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S.1 Details of the Model
To understand the consequences of publication bias, we consider a simple model of the publi-
cation process which consists of both the original publication stage and the replication stage.
Specifically, we consider a scenario where a null hypothesis – whether true (i.e., treatment has
no effect) or false (i.e., treatment has a nonzero effect) – is first tested with a sample from the
population of interest (“original study”) and, if published, tested again with a new sample from
the same population (“replication study”), with pre-specified error rates associated to each of the
two tests. At each stage, we allow for the possibility that the test result may not get published.
We assume that an original study is subjected to a replication study if and only if it is published.
In other words, there is no study in our model that gets published but goes unreplicated, and
there is no replication study that tests an originally unpublished result.

The model consists of two sets of parameters: error rates and publication probabilities. The
error rate parameters can further be categorized into two types – type-I error rates and type-II
error rates – and their relevance depends on the alternative scenarios with respect to the true state
of the world. Table S1 summarizes our notation for these parameters as well as other elements
of the model. First, in the case where the true state is such that there is no treatment effect
(i.e., the null hypothesis H0 is true; see Figure 1 in the main text), the original study incorrectly
classifies the null to be false (i.e., a false positive result) with probability α1, resulting in a type-I
error. Conversely, the test correctly fails to reject the null at probability 1 − α1. The test result
is published with probability p1 if it is a positive result and with p0 if it is a negative result.
Similarly, the replication study incorrectly rejects the null hypothesis with probability α2 and
correctly fails to reject it at probability 1 − α2. The replication result is again published with
some probability, but the probability now varies both depending on whether the original study
that it attempts to replicate is positive or negative, and on whether the replication study result
itself is positive or negative (q11, q10, q01, and q00).

We also consider parallel scenarios for the state of the world where the null hypothesis is
false, i.e., when there is a nonzero treatment effect (Figure S1). In this case, the test results
depend on the type-II error rates (β1 and β2) or one minus the statistical power of the tests. That
is, the original (replication) study correctly classifies the null to be false (i.e., a true positive
result) with probability 1 − β1 (1 − β2) and incorrectly fails to reject the null with probability
β1 (β2). We assume that the publication probabilities for the original and replication studies
are given by the same parameters (p0, p1, q11, q10, q01 and q00) regardless of whether the null
hypothesis is true or false; this assumption appears plausible because the truthfulness of the null
hypothesis is not directly observable by the agents who govern the publication process. Also
note that we assume these parameters to be set by the mechanism exogenous to the model: for
example, we do not consider the possibility that publication probabilities are determined as a
result of strategic considerations by individual agents who make actual publication decisions.
Note that the case of a false null hypothesis is irrelevant when we only consider the AFPR;
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Notation Definition
H0 null hypothesis
αk nominal type-I error rate of the test in the original (k = 1) or replication (k = 2) study
βk nominal type-II error rate of the test in the original (k = 1) or replication (k = 2)

study
pi probability that the original study is published when the test result is negative (i = 0)

or positive (i = 1)
qij probability that the replication study is published when the original test result is neg-

ative (i = 0) or positive (i = 1) and the replication test result is negative (j = 0) or
positive(j = 1)

Table S1: Notation for the Model.

Truth = Treatment Has Effect
(Null Hypothesis is False)

Negative Result
(Null Not Rejected)

Not PublishedPublished

Replication Success
(Null Not Rejected)

Not PublishedPublished

q00 1− q00

Replication Fail
(Null Rejected)

Not PublishedPublished

q01 1− q01

1− β2 β2

p0 1− p0

Positive Result
(Null Rejected)

Not PublishedPublished

Replication Fail
(Null Not Rejected)

Not PublishedPublished

q10 1− q10

Replication Success
(Null Rejected)

Not PublishedPublished

q11 1− q11

1− β2 β2

p1 1− p1

1− β1 β1

Original
Study

Replication
Study

Figure S1: Model of Publication Process with Two Stages, the False Null Case.

however, it plays a crucial role when we analyze other metrics of evidence quality, such as the
reproducibility rate (see Section S.5).

Our framework accommodates both two-sided and one-sided tests. This is important be-
cause, for a study that attempts to replicate a previous finding that shows an effect in one direc-
tion, it is arguably more appropriate to use a one-sided test where the null hypothesis is such that
the effect is in the other direction. A replication of an originally insignificant result, on the other
hand, would normally be conducted by a two-sided test. Thus, in our model, it is reasonable
to interpret the null hypothesis in the replication study as one-sided for a significant original
result, and as two-sided for a non-significant original result, both with the nominal type-I error
probability of α2.

