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A Technical Appendix

�e method described in the main text is implemented as the function predicted covariates

in the companion R package. �e following section explains the technical details of this function.

A.1 �e GMM Estimator in a Closed-Form Expression

Let

B =
©­­«

1
nv+nt

∑n
i=1(vi + ti)xiyi

1
nv+np

∑n
i=1(pi +vi)ziyi

ª®®¬ , A =
©­­«

1
nv+nt

∑n
i=1(vi + ti)xix

T
i

1
nv+np

∑n
i=1(pi +vi)ziz

T
i Γ̂

T

ª®®¬ . (1)

With this notation, we see that д(b) = B −Ab and G = ∂
∂bд(b) = −A. �is notation is useful

since the �rst-order condition for the GMM optimization problem implies

2GTWд(β̂) = 0 (2)

=⇒ ATWB = ATWAβ̂ (3)

=⇒ β̂ = (ATWA)−1ATWB. (4)

Computationally, this means that given Γ̂ andW , β̂ is just a few matrix operations away.

A.2 �e Optimal GMMWeighting Matrix and Estimator Variance

�is section assumes familiarity with a variety of asymptotic results from GMM and two-step

estimation theory. Any implicitly used theorems can be found in Newey and McFadden (1994).

For β̂ to achieve its optimal asymptotic e�ciency, we need to �nd a sequence of positive de�-

nite matricesW that converge to Ξ−1, where Ξ is the �rst-order asymptotic variance of √nvд(β).

We scale by √nv because we base our asymptotics on nv → ∞. Let λp = limnv→∞
nv

nv+np
and

λt = limnv→∞
nv

nv+nt
. �ere are no restrictions on λp and λt other than that they must lie in the

interval [0, 1].
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To compute Ξ properly, we need to account for how much д(β) deviates based on the error

Γ̂ − Γ. Using standard asymptotic theory, it can be shown that

√
nv(Γ̂ − Γ) = −

1
√
nv

nv∑
i=1

vi(xi − Γzi)z
T
i E(zz

T)−1 + op(1). (5)

Fortunately, we only need to account for this error in the д2 moment condition, since that is the

only place where Γ̂ appears. Observe that

√
nvд2(β) =

√
nv

np + nv

n∑
i=1
(vi + pi)zi(yi − (Γ̂zi)

Tβ) (6)

=

√
nv

np + nv

n∑
i=1
(vi + pi)

[
zi(yi − (Γzi)

Tβ) − ziz
T
i (Γ̂ − Γ)

Tβ
]

(7)

=

√
nv

np + nv

n∑
i=1
(vi + pi)zi(yi − (Γzi)

Tβ) − E(zzT)
√
nv(Γ̂ − Γ)

Tβ + op(1) (8)

=

√
nv

np + nv

n∑
i=1
(vi + pi)zi(yi − (Γzi)

Tβ) +
1
√
nv

n∑
i=1

vizi(xi − Γzi)
Tβ + op(1) (9)

=
1
√
nv

n∑
i=1

[
(vi + pi)

nv
nv + np

zi(yi − (Γzi)
Tβ) +vizi(xi − Γzi)

Tβ

]
+ op(1) (10)

Note that going forward we can use Slutsky’s lemma to replace the sample size ratios with their

corresponding λ values (we estimate the λ values with with their observed sample size ratios

anyway, so in practice there is no error). �is suggests a sequence of weighting matrices W

given by

W −1 =
1
nv

n∑
i=1

hih
T
i (11)

hi =
©­­«

(vi + ti)λtxi(yi − x
T
i β̃)

(pi +vi)λpzi(yi − (Γ̂zi)Tβ̃) +vizi(xi − Γ̂zi)Tβ̃

ª®®¬ , (12)

which consistently estimates Ξ, so long as β̃ is some √nv consistent estimator of β (such as the

labeled-only estimate) and the observations are independent (Newey and McFadden, 1994). Using
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thisW to compute β̂ , and denoting ∆ = plimnv→∞
G, which is easily shown to be

∆ =
©­­«
−E(xxT)

−E(zxT)

ª®®¬ , (13)

standard GMM results tell us that √nv(β̂ − β)
d
→ N(0, (∆TΞ−1∆)−1).

Conveniently, Ξ can be wri�en somewhat succinctly in terms of population moments. In

particular,

Ξ =
©­­«
Ξ11 ΞT

21

Ξ21 Ξ22

ª®®¬ (14)

Ξ11 = λtE(ϵ
2xxT), Ξ21 = λpλtE(ϵ(ϵ + η

Tβ)zxT) + λtE(ϵ(η
T)βzxT) (15)

Ξ22 = λpE((ϵ + η
Tβ)2zzT) + 2λpE((ϵ + ηTβ)(ηTβ)zzT) + E((ηTβ)2zzT). (16)

We see that Ξ22 decreases (with respect to the convex cone of positive semide�nite matrices), and

thus the GMM estimator achieves a lower variance, as λp → 0. �is tells us that for a �xed value of

nv , increasing the relative size of the primary sample decreases the GMM estimator variance. �is

is analogous to the discussion of Chen, Hong and Tamer (2005, §3.4), although our λp is de�ned

somewhat di�erently than theirs. Note that it if one’s goal is to determine the optimal split of

labeled data into training and validation samples, it would not be reasonable (without additional

arguments) to optimize Ξ as a function of λt and λp , since the number of training examples nt

also determines the distribution of z.

In practice, we �nd that it is o�en necessary to iterate between computing W and β̂ several

times. Let β̂ (0) be the labeled only estimator (i.e., OLS of y on x in the training and validation

samples). �is is a √nv-consistent estimator of β , and thus allows us to consistently estimate Ξ.

Beginning with this starting value, our algorithm proceeds as follows:

1. ComputeW (t+1) based on eq. (11) using β̂ (t).
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2. Compute β̂ (t+1) based on eq. (4) usingW (t+1).

3. Repeat until convergence. In our algorithm, we declare convergence if, for each component

k = 1, . . . ,dx ,

|β̂ (t+1)
k
− β̂ (t)

k
|

|β̂ (t)
k
|

< 0.01. (17)

�at is, if each component changes less than 1%.

B Testing the Exclusion Restriction

Here we introduce a test of the exclusion restriction. It is important to note that this test treats

the exclusion restriction as the null hypothesis:

H0 : E[zuϵ] = 0 (18)

and the alternative hypothesis is the violation of the exclusion restriction, E[zuϵ] , 0.

To perform this test, we cast the exclusion restriction as another moment condition for β

and use a standard over-identi�cation test (Sargan, 1958; Hansen, 1982). In particular, given the

exclusion restriction,

E[k(y − xTβ)] = 0, (19)

where k = (x, zu). Using these dx + dzu moment conditions on the validation sample, we can

create another GMM estimator of β , denoted β̄ , which can be used to test the null hypothesis.1

�e alternative hypothesis stipulates that at least some of the moment conditions are incorrect

— but since we know that E(x(y − xTβ)) = 0 without loss of generality (by construction of β),

the alternative hypothesis is equivalent to the exclusion restriction being violated by at least
1We could just estimate β on the validation sample without the zu conditions, but that might decrease the power

of the test since we are not using all the available moment conditions.
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one of the elements of zu . �e companion R package automatically provides the p-value from

the implied Sargan-Hansen over-identi�cation test (a.k.a. Sargan’s J-test) via the gmm package

(Chaussé, 2010).2

C Including Auxiliary Data in the First Stage

In some cases, the researcher may wish to use an additional sample — which we will call the

”auxiliary sample” — in the �rst-stage component of the 2SLS estimator but not include that

sample in any other part of the GMM estimator. �is is reasonable if the researcher suspects that

the relationship between the covariates and the predictions is the same in the auxiliary sample

as in the validation sample, but does not otherwise want to use the auxiliary sample to estimate

the coe�cients β . Appendix M provides an example application for the inclusion of auxiliary

data: the researcher may wish to perform subgroup analyses because the relationship between

the outcome and the covariate may vary across subgroups, even though the relationship between

the covariate and the prediction is the same across subgroups. Including auxiliary data increases

the power of the analysis.

