )
)−1

0

0 (Z >Z )−1

 (66)

and

M (FE) =

[
(X − X̃ )>

Z >

] 
ê
(FE)
1 [ê (FE)1 ]> 0

. . .

0 ê
(FE)
G
[ê (FE)
G
]>


[
(X − X̃ ) Z

]
(67)

Given Equation (65), and becauseB (FE) is block diagonal, the only portion ofM (FE) that contributes
to the variance of β̂ is its first p − 1 rows and columns, i.e.,

(X − X̃ )>


ê
(FE)
1 [ê (FE)1 ]> 0

. . .

0 ê
(FE)
G
[ê (FE)
G
]>


(X − X̃ )

=
G∑
g=1

(Xg − X̃g )>ê (FE)g [ê (FE)g ]> (Xg − X̃g )

=
G∑
g=1

(
(Xg − X̃g )>ê (FE)g

) (
(Xg − X̃g )>ê (FE)g

)>
(68)

Expanding (Xg − X̃g )>ê (FE)g in Equation (68) yields

(Xg − X̃g )>ê (FE)g = (Xg − X̃g )> [Yg − (Xg − X̃g )β̂ − Zg γ̂g ]
= (Xg − X̃g )> (Yg − Xg β̂ ) (69)

which substituting into Equation (68) yields

G∑
g=1

(Xg − X̃g )> (Yg − Xg β̂ ) (Yg − Xg β̂ )> (Xg − X̃g ) (70)
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Therefore, as Equation (70) is the first p − 1 rows and columns ofM (FE) , the CRSEs for β̂ from FE are

v̂ar(FE)CRSE (β̂ ) = c×
( G∑
g=1

(Xg − X̃g )> (Xg − X̃g )
)−1

×
( G∑
g=1

(Xg − X̃g )> (Yg − Xg β̂ ) (Yg − Xg β̂ )> (Xg − X̃g )
)

×
( G∑
g=1

(Xg − X̃g )> (Xg − X̃g )
)−1

(71)

Turning to bcMLM, its CRSE variance estimator for β̂ is the first p − 1 rows and columns of

c × B (bcMLM) ×M (bcMLM) × B (bcMLM) (72)

where

B (bcMLM) =
( [
(X − X̃ )>

X̃ >

]
V̂ −1

[
(X − X̃ ) X̃

] )−1
=

[∑G
g=1 (Xg − X̃g )>V̂ −1g (Xg − X̃g )

∑G
g=1 (Xg − X̃g )>V̂ −1g X̃g∑G

g=1 X̃
>
g V̂
−1
g (Xg − X̃g )

∑G
g=1 X̃

>
g V̂
−1
g X̃g

]−1
(73)

and

M (bcMLM) =

[
(X − X̃ )>

X̃ >

]
V̂ −1

×


ê
(bcMLM)
1 [ê (bcMLM)1 ]> 0

. . .

0 ê
(bcMLM)
G

[ê (bcMLM)
G

]>


× V̂ −1

[
(X − X̃ ) X̃

]
(74)

Starting with B (bcMLM) , we first show that the o�-diagonal matrices are 0. Like in Appendix A.8, we
use the fact that

V −1g = σ−2Ing − ZgAgZ >g
where Ag = σ−2 (Z >g Zg )−1 − (Z >g Zg )−1 [σ2 (Z >g Zg )−1 +Ω]−1 (Z >g Zg )−1 (75)

Therefore, the o�-diagonal matrices in B (bcMLM) given in Equation (73) are

G∑
g=1

X̃ >g V̂
−1
g (Xg − X̃g ) =

G∑
g=1

X̃ >g (σ̂−2Ing − Zg ÂgZ >g ) (Xg − X̃g )

= 0 (76)

Moving to the first p − 1 rows and columns of B (bcMLM) given in Equation (73), we can again use the
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expression forV −1g in Equation (75) to obtain

G∑
g=1

(Xg − X̃g )>V̂ −1g (Xg − X̃g ) =
G∑
g=1

(Xg − X̃g )> (σ̂−2Ing − Zg ÂgZ >g ) (Xg − X̃g )

= σ̂−2
G∑
g=1

(Xg − X̃g )> (Xg − X̃g ) (77)

Substituting Equations (76) and (77) into Equation (73), we find

B (bcMLM) =

[
σ̂−2

∑G
g=1 (Xg − X̃g )> (Xg − X̃g ) 0

0
∑G
g=1 X̃

>
g V
−1
g X̃g

]−1

=


(
σ̂−2

∑G
g=1 (Xg − X̃g )> (Xg − X̃g )

)−1
0

0
( ∑G

g=1 X̃
>
g V
−1
g X̃g

)−1 (78)

Because of Equation (72), this means, like in the FE setting, that the only portion ofM (bcMLM) that
contributes to the estimated variance of β̂ in the bcMLM setting is its first p − 1 rows and columns,
i.e.,

(X − X̃ )>V −1


ê
(bcMLM)
1 [ê (bcMLM)1 ]> 0

. . .

0 ê
(bcMLM)
G

[ê (bcMLM)
G

]>


V −1 (X − X̃ )

=
G∑
g=1

(Xg − X̃g )>V̂ −1g ê
(bcMLM)
g [ê (bcMLM)g ]>V̂ −1g (Xg − X̃g )

=
G∑
g=1

(
(Xg − X̃g )>V̂ −1g ê

(bcMLM)
g

) (
(Xg − X̃g )>V̂ −1g ê

(bcMLM)
g

)>
(79)

Expanding (Xg − X̃g )>V̂ −1g ê
(bcMLM)
g in Equation (79) using the definition of ê (bcMLM)g and the expres-

sion forV −1g in Equation (75), we get

(Xg − X̃g )>V̂ −1g ê
(bcMLM)
g = (Xg − X̃g )> (σ̂−2Ing − Zg ÂgZ >g ) [Yg − (Xg − X̃g )β̂ − X̃g α̂]

= σ̂−2 (Xg − X̃g )> [Yg − (Xg − X̃g )β̂ − X̃g α̂]
= σ̂−2 (Xg − X̃g )> (Yg − Xg β̂ ) (80)

Plugging Equation (80) above into Equation (79), the first p − 1 rows and columns ofM (bcMLM) ,
yields

σ̂−4
G∑
g=1

(Xg − X̃g )> (Yg − Xg β̂ ) (Yg − Xg β̂ )> (Xg − X̃g ) (81)
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Therefore, the CRSEs for β̂ from bcMLM are

v̂ar(bcMLM)CRSE (β̂ ) = c×
(
σ̂−2

G∑
g=1

(Xg − X̃g )> (Xg − X̃g )
)−1

×
(
σ̂−4

G∑
g=1

(Xg − X̃g )> (Yg − Xg β̂ ) (Yg − Xg β̂ )> (Xg − X̃g )
)

×
(
σ̂−2

G∑
g=1

(Xg − X̃g )> (Xg − X̃g )
)−1

= c×
( G∑
g=1

(Xg − X̃g )> (Xg − X̃g )
)−1

×
( G∑
g=1

(Xg − X̃g )> (Yg − Xg β̂ ) (Yg − Xg β̂ )> (Xg − X̃g )
)

×
( G∑
g=1

(Xg − X̃g )> (Xg − X̃g )
)−1

(82)

which, if c is chosen to be the same in bcMLM and FE as we recommend in Appendix A.15, is exactly
equal to v̂ar(FE)CRSE (β̂ ) in Equation (71). Therefore, the CRSEs from both FE and bcMLM for β̂ are
equivalent.

�
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