Several additional remarks are in order regarding the issue of two-sided versus one-sided
tests. First, in some fields, a two-sided test may be more commonly used even in a replication
study than a one-sided test. However, such a test is effectively one-sided in this context, because
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only a result that is statistically significant in the same direction as the original finding would
be considered a “positive” result (i.e., a successful replication). Second, although we use a
single parameter α2 to represent the type-I error probability for the replication studies of both
originally significant and non-significant studies, it is straightforward to allow this probability
to vary between the two scenarios in our model. For example, one might find it more reasonable
to set the test for an originally non-significant result to have twice as large the nominal type-I
error rate, as it would be if the replication study had been designed in exactly the same way.
Introducing additional notation to allow for such generalization, however, does not affect the
substantive conclusions of our analysis. We therefore opt to adopt the simpler representation
for the sake of clarity.

We now derive several metrics of evidence quality under the assumptions implied by the
model. We assume all of our probability and error rate parameters to be strictly bounded be-
tween 0 and 1. First, we introduce two additional parameters – α̃21 and α̃20 – that denote the
actual false positive rates (AFPRs) in replications of originally significant and non-significant
studies, respectively. That is,

α̃21 = Pr(replication test significant | the null is true, original test significant,
replication published),

α̃20 = Pr(replication test significant | the null is true, original test insignificant,
replication published).

We can show that these conditional AFPRs are related to the nominal FPR as well as the publi-
cation probability parameters in the following way.

Lemma 1.
α̃2i =

α2qi1
(1− α2)qi0 + α2qi1

for i ∈ {0, 1}. (1)

Proof. Note that α̃20 = Pr(original test fails to reject H0, replication test rejects H0 and gets
published|H0)/Pr(original test fails to reject H0 and replication test gets published|H0). Ex-
pressing both the numerator and the denominator with respect to the model parameters yields
equation (1) for i = 0. The expression for α̃21 can be obtained analogously.

Lemma 1 immediately leads to the following important corollary.

Corollary 1. α̃2i = α2 for any α2 if and only if qi1 = qi0.

Proof. The result is immediate by substituting α2 = α̃2i in equation (1) and vice versa.

The corollary implies that the AFPRs for replication studies will always deviate from their
nominal FPR unless there is no publication bias in these studies.

Lemma 1 also implies the following proposition for the overall AFPR.
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Proposition 1. The overall AFPR α̃2, defined in the main text, is given by the following expres-
sion:

α̃2 =
α1p1α2q11 + (1− α1)p0α2q01

α1p1{(1− α2)q10 + α2q11}+ (1− α1)p0{(1− α2)q00 + α2q01}
. (2)

Proof. Note that

α̃2 = α̃21 Pr(original test rejects H0 | replication test published, H0)

+ α̃20 Pr(original test fails to reject H0 | replication test published, H0)

=
α̃21α1p1{α2q11(1− α2)q10}+ α̃20(1− α1)p0{α2q01 + (1− α2)q00}
α1p1{α2q11 + (1− α2)q10}+ (1− α1)p0{α2q01 + (1− α2)q00}

.

Substituting equation (1) to α̃21 and α̃20 and simplifying yields the desired expression.

Proposition 1 allows us to simulate the AFPR for assumed values of the publication proba-
bilities. In the main text, we use the data from our vignette experiment to estimate the publica-
tion probabilities empirically and employ the formula to calculate the AFPRs (Figure 4).

Moreover, Proposition 1 can also be used to characterize the relationships between the
AFPR and the three types of publication biases: the file drawer bias, the repeat study bias, and
the gotcha bias. To analyze those relationships, we reparameterize our publication probability
parameters in terms of these biases, such that

p1 = p,

p0 = p− f,
q11 = p− r,
q10 = p− r − f + g,

q01 = p− r + g,

q00 = p− r − f,

where p, f , r, g ∈ (0, 1). In our new parameterization, f represents the file drawer bias, r
the repeat study bias, and g the gotcha bias. We also rewrite the publication probability for
an original positive result as p for simplicity. The intuition behind the new parameterization,
and the implied definitions for the three types of publication biases, are straightforward. For
example, the file drawer bias (f ) enters as a penalty on the publication probabilities for the
negative results (i.e., p0, q10 and q00), whereas the repeat study bias (r) is a common penalty for
the replication tests (i.e., q11, q10, q01 and q00). The gotcha bias (g), on the other hand, is a bonus
for replication results that overturn existing findings (i.e., q01 and q10).