In this case, we rede�ne the �rst-stage estimator Γ̂ as

Γ̂ =

(
n∑
i=1
(ai +vi)xiz

T
i

) (
n∑
i=1
(ai +vi)ziz

T
i

)−1

, (20)

where ai is the sample indicator for i belonging to the auxiliary sample. Accordingly, let na =∑n
i=1 ai . �e new GMM estimator is the same as described in Section 3, except we use this new

�rst-stage estimate of Γ.

Note, however, that some adjustments must be made to the formulas given in Online Ap-
2For those unfamiliar with this test, let ri = ki (y − xTi β̄), r̄ =

1
nv

∑n
i=1viri , and R = 1

nv

∑n
i=1virir

T
i . With the

exclusion restriction as our null hypothesis, the statistic nv r̄
TR−1r̄ ≥ 0 follows a χ 2 distribution with degrees of

freedom equal to the length of zu .
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pendix A, which we now describe. It is useful to introduce some new notation:

oi = vi + ti (21)

fi = vi + ai (22)

si = vi + pi (23)

with corresponding sample sizes no,n f , and ns de�ned appropriately. �e new �rst stage estima-

tor has the asymptotic expansion

√
n f (Γ̂ − Γ) = −

1
√
n f

n∑
i=1

fi(xi − Γzi)z
T
i E[zz

T]−1 + op(1). (24)

�is implies a new value for hi from Equation 11, now updated to

hi =
©­­«

oi
nv
no
xi(yi − x

T
i β̃)

si
nv
ns
zi(yi − (Γ̂zi)

Tβ̃) + fi
nv
nf
zi(xi − Γ̂zi)

Tβ̃

ª®®¬ . (25)

�ese adjustments are su�cient to �t the new GMM estimator and obtain its asymptotic vari-

ance for constructing standard errors and con�dence intervals. �is variant of our method is

implemented as the function predicted covariates aux first in the companion R package.

D Labeled Data with Sample Selection

�e estimator introduced in the main text relies on the assumption that the sample indicators

(p,v, t) are drawn independently of the other variables in the analysis. �is is comparable to xu

being missing completely at random (MCAR). We will assume the linear projection of y on x in

the primary population (herea�er just β) is the quantity of interest, since the linear projection in

the labeled population can be estimated consistently using OLS in the labeled sample.

In general, without MCAR, the GMM estimator o�ered in the main text is not consistent for

β . �is is for two reasons: �rst, the OLS moment condition in the GMM is no longer relevant for
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β , since the linear projection in the primary and labeled populations can be di�erent. Second, the

2SLS moment condition requires the validation sample to estimate Γ, the linear projection of x on

z in the primary population, in the �rst stage. However, the linear projection of x on z could be

di�erent in the primary and labeled populations, so the 2SLS estimator �rst stage is inconsistent

(rendering the second stage inconsistent).

However, if the researcher is willing to assume that the linear projection of x on z is identical

in the primary and validation populations, then some progress can usually be made. Suppose that

x = Γz + η, E[zηT | p = 1] = E[zηT | v = 1] = 0. (26)

If this is the case, then we can use the 2SLS estimator to estimate β as normal. We must still

disregard the OLS estimator, however, because we have not assumed the linear projection of y

on x is the same in the primary population as in the labeled population.

What is the substantive meaning of assuming the linear projection of x on z is the same across

validation and primary populations? It is most believable when we know that the conditional

mean of x given z is linear - that is, when E[x | z,v = 1] = E[x | z,p = 1] = Γz. Helpfully,

the conditional mean is guaranteed to be linear if z is a binary variable. When the conditional

mean of x given z is linear, then a su�cient condition for the two populations having the same

conditional mean is that the sample indicators do not depend on x a�er z is conditioned on;

that is, p(v = 1 | x, z) = p(v = 1 | z). �at is, the predictions z capture enough information

about the sampling process vis-a-vis x that knowledge of x would not help us any further. �is

is an application of the idea of exogenous sampling versus endogenous sampling (Cameron and

Trivedi, 2005, Ch. 24).

Estimating β in this scenario is simpler than the GMM estimator in the main text. �ere is

now only one moment condition: E[z(y − (Γz)Tβ)] = 0. If we assume that the predictions z and

the original covariates x are of the same dimension, then the number of moments is equal to the
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dimension of β and there is a method-of-moments estimator is available in closed form:

β̂MM =

(
n∑
i=1

piziz
T
i Γ̂

T

)−1 (
n∑
i=1

piziyi

)
(27)

where Γ̂ is the linear projection of x on z estimated on the validation sample. Note that since

dx = dz and there is no other moment condition, the GMM estimator with any weighting matrix

would always simplify to this method-of-moments estimator.

�e convergence of this estimator depends on both nv and np . �e asymptotic theory for this

estimator requires slight modi�cations to the formulas given in Online Appendix A. In particu-

lar, there is no longer an OLS component for the GMM estimator, nor is the validation sample

included in the estimation of the second stage.

�e asymptotic expansion of β̂MM is found to be

√
nv(β̂MM − β) (28)

= −
1
√
nv
E[zzTΓT | p = 1]−1

n∑
i=1

{
pi
nv
np

zi(yi − (Γzi)
Tβ) +vizi(xi − Γzi)

Tβ

}
+ op(1) (29)

From this, it is easy to see that ifnv/np → 0 then the error in the validation sample still dominates

the error in β̂MM even though the second stage only uses the primary sample. �is expansion

implies that the asymptotic distribution of β̂MM is √nv(β̂ − β)
d
→ N(0, (∆TΞ−1∆)−1) where

∆ = E[zzTΓT | p = 1] (30)

Ξ = E[hhT] (31)

hi = pi
nv
np

zi(yi − (Γzi)
Tβ) +vizi(xi − Γzi)

Tβ (32)

�ese quantities can be estimated by plugging in the already-computed estimators for Γ and β .
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E What if theCovariate is a Function of Several Predictions?

�e baseline method supposes a one-to-one relationship between classi�er outputs and predicted

covariates. In some applications, the regression covariate is a function of several missing vari-

ables. For example, in ?, the goal is to regress the proportion of an ethnicity in a politician’s

constituency on the proportion of that ethnicity in the politician’s photos. But the ethnicity of a

constituent in any given photo is unknown. ? use a convolutional neural network to predict the

ethnicity of the constituents in each photo and then average over these predictions to predict the

proportion.

Our proposed GMM can be used for this task, but it requires careful planning on the part

of the analyst. �e missing covariate (in this case, the proportion of a given legislator’s photos

featuring a given ethnicity) must be observed for at least some observations. However, there are

many photos for each legislator, so hand-labeling all of a legislator’s photos is a time-consuming

task which should be performed for as few legislators as possible. Fortunately, it is possible to

train the classi�er at the photo-level, preserving all legislators whose true averages are known

for the validation sample. �is can be achieved by the following procedure:

1. Hand-label a simple random sample of all photos. �is simple random sample is the training

sample.

2. Train the classi�er using only photos from the training sample.

3. For a simple random sample of all legislators, hand-label all photos associated with that

legislator. For each of these legislators, the proportion of photos featuring the desired eth-

nicity is the true label.

4. For legislators outside of the validation sample, estimate the proportion of photos featur-

ing the desired ethnicity by taking the average prediction of all of the legislator’s photos

excluding those in the training sample.
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5. Run the GMM ��ing the OLS moment conditions on just the validation sample. �e TSLS

moment conditions should be �t on both the validation and primary samples, as usual.

Note that, in this procedure, the photos used to train the classi�er are e�ectively excluded

from the analysis a�er training. �is does not a�ect bias or consistency, because the training

photos are a simple random sample of all photos, and the proportion of a legislator’s photos fea-

turing a given ethnicity does not change once the training photos are removed from the sample.

F A Procedure for Non-Representative Training Samples

In some applications, one label is much rarer than the other. For example, in our application

to Reddit from Section 5, only 21.0% of the training observations were uncivil posts, and the

remaining 79.0% were civil posts. In other applications, the ratio could be even more skewed.

Training an accurate classi�er requires a su�cient number of examples of both labels, but if one

of the labels is very rare, it would be wasteful to hand-label 10,000 observations just to get 500

examples of the rarer label.

For this reason, researchers sometimes desire a statistically unrepresentative training sample

so that a higher proportion of the observations have the rare label. In the online incivility applica-

tion, a researcher might want to oversample on brief comments if he belives that uncivil remarks

are disproportionarely likely to be terse. �is allows the researcher to gather more examples of

incivility for a lower coding cost.

Similarly, researchers might want to use active learning to decide which observations to hand-

label. Rather than hand-labeling many observations at once and then training the classi�er, re-

searchers might hand label some observations, train a classi�er, hand-label the observations for

which the classi�er expresses the greatest uncertainty, and repeat.

Both of these approaches would of course preclude the use of the labeled-only estimator,

because the hand-labeled observations would no longer be a simple random sample of the full

sample. Moreover, these approaches could a�ect the plausibility of the exclusion restriction.
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For oversampling, if the characteristics on which the researcher oversamples are correlated with

the outcome, then the prediction error could be correlated with the outcome in violation of the

exclusion restriction. Such a correlation could be induced automatically and unwi�ingly by an

active learning procedure.

However, if the researcher can show that the procedure by which they construct their non-

representative training sample does not induce a violation of the exclusion restriction, two chal-

lenges still remain. First, the linear projection within the training sample is no longer the same as

in the full sample, because the training sample is a non-representative sample of the full sample.

Second, drawing a non-representative training sample necessarily makes the either the validation

sample or primary sample or both non-representative. Returning to the Reddit example, if the

training sample has shorter posts than the full sample average, then either the validation sample,

the primary sample, or both must have longer posts than the full sample average.

Fortunately, these issues can be avoided through appropriate planning and a slight adjustment

to the GMM. A researcher who intends to oversample or use active learning should start by draw-

ing a training sample completely at random from the full sample. �is ensures that the validation

sample and primary samples are still drawn from the same distribution as the full sample, and

hence the linear projection of y on x is the same in them as it is in the full sample. �en, within

the representative training sample, the researcher can hand-label whichever observations they

like. �ey can determine which observations to hand-label by oversampling, active learning, or

any other procedure. �en, a�er labeling all of the validation sample and generating predictions

for the validation and primary samples, the researcher must exclude the training sample from the

GMM. Formally, the �rst set of moment conditions, д1, should be changed to

д1(b) =
1
nv

n∑
i=1

vixi(yi − x
T
i b),

�is is accomplished in our R package by se�ing t = 0 for all observations (telling the package
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there is no training sample for the purpose of GMM calculations).

G Related Methods

Several authors have suggested related ideas to ours for di�erent se�ings. �e most similar is

Lee and Sepanski (1995), who show that, given E[y | x] = m(x,β) for some general (nonlinear)

function m, a valid proxy for m(x, b) is the linear projection of m(x, b) on z, to be estimated on

validation data. When m is linear, their approach reduces to the 2SLS component of our GMM

estimator. Our method could be modi�ed to account for nonlinearm(x,β) as well; however, this

would require estimating a separate �rst-stage parameter Γ(b) for each b value the GMM consid-

ers. Since most applications in political science use linear regression, we relegate the nonlinear

version of our GMM estimator to future work. However, Lee and Sepanski (1995) are motivated

by a (more general) scenario in which the primary sample data is drawn from a di�erent pop-

ulation than the validation sample, and therefore do not consider the optimal combination of

the primary sample with the validation sample as in our GMM estimator. Additionally, Lee and

Sepanski (1995) do not consider the over��ing problem inherent to machine learning applica-

tions. �ey make no distinction between training and validation samples — since in their context

measurement error comes from having a poor, exogenously-given measure of x rather than an

endogenously-determined algorithmic prediction zu .

Our approach is similar to Lee and Sepanski (1995) because both approaches require making

an exclusion restriction, but there are also errors-in-variables corrections that relax the exclusion

restriction. Chen, Hong and Tamer (2005) propose a nonparametric series GMM estimator (CEP-

GMM) that only requires the conditional distribution of x given (y, z) remain constant across

the primary and validation populations. Instead of predicting x with z, the CEP-GMM estimator

nonparametrically estimates E[x(y − xTb) | y, z] and replaces the д2(b) component of our GMM

with the primary sample average of the estimates Ê[x(y − xTb) | y = yi, z = zi]. Like us, Chen,

Hong and Tamer (2005) provide a GMM estimator that combines the primary and validation
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sample data when they are drawn from the same population, but like Lee and Sepanski (1995)

they do not consider over��ing and thus do not have a training sample. Chen, Hong and Tarozzi

(2008) shows the CEP-GMM estimator achieves the semiparametric e�ciency bound, given the

aforementioned assumption of equal conditional distributions. Unfortunately, in our simulations

in Online Appendix H, we found the CEP-GMM did not o�er meaningful e�ciency improvements

over the labeled-only estimator.

A popular literature in statistics would cast this not as a measurement error problem, but as

a more general problem of missing data. In our case, the values of x in the primary sample and

z in the training sample are treated as missing. �ere are numerous model-based corrections for

missing data that would try to improve upon the e�ciency of the labeled-only estimator (which

corresponds to complete-cases analysis or listwise deletion for regressing y on x). Modern ap-

proaches include multiple imputation, full information maximum likelihood, and fully Bayesian

approaches that treat missing data as if they are unknown parameters; see Ibrahim et al. (2005)

for a review of model-based missing data approaches in the context of generalized linear models

(GLMs). �e parametric versions of these methods, which are by far the most used in practice,

o�en require correctly specifying a parametric model for the unknown data generating process

(DGP). While our GMM approach also uses and estimates Euclidean parameters, we are careful

to never make assumptions about the DGP. �e linear models of y on x and x on z are all de�ned

without loss of generality (linear projections always exist), and the proof of our GMM estima-

tor’s consistency and the derivation of its variance make no assumptions about the distribution

of errors ϵ or η other than cross-sectional independence. Our simulation experiments in Online

Appendix H suggest that methods like parametric multiple imputation are highly sensitive to

assumptions made about the DGP.

A developing literature on nonparametric multiple imputation that makes fewer assumptions

about the DGP may eventually sidestep these concerns, but for now these methods are not in

wide use among the applied community because of the required expertise and computational

resources (e.g., Murray and Reiter, 2016; Yoon, Jordon and van der Schaar, 2018). Additionally,
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nonparametric methods require more validation data than parametric methods to learn the re-

lationship between the observed and unobserved variables, but due to budget constraints the

labeled sample (and thus the validation sample) is o�en small relative to the primary sample.

Our proposed GMM estimator strikes a balance by not making strong assumptions about the

DGP while only requiring the small validation sample to estimate a Euclidean parameter Γ with

least squares.

Finally, the form of our method is similar to that of Kane, Rouse and Staiger (1999), who use a

GMM estimator to correct for non-classical measurement error. However, their use case requires

two independent predictions of the true covariate, while ours requires only one prediction. �eir

estimator is likely much more e�cient than ours (convergence in np rather than nv ), but as just

stated their method requires more data collection than our method assumes. We do not think it

plausible that most applied researchers can �nd multiple independent predictions satisfying the

exclusion restriction.

H Simulations Against Competing Methods

Many seemingly promising approaches to addressing measurement error fail when the ratio of

labeled to unlabeled data is large, as is typically the case in machine learning applications. Small

violations of distributional assumptions propagate into massive errors in the resulting estimates.

�e table below presents simulations that underscore this point. �ese simulations are con-

structed according to those with a realistic (72% accurate) classi�er and a low signal-to-noise

ratio with non-Gaussian errors, as in the main simulations detailed in Section 4. nv = 1000 and

nt = 0, to account for the fact that some of the competitors do not readily accommodate data

where the relationship between the true label and the predicted label is di�erent from the rest of

the sample.