The resulting relationship between the AFPR and the biases turn out to be rather complex.
Figure S2 illustrates how the AFPR can be either increasing or decreasing as a function of the
biases, using a hypothetical scenario where p = 0.6, r = 0.05, and α1 = α2 = 0.05. It is clearly
seen from the figure that the AFPR is monotonically increasing in the file drawer bias when the
gotcha bias is close to zero, but it can actually decrease as the file drawer bias increases if the
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Figure S2: Illustration of the Relationship between the AFPR and the Publication Biases. The
figure shows how the AFPR changes as a function of the file drawer and gotcha biases. The
red flat plane represents the nominal FPR of the original and replication tests assumed in the
simulation (α1 = α2 = 0.05).
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gotcha bias is highly prevalent (e.g. g = 0.5). Likewise, the AFPR is monotonically increasing
in the gotcha bias for small values of f (i.e. low file drawer bias), but the relationship actually
reverses if there is large file drawer bias (e.g. f = 0.5).

Still, it is possible to derive an important result: the AFPR is always greater than the nominal
FPR if the file drawer bias is larger than the gotcha bias. This result can be formally stated as
follows.

Proposition 2. α̃2 > α2 if f > g.

Proof.

α̃2 − α2 =
α2A

α1p1{(1− α2)q10 + α2q11}+ (1− α1)p0{(1− α2)q00 + α2q01}
,

where

A = α1p1q11 + (1− α1)p0q01 − α1p1{(1− α2)q10 + α2q11} − (1− α1)p0{(1− α2)q00 + α2q01}
= α1(1− α2)p1(q11 − q10) + (1− α1)(1− α2)p0(q01 − q00)
= (1− α2){α1p(f − g) + (1− α1)(p− f)(f + g)}.

Since p − f = p0 > 0, A > 0 if f > g. Therefore, α̃2 − α0 > 0 if f > g. This implies
Proposition 2.

Proposition 2 implies that the classic publication bias problem – the inflation of false positive
rates in the published body of evidence – still holds true even in the presence of publication
biases other than the file drawer bias, as long as the latter is a dominant mode of publication
bias. This also implies, however, that the AFPR could be smaller than the nominal FPR should
the gotcha bias be more important. The bottom line is that it is crucial to empirically ascertain
whether the file drawer bias or the gotcha bias is larger.

S.2 Details of the Survey Experiment
We began with a population of 5,394 political science faculty at Ph.D. granting institutions. We
obtained a list of such departments from the American Political Science Association, and then
accessed each department’s webpage and obtained the names and contact information for all
full and part time faculty. Our data collection occurred between January 25 and February 16,
2017, by e-mail. Specifically, we e-mailed the population, of which 289 were undeliverable,
asking them to participate in a study focused on factors that influence publication decisions.
We sent one reminder. We focused on Ph.D. granting schools to ensure respondents were likely
to be engaged in research; while this leads to the exclusion of non-Ph.D. granting departments
with active researchers, it does prevent us from including a number of schools where active re-
search is less common. Among the 5,105 individuals we successfully delivered an email, 1,236
individuals opened the survey, and 993 of these respondents completed at least one vignette. Of
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Variable Percent
Female 32.89
Served as Editor 26.69
Current Position

Full Professor 44.78
Associate Professor 24.17
Assistant Professor 26.42
Continuing Non-TT Lecturer 2.77
Adjunct Professor 1.32
Post-Doctoral Researcher 0.40
Graduate Student 0.13

Primary Field of Study
Comparative Politics 25.76
American Politics 36.79
International Relations 19.32
Political Theory 3.94
Methodology 2.37
Other 11.83

Variable Mean
Age 49.20
Ph.D. Students Advised 9.44

Table S2: Sample Characteristics.

those who answered at least one vignette, respondents who had not previously served as editors
answered an average of 8.75 vignettes (σ2 = 6.81; median = 10; mode = 10), of the 10 they
could have answered. Those who answered at least one vignette and had experience as editors
answered an average of 11.26 vignettes (σ2 = 26.57; median = 15; mode = 15) of the 15 they
could have answered. Descriptive statistics on key demographic covariates of the sample are
provided in Table S2.