�e three competitors presented are:

• Fully Bayesian: Specify a di�use prior for all parameters and the conditional distribution

15



Estimator Bias (np = 10K) RMSE (np = 10K) Bias (np = 1M) RMSE (np = 1M)
Naive -0.501 0.542 -0.559 0.560

Labeled-Only 0.005 0.686 0.005 0.686
GMM 0.022 0.411 0.005 0.084

Fully-Bayesian 0.011 0.393 0.458 3.449
Multiple Imputation -0.731 0.743 -0.806 0.806

Mak-Li -0.003 0.630 0.017 0.642
Oracle 0.008 0.203 -0.000 0.023

Table 1: A Comparison of Methods for Addressing Measurement Error: nv = 1K and nt = 0.

of the variables, then sample from their conditional distribution (Ibrahim et al., 2005). Pri-

ors are given by β ∼ (N (0, 10),N (0, 10)), σ ∼ Cauchy(0, 2.5), ζ1,1 = Pr (x = 1|z = 1) ∼

Uniform(0, 1), ζ0,0 = Pr (x = 0|z = 0) ∼ Uniform(0, 1). �e conditional distribution of y is

modeled as a mixture over whether z is correct (with weight ζ1,1) or incorrect (with weight

ζ0,0). β is estimated to be the mode of β ’s posterior distribution. �is approach requires a

distributional assumption on the error term; we use the Gaussian so that y |x follows the

normal distribution. Note that this choice means the model is misspeci�ed, because the

errors are not Gaussian. However, the errors distribution is close to normal (with a heavy

right tail), so the misspeci�cation is not too severe. �e Fully Bayesian approach works

extremely well when all of the distributional assumptions are correct, but the assumptions

are not guaranteed to be correct in real data, which makes these results more informative.

• Multiple Imputation: Multiple imputation as implemented in the Amelia package (Honaker,

King and Blackwell, 2011), using the default option of taking �ve imputed data sets and

averaging over them.

• Mak-Li: A double-sampling estimator from statistics that is theoretically well-suited for the

problem of misclassi�cation error if the true label is known for some observations, (Mak

and Li, 1988).

�e results of 1000 simulations for each setup show that all three competitors perform poorly,

not only when compared with the GMM but also when compared to the baseline of not using the

unlabeled data at all. None of their performance improves in response to adding unlabeled data,
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Estimator Bias (np = 10K) RMSE (np = 10K) Bias (np = 1M) RMSE (np = 1M)
Labeled-Only -0.016 0.396 -0.016 0.396

GMM -0.012 0.142 0.001 0.002
CHT -0.019 0.384 -0.019 0.383

Table 2: Evaluation of the Parametric CHT Estimator

and the performance of the fully Bayesian estimator and multiple imputation degrades substan-

tially.

�e Bayesian estimator appears to o�er be�er performance for small sample sizes, but this is

because the errors are nearly Gaussian and hence the functional form assumption it requires is

nearly correct. Using, for example, an error distribution of Gamma(1, 1) − 1, with 10K unlabeled

observations, the Fully-Bayesian estimator has an RMSE of 0.127 to 0.041 for the GMM.

Table 2 compares the performance of the GMM to an estimator proposed by Chen, Hong and

Tamer (2005), which theoretically should perform well at this task. �is estimator is particularly

a�ractive because it does not require an exclusion restriction. To evaluate the performance of

this estimator, we implemented a parametric version that used logistic regression to estimate

the conditional expected value of the label. Our simulation experiments give the CEP-GMM an

additional advantage by giving it the correctly-speci�ed conditional distribution of x given (y, z)

rather than having CEP-GMM estimate it nonparametrically. We designed simulation se�ings in

which the parametric assumptions were correct, with y ∼ N (0, 10), xo = 1, zu ∼ Bernoulli(0.5)

and xu ∼ Bernoulli
(

exp(−1+2z)
1+exp(−1+2z)

)
. All simulations used 1,000 labeled observations, evenly divided

between the training set and validation set. Unfortunately, Table 2 shows that it does not o�er

meaningful gains over simply using OLS in the hand-labeled data.

I Additional Simulations

Tables 3-11 present a more complete set of simulations. Unlike the simulations presented in

Section 4 (which are a subset of the simulations in the tables), these simulations vary the size

of the validation sample and the size of the training sample. �ey also include results for an
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uninformative classi�er with an accuracy of 0.52.

�ese simulations show that the performance of all estimators is improving as the size of the

validation and training samples grows. �e GMM performs about as well as the labeled-only

estimator with the uninformative classi�er, although estimation error leads to some bias when

the primary sample is very large and results in undercoverage from the con�dence intervals. It

compensates for this bias with reduced variance. Tables 12 and 13 provide additional results to

further illustrate the relationship between classi�er accuracy and performance.

We also provide simulations for classi�ers where the classes are imbalanced. For these sim-

ulations, the true label is equal to 1 20% of the time and equal to 0 80% of the time. �e RMSE

is generally higher for imbalanced classes. However, the relationships between parameters and

performance are the same as in the simulations with balanced classes, as is the substantive rela-

tionship between di�erent classi�ers.

J Simulations with Exclusion Restriction Violated

�e proposed GMM leverages the assumption that the predictions and the regression residual are

uncorrelated. We have shown that a small violation of the exclusion restriction leads to a small

bias, but this leaves open the practical question of what counts as small. To study this question

empirically, we generate data according to the following procedure:

• x = 0.5 for exactly half of all observations and z ∼ Bernoulli(0.72x + 0.28(1 − x)).

• Obtain ξ as the residual of the regression of z on x . �is is the part of z that is uncorrelated

with x .

• ϵ ∼ Normal(0, 8) + Bernoulli(0.15) × |Normal(0, 20)|.

• y = x + γξ + ϵ .

�e data are divided into 1, 000 training observations, 1, 000 validation observations, and either

10, 000 or 1, 000, 000 primary observations, depending on the setup. γ determines the severity of
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Table 3: Bias: Uninformative Classi�er
High Signal-to-Noise Low Signal-to-Noise

nv nt np NV LAB GMM ORCL NV LAB GMM ORCL
500 500 10000 -0.87 0.00 -0.00 0.00 -0.87 0.01 -0.01 0.01

1000000 -0.96 0.00 -0.00 -0.00 -0.96 0.01 -0.18 -0.00
1000 10000 -0.83 0.00 -0.00 0.00 -0.83 0.01 0.00 0.01

1000000 -0.96 0.00 -0.00 -0.00 -0.96 0.01 -0.14 -0.00
1000 1000 10000 -0.80 -0.00 -0.00 0.00 -0.79 0.01 0.01 -0.00

1000000 -0.96 -0.00 -0.00 -0.00 -0.96 0.01 -0.08 0.00
2000 10000 -0.74 -0.00 -0.00 0.00 -0.75 -0.01 -0.01 -0.01

1000000 -0.96 -0.00 -0.00 -0.00 -0.96 -0.01 -0.07 -0.00

Table 4: RMSE: Uninformative Classi�er
High Signal-to-Noise Low Signal-to-Noise

nv nt np NV LAB GMM ORCL NV LAB GMM ORCL
500 500 10000 0.87 0.06 0.06 0.02 0.89 0.73 0.73 0.20

1000000 0.96 0.06 0.06 0.00 0.96 0.73 0.71 0.02
1000 10000 0.83 0.05 0.05 0.02 0.85 0.58 0.57 0.20

1000000 0.96 0.05 0.05 0.00 0.96 0.58 0.57 0.02
1000 1000 10000 0.80 0.04 0.04 0.02 0.82 0.46 0.46 0.19

1000000 0.96 0.04 0.04 0.00 0.96 0.46 0.44 0.02
2000 10000 0.74 0.04 0.04 0.02 0.77 0.40 0.39 0.19

1000000 0.96 0.04 0.04 0.00 0.96 0.40 0.37 0.02

Table 5: Coverage of 95% Con�dence Intervals: Uninformative Classi�er
High Signal-to-Noise Low Signal-to-Noise

nv nt np NV LAB GMM ORCL NV LAB GMM ORCL
500 500 10000 0.00 0.96 0.95 0.95 0.02 0.93 0.93 0.96

1000000 0.00 0.96 0.95 0.95 0.00 0.93 0.77 0.94
1000 10000 0.00 0.95 0.96 0.96 0.01 0.94 0.94 0.95

1000000 0.00 0.95 0.95 0.95 0.00 0.94 0.79 0.95
1000 1000 10000 0.00 0.96 0.96 0.96 0.03 0.96 0.96 0.96

1000000 0.00 0.96 0.96 0.95 0.00 0.96 0.88 0.96
2000 10000 0.00 0.95 0.95 0.95 0.03 0.95 0.95 0.96

1000000 0.00 0.95 0.95 0.95 0.00 0.95 0.91 0.95
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Table 6: Bias: Realistic Classi�er
High Signal-to-Noise Low Signal-to-Noise

nv nt np NV LAB GMM ORCL NV LAB GMM ORCL
500 500 10000 -0.51 0.00 -0.00 0.00 -0.50 0.01 0.02 0.01

1000000 -0.56 0.00 -0.00 -0.00 -0.56 0.01 0.01 -0.00
1000 10000 -0.49 0.00 -0.00 0.00 -0.48 0.01 0.02 0.01

1000000 -0.56 0.00 -0.00 -0.00 -0.56 0.01 0.01 -0.00
1000 1000 10000 -0.47 -0.00 -0.00 0.00 -0.46 0.01 0.01 -0.00

1000000 -0.56 -0.00 -0.00 -0.00 -0.56 0.01 -0.00 0.00
2000 10000 -0.43 -0.00 -0.00 0.00 -0.44 -0.01 -0.02 -0.01

1000000 -0.56 -0.00 -0.00 -0.00 -0.56 -0.01 0.00 -0.00

Table 7: RMSE: Realistic Classi�er
High Signal-to-Noise Low Signal-to-Noise

nv nt np NV LAB GMM ORCL NV LAB GMM ORCL
500 500 10000 0.51 0.06 0.05 0.02 0.55 0.73 0.44 0.20

1000000 0.56 0.06 0.05 0.00 0.56 0.73 0.10 0.02
1000 10000 0.49 0.05 0.05 0.02 0.52 0.58 0.38 0.20

1000000 0.56 0.05 0.04 0.00 0.56 0.58 0.10 0.02
1000 1000 10000 0.47 0.04 0.04 0.02 0.50 0.46 0.36 0.19

1000000 0.56 0.04 0.04 0.00 0.56 0.46 0.08 0.02
2000 10000 0.43 0.04 0.03 0.02 0.48 0.40 0.31 0.19

1000000 0.56 0.04 0.03 0.00 0.56 0.40 0.08 0.02

Table 8: Coverage of 95% with the Con�dence Intervals: Realistic Classi�er
High Signal-to-Noise Low Signal-to-Noise

nv nt np NV LAB GMM ORCL NV LAB GMM ORCL
500 500 10000 0.00 0.96 0.95 0.95 0.32 0.93 0.94 0.96

1000000 0.00 0.96 0.95 0.95 0.00 0.93 0.96 0.94
1000 10000 0.00 0.95 0.95 0.96 0.36 0.94 0.95 0.95

1000000 0.00 0.95 0.94 0.95 0.00 0.94 0.96 0.95
1000 1000 10000 0.00 0.96 0.96 0.96 0.35 0.96 0.95 0.96

1000000 0.00 0.96 0.95 0.95 0.00 0.96 0.94 0.96
2000 10000 0.00 0.95 0.95 0.95 0.37 0.95 0.95 0.96

1000000 0.00 0.95 0.95 0.95 0.00 0.95 0.94 0.95
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Table 9: Bias: Best-Case Classi�er
High Signal-to-Noise Low Signal-to-Noise

nv nt np NV LAB GMM ORCL NV LAB GMM ORCL
500 500 10000 -0.18 0.00 -0.00 0.00 -0.18 0.01 0.01 0.01

1000000 -0.20 0.00 -0.00 -0.00 -0.20 0.01 0.00 -0.00
1000 10000 -0.17 0.00 -0.00 0.00 -0.16 0.01 0.02 0.01

1000000 -0.20 0.00 -0.00 -0.00 -0.20 0.01 0.00 -0.00
1000 1000 10000 -0.17 -0.00 -0.00 0.00 -0.17 0.01 -0.00 -0.00

1000000 -0.20 -0.00 -0.00 -0.00 -0.20 0.01 0.00 0.00
2000 10000 -0.15 -0.00 -0.00 0.00 -0.16 -0.01 -0.01 -0.01

1000000 -0.20 -0.00 -0.00 -0.00 -0.20 -0.01 -0.00 -0.00

Table 10: RMSE: Best-Case Classi�er
High Signal-to-Noise Low Signal-to-Noise

nv nt np NV LAB GMM ORCL NV LAB GMM ORCL
500 500 10000 0.18 0.06 0.04 0.02 0.27 0.73 0.26 0.20

1000000 0.20 0.06 0.03 0.00 0.20 0.73 0.04 0.02
1000 10000 0.17 0.05 0.03 0.02 0.26 0.58 0.25 0.20

1000000 0.20 0.05 0.03 0.00 0.20 0.58 0.04 0.02
1000 1000 10000 0.17 0.04 0.03 0.02 0.26 0.46 0.24 0.19

1000000 0.20 0.04 0.02 0.00 0.20 0.46 0.04 0.02
2000 10000 0.15 0.04 0.03 0.02 0.25 0.40 0.23 0.19

1000000 0.20 0.04 0.02 0.00 0.20 0.40 0.04 0.02

Table 11: Coverage of 95% Con�dence Intervals: Best-Case Classi�er
High Signal-to-Noise Low Signal-to-Noise

nv nt np NV LAB GMM ORCL NV LAB GMM ORCL
500 500 10000 0.00 0.96 0.94 0.95 0.87 0.93 0.95 0.96

1000000 0.00 0.96 0.95 0.95 0.00 0.93 0.95 0.94
1000 10000 0.00 0.95 0.97 0.96 0.89 0.94 0.95 0.95

1000000 0.00 0.95 0.95 0.95 0.00 0.94 0.95 0.95
1000 1000 10000 0.00 0.96 0.97 0.96 0.88 0.96 0.96 0.96

1000000 0.00 0.96 0.95 0.95 0.00 0.96 0.96 0.96
2000 10000 0.00 0.95 0.96 0.95 0.86 0.95 0.95 0.96

1000000 0.00 0.95 0.95 0.95 0.00 0.95 0.94 0.95
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Table 12: Bias as a Function of Accuracy
High Signal-to-Noise Low Signal-to-Noise

Accuracy np NV LAB GMM ORCL NV LAB GMM ORCL
0.52 10000 -0.800 -0.000 -0.001 0.001 -0.790 0.007 0.006 -0.005
0.60 10000 -0.666 -0.000 -0.001 0.001 -0.659 0.007 0.014 -0.005
0.72 10000 -0.466 -0.000 -0.001 0.001 -0.462 0.007 0.014 -0.005
0.80 10000 -0.333 -0.000 -0.001 0.001 -0.334 0.007 0.004 -0.005
0.92 10000 -0.166 -0.000 -0.001 0.001 -0.170 0.007 -0.003 -0.005
0.52 1000000 -0.958 -0.000 -0.002 -0.000 -0.959 0.007 -0.080 0.000
0.60 1000000 -0.798 -0.000 -0.001 -0.000 -0.799 0.007 0.003 0.000
0.72 1000000 -0.559 -0.000 -0.000 -0.000 -0.559 0.007 -0.000 0.000
0.80 1000000 -0.399 -0.000 -0.001 -0.000 -0.399 0.007 -0.002 0.000
0.92 1000000 -0.200 -0.000 -0.001 -0.000 -0.199 0.007 0.001 0.000

Table 13: RMSE as a Function of Accuracy
High Signal-to-Noise Low Signal-to-Noise

Accuracy np NV LAB GMM ORCL NV LAB GMM ORCL
0.52 10000 0.800 0.043 0.043 0.017 0.816 0.465 0.463 0.193
0.60 10000 0.667 0.043 0.042 0.017 0.690 0.465 0.444 0.193
0.72 10000 0.466 0.043 0.038 0.017 0.503 0.465 0.355 0.193
0.80 10000 0.334 0.043 0.034 0.017 0.387 0.465 0.297 0.193
0.92 10000 0.167 0.043 0.027 0.017 0.258 0.465 0.240 0.193
0.52 1000000 0.958 0.043 0.043 0.002 0.960 0.465 0.442 0.022
0.60 1000000 0.798 0.043 0.042 0.002 0.800 0.465 0.178 0.022
0.72 1000000 0.559 0.043 0.036 0.002 0.560 0.465 0.083 0.022
0.80 1000000 0.399 0.043 0.030 0.002 0.400 0.465 0.055 0.022
0.92 1000000 0.200 0.043 0.021 0.002 0.200 0.465 0.037 0.022

the violation of the exclusion restriction; the larger γ , the larger the violation of the exclusion

restriction. We provide simulations with γ ∈ {−0.05,−0.10,−0.20,−0.40}. γ is negative because

the naive estimator is, in this case, biased downwards; a positive γ would partially o�set that bias

and make the naive estimator seem more a�ractive than it really is. �ese lead the correlation

between z and ϵ to be about 0.04, 0.08, 0.16, and 0.32 times as strong as the correlation between

x and y, respectively, and therefore range from minor violations of the exclusion restriction to

severe violations.