S.3 Effects of Study Attributes on Publication Probability
Figure S3 presents the estimated average marginal component effects (AMCEs) of the hypo-
thetical study attributes on the respondents’ chance of taking an action in favor of publication
for the paper (i.e. submitting the paper as an author, recommending publication as a reviewer,
or supporting publication as an editor) from our vignette experiment. (For the sake of brevity,
we will refer to this outcome variable as the “chance of publication” hereafter.) Overall, our
study attributes have effects on the chance of publication in expected directions. Specifically,
on average, an observational study has 3 percentage points lower chance of publication than
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an experimental study (s.e.= .58); a moderately and extremely exciting/important hypothe-
sis has a 16 (s.e.= .69) and 20.7 (s.e.= .74) percentage points higher chance of publication
than a not at all exciting/important hypothesis, respectively; a somewhat and extremely surpris-
ing/counterintuitive result has a 10 (s.e.= .69) and 13.4 (s.e.= .75) percentage points higher
chance of publication, respectively; and studies with sample sizes of 500, 1,000, and 5,000
have higher chance of publication than a study with 50 observations by 8.7 (s.e.= .79), 14.6
(s.e.= .85), and 17.8 (s.e.= .88) percentage points, respectively.

S.4 Additional Results on Publication Biases
Figures S4 to S8 show the additional empirical results on publication biases mentioned in the
main text. Overall, there is little evidence that the magnitudes of the publication biases are
moderated by either respondents’ hypothetical role (Figure S4) or other study attributes included
in our vignette (Figures S5 to S8).

We note, however, two possible moderational effects of other study attributes with respect
to the gotcha bias that are of potential interest. First, the gotcha bias for an insignificant repli-
cation result (Figure S6, middle plot) appears to be larger for studies with larger sample sizes.
While the gotcha bias is estimated to be 4.87 percentage points when the study has only 50
observations, the bias increases to 13.25 for studies with N = 1000 (difference significant with
p < .002) and to as large as 15.34 when N = 5000 (p < .0002). A possible interpretation is
that respondents may perceive insignificant “gotcha” replication results particularly publishable
when the study is high powered and the null result is thus highly convincing as evidence of lack
of an effect.

Second, the gotcha bias for a significant replication result (Figure S8, right plot) disappears
for a result that is extremely surprising and counterintuitive. That is, while the estimated gotcha
bias is 5.17 (p < .002) for a not at all surprising or counterintuitive replication result that is
statistically significant, it becomes statistically indistinguishable from zero (p = 0.706) for
an extremely surprising and counterintuitive result. This is consistent with our hypothesized
mechanism behind the gotcha bias, since the “gotcha” factor may not make an already highly
surprising result more publishable.

In sum, our analysis of possible moderation effects suggests only minor levels of moder-
ation by other study attributes included in the vignette, and the small number of significant
relationships give support to our hypothesized mechanism causing the publication biases.

S.5 Analysis of the Reproducibility Rate
In this appendix, we turn to an alternative metric of evidence quality, reproducibility rate, de-
fined as follows.
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Figure S3: Estimated Average Marginal Component Effects (AMCEs) of the Study Attributes
on the Chance of Taking an Action in Favor of Publication for the Paper. Horizontal bars
represent 95% confidence intervals using cluster-robust standard errors at the respondent level.
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Figure S4: Estimates of Three Types of Publication Biases by Role. The estimates are for the
author (top), reviewer (middle) and editor (bottom) conditions.

10



●

●

●

●

Insignificant Significant

20

40

60

80

%
 W

ou
ld

 T
ak

e 
A

ct
io

n 
in

 F
av

or
 o

f P
ub

lic
at

io
n

Original Study

●

●

●

●

●

●

●

●
●

●

●

●

Insignificant Significant

Combined Originally
Insignificant

Originally
Significant

Combined Originally
Insignificant

Originally
Significant

20

40

60

80

Design

●

●

Experimental

Observational

Replication Study

Figure S5: Estimates of Three Types of Publication Biases by Study Design.
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Figure S6: Estimates of Three Types of Publication Biases by Sample Size.
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Figure S7: Estimates of Three Types of Publication Biases by Degree of Excitement.
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Figure S8: Estimates of Three Types of Publication Biases by Degree of Surprise.
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Definition 1. [Reproducibility Rate]

R = Pr(replication test significant | original test significant
and published, replication published)

The reproducibility rate refers to the proportion of the published replication test results that
successfully reproduce the positive original results. In other words, R asks “How often do
replication studies that are published confirm the positive results of the original published stud-
ies?” This is the central metric used in the Open Science Collaboration study (Open Science
Collaboration, 2015). that reported statistically significant results for 36% of initially statisti-
cally significant effects. The authors concluded “there is room to improve reproducibility in
psychology,” attributing the low rate to publication bias among other factors.

However, our model implies that the reproducibility rate should have no direct relationship
with the file drawer bias in the original studies. The following proposition provides an exact
formula for R in terms of the model parameters to illuminate this point.

Proposition 3.

R =
(1− π)(1− β1)(1− β2)q11 + πα1α2q11

(1− π)(1− β1){β2q10 + (1− β2)q11}+ πα1{(1− α2)q10 + α2q11}
, (3)

where π = Pr(H0), the prior probability of the null hypothesis being true.

Proof. First, let R0 and R1 represent reproducibility for the true and false null hypotheses,
respectively, such that

R0 = Pr(test rejects H0 | H0, original test rejects H0 and published,
replication published),

R1 = Pr(test rejects H0 | H1, original test rejects H0 and published,
replication published),

where H1 denotes the event that H0 is false. Note that R0 = α̃21, the AFPR for the replication
of an originally significant result. Now, consider R1. We have

R1 =
Pr(original test rejects H0 and published, replication test rejects H0 and published | H1)

Pr(original test rejects H0 and published, replication test published | H1)

=
Pr(original test rejects H0 and published, replication test rejects H0 and published | H1)

Pr

(
original test rejects H0 and published,
replication test rejects H0 and published

∣∣∣ H1

)

+Pr

(
original test rejects H0 and published,
replication test fails to reject H0 and published

∣∣∣ H1

)


=
(1− β1)p1(1− β2)q11

(1− β1)p1(1− β2)q11 + (1− β1)p1β2q10
=

(1− β2)q11
(1− β2)q11 + β2q10

. (4)
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Therefore,

R =
∑

i∈{0,1}

Ri Pr(Hi | original test rejects H0 and published, replication test published)

=

∑
i∈{0,1}Ri Pr(original test rejects H0 and published, replication test published | Hi) Pr(Hi)∑
i∈{0,1} Pr(original test rejects H0 and published, replication test published | Hi) Pr(Hi)

=
α1α2p1q11π + (1− β1)p1(1− β2)q11(1− π)

{α1p1α2q11 + α1p1(1− α2)q10} π + {(1− β1)p1(1− β2)q11 + (1− β1)p1β2q10} (1− π)

=
α1α2p1q11π + (1− β1)p1(1− β2)q11(1− π)

α1{α2q11 + (1− α2)q10}π + (1− β1){(1− β2)q11 + β2q10}(1− π)
.

As is clear from Proposition 3, the reproducibility rate has no direct relation with the file
drawer bias in original studies, as the formula for R does not contain neither p1 or p0. This
result casts serious doubt that low reproducibility stems, at all, from the file drawer problem.
This may be surprising given that a file drawer bias in original studies makes for the over-
representation of false positives in the published literature. Intuitively, one might thus expect
fewer successful replications. However, the twist is that file drawer bias in original studies also
makes true positives more likely to enter the published literature. In fact, both false positives
and true positives are equally overrepresented compared to true negatives and false negatives.
The implication is that the ratio of false positives to true positives among original published
studies is the same as it was prior to the initial publication process (i.e., before a file drawer
bias). That is, file drawer bias does not differentially overrepresent false positives compared to
true positives.

Instead of original study file drawer bias, our analysis show that what determines the repro-
ducibility rate more is the power of the original and replication studies, publication bias in the
replication studies themselves, and what Ioannidis calls the “pre-study odds” of a true relation-
ship (i.e., proportion of false nulls in the field), a monotonic transformation of the π parameter
(Ioannidis, 2005). In particular, publication bias in replication studies can either increase or de-
crease R, depending on the relative importance of file drawer bias and gotcha bias. Moreover,
regardless of the presence of publication bias, the reproducibility rate can be easily close to 20%
or even lower in low-power studies or when researchers are testing mostly true nulls.