Figures 1-3 present the results of these simulations. Small violations of the exclusion restric-

tion lead to relatively small biases, and the improved variance of the estimator compensates for

this bias. For these small violations, the coverage of the 95% con�dence intervals for the GMM
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Table 14: Bias: Uninformative Classi�er with Imbalanced Classes
High Signal-to-Noise Low Signal-to-Noise

nv nt np NV LAB GMM ORCL NV LAB GMM ORCL
500 500 10000 -0.92 0.00 -0.00 0.00 -0.91 0.03 0.01 0.00

1000000 -0.97 0.00 -0.01 0.00 -0.97 0.03 -0.22 0.00
1000 10000 -0.89 0.00 -0.00 0.00 -0.88 0.01 -0.00 0.01

1000000 -0.97 0.00 -0.00 0.00 -0.97 0.01 -0.18 0.00
1000 1000 10000 -0.87 0.00 -0.00 0.00 -0.86 0.02 0.02 0.00

1000000 -0.97 0.00 -0.00 0.00 -0.97 0.02 -0.10 0.00
2000 10000 -0.83 0.00 -0.00 0.00 -0.82 0.00 -0.00 -0.02

1000000 -0.97 0.00 -0.00 0.00 -0.97 0.00 -0.08 0.00

Table 15: RMSE: Uninformative Classi�er with Imbalanced Classes
High Signal-to-Noise Low Signal-to-Noise

nv nt np NV LAB GMM ORCL NV LAB GMM ORCL
500 500 10000 0.92 0.08 0.08 0.02 0.94 0.84 0.83 0.26

1000000 0.97 0.08 0.08 0.00 0.97 0.84 0.81 0.03
1000 10000 0.89 0.06 0.06 0.02 0.91 0.72 0.71 0.26

1000000 0.97 0.06 0.06 0.00 0.97 0.72 0.70 0.03
1000 1000 10000 0.87 0.06 0.06 0.02 0.89 0.61 0.60 0.25

1000000 0.97 0.06 0.06 0.00 0.97 0.61 0.58 0.03
2000 10000 0.83 0.04 0.05 0.02 0.85 0.50 0.50 0.24

1000000 0.97 0.04 0.05 0.00 0.97 0.50 0.49 0.03

Table 16: Coverage of 95% Con�dence Intervals: Uninformative Classi�er with Imbalanced
Classes

High Signal-to-Noise Low Signal-to-Noise
nv nt np NV LAB GMM ORCL NV LAB GMM ORCL

500 500 10000 0.00 0.97 0.96 0.95 0.01 0.95 0.95 0.96
1000000 0.00 0.97 0.95 0.95 0.00 0.95 0.80 0.95

1000 10000 0.00 0.96 0.96 0.95 0.01 0.96 0.96 0.94
1000000 0.00 0.96 0.95 0.95 0.00 0.96 0.81 0.94

1000 1000 10000 0.00 0.95 0.95 0.95 0.01 0.95 0.95 0.95
1000000 0.00 0.95 0.94 0.95 0.00 0.95 0.89 0.95

2000 10000 0.00 0.95 0.95 0.95 0.02 0.94 0.94 0.94
1000000 0.00 0.95 0.95 0.96 0.00 0.94 0.90 0.95
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Table 17: Bias: Realistic Classi�er with Imbalanced Classes
High Signal-to-Noise Low Signal-to-Noise

nv nt np NV LAB GMM ORCL NV LAB GMM ORCL
500 500 10000 -0.66 0.00 -0.00 0.00 -0.66 0.03 -0.00 0.00

1000000 -0.70 0.00 -0.00 0.00 -0.70 0.03 0.01 0.00
1000 10000 -0.64 0.00 0.00 0.00 -0.62 0.01 0.02 0.01

1000000 -0.70 0.00 0.00 0.00 -0.70 0.01 0.01 0.00
1000 1000 10000 -0.62 0.00 -0.00 0.00 -0.61 0.02 0.02 0.00

1000000 -0.70 0.00 0.00 0.00 -0.70 0.02 0.00 0.00
2000 10000 -0.59 0.00 -0.00 0.00 -0.59 0.00 -0.01 -0.02

1000000 -0.70 0.00 -0.00 0.00 -0.70 0.00 0.00 0.00

Table 18: RMSE: Realistic Classi�er with Imbalanced Classes
High Signal-to-Noise Low Signal-to-Noise

nv nt np NV LAB GMM ORCL NV LAB GMM ORCL
500 500 10000 0.66 0.08 0.07 0.02 0.69 0.84 0.58 0.26

1000000 0.70 0.08 0.06 0.00 0.70 0.84 0.15 0.03
1000 10000 0.64 0.06 0.06 0.02 0.66 0.72 0.51 0.26

1000000 0.70 0.06 0.05 0.00 0.70 0.72 0.15 0.03
1000 1000 10000 0.62 0.06 0.05 0.02 0.64 0.61 0.48 0.25

1000000 0.70 0.06 0.05 0.00 0.70 0.61 0.11 0.03
2000 10000 0.59 0.04 0.04 0.02 0.63 0.50 0.42 0.24

1000000 0.70 0.04 0.04 0.00 0.70 0.50 0.11 0.03

Table 19: Coverage of 95% with the Con�dence Intervals: Realistic Classi�er with Imbalanced
Classes

Easy Hard
nv nt np NV LAB GMM ORCL NV LAB GMM ORCL

500 500 10000 0.00 0.97 0.96 0.95 0.14 0.95 0.95 0.95
1000000 0.00 0.97 0.95 0.95 0.00 0.95 0.96 0.95

1000 10000 0.00 0.96 0.96 0.95 0.17 0.96 0.96 0.94
1000000 0.00 0.96 0.95 0.95 0.00 0.96 0.96 0.94

1000 1000 10000 0.00 0.95 0.95 0.95 0.18 0.95 0.95 0.95
1000000 0.00 0.95 0.95 0.95 0.00 0.95 0.96 0.95

2000 10000 0.00 0.95 0.96 0.95 0.17 0.94 0.94 0.94
1000000 0.00 0.95 0.95 0.96 0.00 0.94 0.96 0.95
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Table 20: Bias: Best-Case Classi�er with Imbalanced Classes
High Signal-to-Noise Low Signal-to-Noise

nv nt np NV LAB GMM ORCL NV LAB GMM ORCL
500 500 10000 -0.31 0.00 -0.00 0.00 -0.31 0.03 -0.01 0.00

1000000 -0.33 0.00 -0.00 0.00 -0.33 0.03 -0.00 0.00
1000 10000 -0.30 0.00 0.00 0.00 -0.29 0.01 0.01 0.01

1000000 -0.33 0.00 0.00 0.00 -0.33 0.01 0.00 0.00
1000 1000 10000 -0.29 0.00 -0.00 0.00 -0.28 0.02 0.00 0.00

1000000 -0.33 0.00 -0.00 0.00 -0.33 0.02 -0.00 0.00
2000 10000 -0.27 0.00 -0.00 0.00 -0.28 0.00 -0.02 -0.02