Proposition 3 also allows us to interpret findings from large-scale controlled replication
studies such as Open Science Collaboration’s well-known study in more precise terms. Note
that such a replication study is not subject to either file drawer bias or gotcha bias, because it
by definition reports all the replication test results. Further, suppose that the replications are
conducted in an idealized setting, such that β2 ' 0 and α2 ' 0 (e.g., think of an infinitely
large sample). Under this scenario, R ' (1 − π)(1 − β1)/ {(1− π)(1− β1) + πα1}. This
implies that reproducibility in this type of replication study will be high if (1) there are many
true relationships to be discovered (i.e., π is small), (2) original studies are conducted with large

14



power (i.e., β1 is small) or (3) original positive results passed stringent statistical tests (i.e., α1

is small). These agree with many of the factors that Open Science Collaboration pointed out as
possible causes of the low reproducibility in their study, but it is again noteworthy that these do
not include publication bias in the original studies, contrary to what Open Science Collaboration
suspected.

We now turn to our vignette survey experiment to investigate the reproducibility rate em-
pirically. In addition to publication bias, the key parameters that determine reproducibility are
power and the proportion of true null hypotheses that are tested in a given scientific field. We
therefore first simulate the reproducibility rate under different scenarios with respect to those
two key parameters, in the assumed absence of publication bias. These simulated theoretical
values of the reproducibility rate are plotted by dashed lines in each of the four panels in Figure
S9, assuming different levels of significance tests at each stage. For each combination of the
significance levels, we provide four sets of reproducibility simulations, each corresponding to
a specific sample size (50, 150, 1,000 and 5,000) in our vignette experiment. The sample sizes
are translated to implied power values in these simulations.

As mentioned above, the reproducibility rate varies widely depending on these parameters.
When hypotheses are tested with a small sample size (such as N =50), these tests have low
statistical power. The reproducibility rate therefore remains low even when researchers are all
testing for effects that are true. This result occurs because a large majority of replication studies
with such low power will fail to detect those effects. In contrast, high-powered replication
studies can reproduce original positive results with high probability even when the pre-study
odds of true effects are rather low, because such studies are unlikely to mis-classify those few
true effects as insignificant. Of course, the reproducibility rate eventually converges to the
nominal type-I error rate of the replication test as the proportion of true nulls approaches one, at
which point the tests are merely “replicating” the wrong results at their designed false positive
rate.

What happens to the reproducibility rate when we incorporate our estimated levels of pub-
lication bias in its calculation? Here, we again use our vignette survey data to produce such
estimates corresponding to each of the simulated scenarios (solid lines in Figure S9) along with
their 95% confidence bands (shaded regions). Somewhat counterintuitively, we find that the
publication bias exhibited in our experiment would improve the reproducibility rate by statisti-
cally significant margins across all possible values of statistical power and the pre-study odds
of true effects. This result stems from the predominance of file drawer bias that we find even in
replication studies. That is, because positive results are published more often than negative re-
sults, the “successful” reproduction of original positive results are overrepresented in published
replication studies compared to negative reproduction results. The gotcha bias does counterbal-
ance this tendency to some extent, but because this bias is smaller than the file drawer bias, the
net effect is to increase the reproducibility rate.

To be clear, as is suggested by our model, the reproducibility rate is unaffected by the
original study file drawer bias (recall this is because original study file drawer bias does not
differentially overrepresent false positives compared to true positives). What does matter for
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Figure S9: Estimates of Reproducibility as Function of Power and “Pre-Study Odds.” In each
panel, dashed lines represent the simulated theoretical reproducibility rate for a given combina-
tion of the assumed proportion of the true null hypotheses (horizontal axis) and the power value
implied by a sample size (four different colors, as indicated in the plot legend) in the absence of
publication bias. Solid lines show the estimated reproducibility rates with the publication bias
estimated from the vignette data, with 95% confidence bands indicated by the shaded areas.
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the reproducibility rate is the nature of the file drawer bias and the gotcha bias in the replication
study. We find that, empirically, publication biases in replication studies actually increase the
reproducibility rate. This result should not be taken as a recommendation to encourage pub-
lication bias in replication studies, however. Recall that the same replication study biases that
increase the reproducibility rate also increase the AFPR. This is a stark reminder that repro-
ducibility is not a direct indicator of whether study results represent true effects or not. It is
rather a metric of the regularity of finding positive test results whether or not they are indicative
of the true state of the world. When publication biases persist, the reproducibility rate metric
should be used with great care.
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