1000000 -0.33 0.00 -0.00 0.00 -0.33 0.00 -0.00 0.00

Table 21: RMSE: Best-Case Classi�er with Imbalanced Classes
High Signal-to-Noise Low Signal-to-Noise

nv nt np NV LAB GMM ORCL NV LAB GMM ORCL
500 500 10000 0.31 0.08 0.05 0.02 0.39 0.84 0.36 0.26

1000000 0.33 0.08 0.04 0.00 0.34 0.84 0.07 0.03
1000 10000 0.30 0.06 0.05 0.02 0.37 0.72 0.35 0.26

1000000 0.33 0.06 0.04 0.00 0.33 0.72 0.07 0.03
1000 1000 10000 0.29 0.06 0.04 0.02 0.36 0.61 0.32 0.25

1000000 0.33 0.06 0.03 0.00 0.33 0.61 0.05 0.03
2000 10000 0.27 0.04 0.03 0.02 0.36 0.50 0.31 0.24

1000000 0.33 0.04 0.03 0.00 0.34 0.50 0.05 0.03

Table 22: Coverage of 95% Con�dence Intervals: Best-Case Classi�er with Imbalanced Classes
Easy Hard

nv nt np NV LAB GMM ORCL NV LAB GMM ORCL
500 500 10000 0.00 0.97 0.96 0.95 0.73 0.95 0.95 0.95

1000000 0.00 0.97 0.96 0.95 0.00 0.95 0.96 0.95
1000 10000 0.00 0.96 0.96 0.95 0.76 0.96 0.95 0.94

1000000 0.00 0.96 0.95 0.95 0.00 0.96 0.96 0.94
1000 1000 10000 0.00 0.95 0.96 0.95 0.78 0.95 0.95 0.95

1000000 0.00 0.95 0.96 0.95 0.00 0.95 0.96 0.95
2000 10000 0.00 0.95 0.96 0.95 0.74 0.94 0.96 0.94

1000000 0.00 0.95 0.97 0.96 0.00 0.94 0.95 0.95
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estimator is approximately correct if the amount of unlabeled data is small enough. However,

as the violation grows more severe, the bias grows worse, eventually becoming so large that it

overwhelms the improvement in variance.

Additionally, for any given violation of the exclusion restriction, as the size of the primary

sample relative to the validation sample increases, the resulting bias grows more severe. In these

simulations, increasing the size of the primary sample by a factor of 100 doubled the bias.

Unfortunately, the overidenti�cation test of the exclusion restriction presented in Online Ap-

pendix B detected the violation of the bias in only a small number of cases. It rejected the null

hypothesis that the exclusion restriction was not violated at the 90% level only about 10% of the

time. �us, researchers should not take failure to reject the null hypothesis as con�rmation that

the exclusion restriction is satis�ed. Researchers worried about violations of the exclusion re-

striction can increase the power of the test by labeling more observations and adding them to the

validation sample.

�ese simulations emphasize that the exclusion restriction is a critical assumption. How-

ever, the simulation results of competing methods that do not rely on the exclusion restriction in

Online Appendix H shows that it is a necessary assumption to extract meaningful returns from

unlabeled data.3 Researchers who for theoretical or empirical reasons are unwilling to commit

to this assumption should consider eschewing machine learning altogether and conducting their

analyses using only a simple random sample of hand-labeled data.

K Semi-Synthetic Application: Vote Choice andHomeown-

ership in the 2016 Election

�e simulations and theoretical analysis show that the naive estimator is biased and inconsistent

and that our proposed GMM estimator is consistent and more e�cient than restricting analysis
3�e Fully Bayesian estimator, like the GMM, is sensitive to violations of the exclusion restriction. In all of the

simulation setups reported in this appendix, its bias and RMSE are between 50% and 1000% larger than the bias and
RMSE for the GMM.
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Figure 1: Bias with Exclusion Restriction Violated

er_sims_bias.pdf

Figure 2: RMSE with Exclusion Restriction Violated

er_sims_rmse.pdf

Figure 3: Coverage of 95% Con�dence Intervals with Exclusion Restriction Violated

er_sims_cvg.pdf
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to the hand-labeled sample. However, these arguments do not address whether the purportedly

strong assumptions required for the naive estimator are usually satis�ed in practice, whether the

resulting bias and inconsistency is large enough to a�ect substantive conclusions, and whether

the e�ciency gains of the GMM lead to di�erent conclusions than the labeled-only estimator.

Accordingly, we consider a validation of our proposed method based on its performance on a real

data set answering a descriptive research question.

�e question we seek to answer is whether homeownership helps predict presidential vote

choice in the 2016 election even a�er we control for party and race. Scholars have become in-

creasingly interested in the relationship between homeownership and political behavior (e.g.,

Hall and Yoder, 2019; Marble and Nall, 2020). In this example, we will examine the correlation

between homeownership and vote choice conditional on party and white identity.

We obtain the data to answer our question from the 2016 Cooperative Congressional Election

Study (Ansolabehere and Scha�ner, 2017). We use the CCES measures of respondents’ two-party

vote choice in the 2016 election (dropping non-two-party voters), their party, self-reported race

and ethnic identity (quanti�ed dichotomously as white or non-white), family income (quanti�ed

in 2016 US Census quintiles), age, and whether the respondent owns their own home. Statistically,

we seek to answer our question using the following regression:

Voted for Trump = β1Homeowner + β2Republican + β3White + β4 + Residual (33)

With β1 the coe�cient of primary interest. A positive value of β1 implies homeowners were more

likely to vote for Trump than Clinton than non-homeowners — even a�er accounting for party

and racial/ethnic identity. A negative value of β1 would imply the opposite.

Before examining the data, it is not obvious what we should expect the true value or even the

sign of β1 to be. On one hand, we might expect β1 = 0 since party identi�cation and racial iden-

tity might already capture the average policy preferences of homeowners and non-homeowners.

Alternatively, we might think β1 , 0 due one of the candidates having made a be�er appeal to
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homeowners or non-homeowners to deviate from their usual party preferences. And, of course,

we should not forget that homeownership might just be a confounder for another variable (e.g.,

region) that caused voters to stray from their usual party preferences.

�e CCES collects the homeowner variable for every respondent, but many data sets are

not so generous. In many administrative data sets, such as voter �les, important covariates like

homeownership are missing altogether. Accordingly, we conduct an exercise to see how our

GMM could help us in these more di�cult data sets.

Our goal is to mimic a scenario in which the researchers sought to add homeownership to

a political survey that did not ask about homeownership. �ey have the ability to reinterview

respondents from the political survey, but doing so is costly. �e researchers also have access to

exogenusly-generated predictions, perhaps from a commercial vendor, or perhaps from a larger

exercise dedicated speci�cally to predicting homeownership from supplemental data like zip code

and income.

To mimic this scenario, we randomly choose 90% of the CCES to be the primary sample

(np = 32, 634) and force the homeowner variable to be missing for these respondents. Of the

remaining 10%, we randomly assign nine-tenths to the training sample (nt = 3, 315) and one-

tenth to the validation sample (nv = 380). Next, we �t a random forest classi�er on the training

set to predict homeownership and apply the algorithm to predict homeownership on the val-

idation and primary samples. We chose a random forest for this task because it is known to

perform well in political science applications with a relatively small number of input variables

(for an introduction to random forest methods, see Montgomery and Olivella, 2018). We used the

randomForest function with the default classi�cation se�ings from the randomForest R package

(Liaw and Wiener, 2002). We used income, age, and race as inputs into the classi�er to generate

our predictions for homeownership status; we did not use party as a classi�er input to avoid vi-

olating the exclusion restriction (party and vote choice are highly correlated). With a prevalence

of homeownership in our CCES subset of about 70%, the random forest classi�er we �t has an

accuracy of 0.76, a precision of 0.77, a recall/sensitivity of 0.93, and a speci�city of 0.36. �ese
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Table 23: Comparing Di�erent Methods

Voted for Trump [1] instead of Clinton [0]
Naive Labeled-Only GMM Oracle

Model 1 Model 2 Model 3 Model 4

Homeowner 0.023∗ 0.0001 0.045∗ 0.051∗
(0.005) (0.040) (0.009) (0.004)

Republican 0.745∗ 0.695∗ 0.744∗ 0.741∗
(0.004) (0.037) (0.004) (0.004)

White 0.095∗ 0.126∗ 0.094∗ 0.094∗
(0.005) (0.045) (0.005) (0.005)

Constant 0.087∗ 0.130∗ 0.076∗ 0.073∗
(0.005) (0.042) (0.006) (0.004)

N 33014 380 33014 36329

statistics suggest the classi�er is informative about homeownership, but also that there is still

signi�cant prediction error.

A�er generating the classi�er’s predictions on the validation and primary samples, we drop

the training sample from subsequent analyses. �is is to mimic a scenario in which the predictions

are derived exogenously from another source, such as in surname-based prediction of race and

ethnicity on a voter �le (Imai and Khanna, 2016).4 �us, our training data is used simply to

generate realistic but imperfect predictions, and we suppose that the analyst wishing to run the

regression can access only the validation and primary samples. �e validation sample consists

of a set of homeowners that the researchers reinterviewed to ask about homeownership; the

primary sample consists of the rest of the observations.

Table 23 reports the coe�cient estimates from four di�erent estimators of eq. (33). Column (1)

reports the naive estimates, found by plugging in predicted homeownership for actual homeown-

ership in both the primary and validation samples. Column (2) reports the labeled-only estimates,

found by using actual homeownership but only on the validation sample (which is the entire la-
4We do not replicate the Imai and Khanna (2016) example as-is because we �nd that the exclusion restriction

is violated in that case, and thus our GMM estimator would not help. �e exclusion restriction is violated in that
example because non-whites with predicted white surnames in Florida were apparently more likely to have voted
in 2008 than other non-whites in Florida.
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beled sample, since the training set is dropped). Column (3) reports the GMM estimates based on

a combination of OLS in the validation sample and 2SLS in the validation and primary samples.5

We feel comfortable providing the GMM estimates since the exclusion restriction test p-value is

only 0.48, which means that the exclusion restriction cannot be rejected. If the p-value had been

much lower, say less than the conventional level of 0.05, we would need to reconsider using the

GMM estimator, since the exclusion restriction would would have been rejected. Finally, Column

(4) gives the oracle estimates which use actual homeownership for every respondent in the val-

idation and primary samples, which we use as a benchmark for validating each estimate (even

though it would be inaccessible in a real application).

Although it is merely one instance of the situations we have been discussing in this paper,

we see that in this case the GMM estimates are the most useful. Taking the oracle estimates as

a baseline, we see that the naive estimate of the partial relationship between vote choice and

homeownership has been severely a�enuated and only reaches about half the magnitude of ei-

ther the GMM or oracle estimates.6 In other words, the naive estimate understates the rate at

which homeowners voted for Trump and overstates the rate at which non-homeowners voted

for Trump. �is di�erence in magnitude is substantively meaningful, given that an extra few

percentage points in two-party vote share might have changed the outcome of the close 2016

election in pivotal swing states. Next, the labeled-only estimate is very imprecise, and cannot

detect whether β1 is positive, negative, or zero. Finally, the GMM estimate is the closest to the

oracle estimate, it is statistically quite distinct from zero, and it achieves a much higher precision

than the labeled-only estimate. In fact, the improvement in GMM estimator variance is (in expec-

tation) equivalent to having collected approximately 20 times more validation data (ngmm = 7600

vs. nlabeled-only = 380).
5Predicted homeownership is signi�cant in the �rst stage regression with a coe�cient of 0.44 (std. error of 0.07).
6Based on the sensitivity of 0.93 and the speci�city of 0.36, the expected value of the naive estimator of β1 in the

absence of the other two covariates would be 0.28β1 (Aigner, 1973, eq. 11). �e actual estimates are not far o� from
their hypothetical expected values: the naive estimate is 0.45 times the oracle estimate.
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L Reddit-Like Simulations

�e simulations in Appendix I shows that the GMM estimator generally performs quite well,

but it is still worthwhile to test whether it performs well in se�ings like the Reddit application

from Section 5. To address this concern, we test the performance of the GMM estimator in data

designed to mimic the data in the Reddit application. In particular, we simulate data where zu ∼

Bernoulli(0.173) and generate x with π11 = 0.352 and π00 = 0.863. y ∼ N(βx, 4.02), where β1 ∼

N(2.82, 0.08), β2 ∼ N(−0.24, 0.18), x = (xo, xu), xo = 1, and xu ∼ Bernoulli(π11z+ (1−π0,0)(1−z)).

All of these parameter values are drawn from the real Reddit data; the distribution of β comes

from the asymptotic distribution implied by the labeled estimate and the error variance for y

comes from the mean of the squared residuals in the labeled-only regression.

With this procedure, we generate 2,413 training observations, 613 test observations, and

1,207,140 unlabeled observations for each of 1,000 simulated data sets. We compare the naive,

labeled-only, GMM, and oracle estimators across the simulated data sets. �e GMM estimator

performs far be�er than the other two feasible estimators, and its analytic con�dence interval

has the correct coverage. �is suggests that we are on �rm ground drawing inferences from the

two-stage estimator in the application.

M Reddit Subgroup Analysis

In Section 5’s analysis of the Reddit data, the GMM proved useful because it was su�ciently

powerful to detect a negative relationship between incivility and post score that was statistically

di�erent from−1 (which is the only way to rule out the hypothesis that only the target of incivility

downvotes the post and other users are indi�erent). One reasonable objection to this �nding is

that the scores may be biased towards 0, because some are in unpopular threads or buried deep

in conversations and hence go unobserved by other users. By subse�ing to the comments that

were most likely to be seen by others, we might be able to observe an e�ect statistically smaller

than −1 using the labeled-only estimator.
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Figure 4: Performance of Estimators in Reddit-Like Simulations

RedditSims.pdf

Note: In data that closely mimics the Reddit application, the GMM estimator dramatically out-
performs the other feasible estimators. Moreover, its con�dence interval achieves the correct
coverage.

To address this possibility, we present the results of subgroup analyses that divide the com-

ments along three dimensions: (1) whether the comment was a reply to a top-level comment or

a reply to a comment that was itself a reply, (2) whether the comment was a reply to a com-

ment in a thread that was above or below the median thread score, and (3) whether the comment

was a reply to a comment in a thread that was above or below the median number of comments

in the thread. Note that features (2) and (3) are properties of the thread (which contains many

comments), not the comment that the post in question is replying to.

However, dividing the sample in this way threatens to limit the statistical power of our tests.

In particular, a naive subgroup analyses would divide the validation sample used to learn the �rst

stage of the two-stage least squares in half, even though we expect the relationship between the

classi�er’s prediction and the true incivility label to be the same in both subgroups. To avoid this

loss in power, we use all observations to �t the �rst stage of the two-stage least squares (to learn

the linear projection of x on z), but only the relevant subgroup to actually estimate the linear

projection of y on x .
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Figures 5-7 report the results.7 If the di�erence between the labeled-only and GMM estimators

were caused by a�enuation due to low-visibility comments, we would expect that the labeled-only

estimator would have a con�dence interval entirely below −1 for replies to top-level comments,

popular threads, or high-discussion threads. �at is not what we �nd.

Rather, the labeled-only estimator’s 95% con�dence interval includes −1 for every subgroup.

�e GMM’s 95% con�dence interval is entirely below −1 for every subgroup except replies to

top-level comments. But this is not consistent with the hypothesis that the pa�ern observed in

the main results are a�ributable to a�enuation from low-visibility, since the high-visibility posts

have point estimates closer to 0 than the low-visibility posts.

7�e results from the lower-level comments plot should be viewed with skepticism, as the test of the exclusion
restriction yields a p-value of 0.107.
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Figure 5: Subgroup Analysis Split by Depth of Comment

RedditDepth.pdf

Figure 6: Subgroup Analysis Split by Score of �read

RedditPopular.pdf

Figure 7: Subgroup Analysis Split by Number of Comments in �read

RedditDiscussion.pdf
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