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A Details of Setup

We describe regularity conditions for the support of treatment exposure probabilities to ensure
well-defined causal estimands.

The required regularity conditions are as follows: (1) the support of Pr(G; = ¢,U; =
u|T; = 1) is equal to the support of Pr(G; = ¢,U; = u|T; = 0) for all ¢, and (2) the support
of Pr(U; = u|T; = d,G; = g') is equal to the support of Pr(U; = u|T; = d, G; = g*) for all i.
We discuss them in order.

When we define the unit level direct effect, we avoid ill-defined causal effects by focusing
on settings where the support of Pr(G; = ¢g,U; = u | T; = 1) is equal to the support of Pr(G; =
g, Ui = u | T; = 0) for all i. This can be violated when the total number of treated units is
small so that for some (g,u), Pr(G = ¢, U = u|T; = 1) =0 and Pr(G = ¢,U = u|T; = 0) > 0.
One extreme example is that when we use complete randomization with the total number of
treated units equal to 1. In this case, whenever T; = 1, Pr(G = ¢,U = u|T; = 1) = 0 for
all (g,u), but when T; = 0, Pr(G = ¢,U = u|T; = 0) > 0 for some (g, u). Another extreme
example is that the total number of treated units is too large. For example, when we use
complete randomization with the total number of treated units equal to N — 1. In this case,
whenever T; = 0, Pr(G = g,U = u|T; = 0) = 0 for all (g,u) except for (g,u) = (1,1), but
when T; = 1, Pr(G = g,U = u|T; = 1) > 0 for some (g, u) other than (¢g,u) = (1,1). It is
clear that when researchers use a Bernoulli design, the support of Pr(G; = g, U; =u | T; = 1)
is equal to the support of Pr(G; = g,U; = u | T; = 0) for all 7.

When we define the unit level network—spe01ﬁc spillover effect, we avoid ill-defined causal
effects by focusing on settings where Pr(U; = u | T; = d,G; = g") and Pr(U; = u | T} =
d,G; = g*) have the same support for all i. This requires that g” and g* are small enough
so that the distribution over the fraction of treated neighbors in network U is not restricted,
especially Pr(U; = 0 | T} = d,G; = g") > 0 and Pr(U; = 0 | T; = d,G; = g*) > 0
for all 4. Formally, g, g* < g, where g, = miin{l - |/\/;(g’u)| JIN?|}. The desired support

condition can be violated when the total number of treated units is too small so that for



some u, Pr(U = u|T; = 1,G; = g") = 0 and Pr(U = u|T; = 1,G; = g*) > 0. One extreme
example is that when we use complete randomization with the total number of treated units
equal to 1+ g x |[N7|. In this case, whenever G; = g%, Pr(U = u|T; = 1,G; = ¢") =0
for all u > [NY9Y|/INY|, but when G; = g~ < g%, Pr(U = u|T; = 0,G; = ¢%) > 0
for some u > |M(gu)|/|W| Finally, it is clear that Pr(U; = u | T; = d,G; = ¢7) and
Pr(U; = u | T; = d,G; = g") have the same support for all i if researchers use a Bernoulli

design and ¢, g* < g,.

B Connection between Total Spillover Effects and Network-

Specific Spillover Effects

Here, we connect the ANSE to the popular estimand in the literature. In particular, we show
that the ANSE can be seen as the decomposition of the average total spillover effect (Hudgens
and Halloran, 2008).

First, by extending Hudgens and Halloran (2008) to settings with multiple networks, the

individual average potential outcome are defined as follows.

Yild,g) = Z Yi(d,g,u) Pr(U; =u | T; =d,G; = g), (A1)

ueAY
where the potential outcome of individual ¢ is averaged over the conditional distribution of
the treatment assignment Pr(U; = u | T; = d, G; = g). Here, the individual average potential
outcome represents the expected outcome of unit ¢ when she receives the direct treatment
d and the treated proportion g in network G. Taking the difference in the two individual
average potential outcomes, the average total spillover effect (ATSE) in network G is defined

as follows (Halloran and Hudgens, 2016).8

Ole"ghsd) = 5 YAVl g™~ Vil o), (A2)

This causal quantity is the total spillover effect of changing the treated proportion in network

G from g* to g as the following decomposition of the ATSE demonstrates.

W(g" g"hd) = T(g", g% d) + (A3)

8This quantity is called the average indirect causal effect in Hudgens and Halloran (2008). We define it as

the average total spillover effect to clarify how it combines multiple network-specific spillover effects.
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for any u' € AY¥. The first term is the ANSE in network G (Definition 3), which quantifies
the spillover effect specific to network G. The second term represents the spillover effect in U,
Yi(d, g",u) —Yi(d, g™, ), weighted by the change in the conditional distribution of U; due to
the change in G, Pr(U; =u | Ty = d,G; = g") = Pr(U; = u | T; = d,G; = g*). This is because
U;, the treated proportion of neighbors in the other network ¢, is not fixed at constant and
thus, they change as G}, the treated proportion of neighbors in G, changes. Thus, the ATSE
captures the sum of the spillover effect specific to network G and the spillover effect specific
to U induced by the change in U; associated with the change in G;. For example, the ATSE
of changing from g% to g on the Facebook network captures two spillover effects together;
(1) the spillover effect specific to the Facebook and (2) the spillover effect in the face-to-face
network. This is because the treated proportion in the offline network U; is associated with
the change in the treated proportion in the Facebook network G;. We discuss this issue in
further details when we derive the exact bias formula in Section 3. When network U/, such as
the offline network, is causally irrelevant, the ATSE is equal to the ANSE in the Facebook
network, but in general, the two estimands do not coincide.

While both the ATSE and the ANSE quantify spillover effects, their substantive meanings
differ. The ATSE is useful when researchers wish to know the total amount of spillover effects
that result from interventions on an observed network. For instance, politicians decided to
run online campaigns on Twitter and want to estimate the total amount of spillover effects
they can induce by their Twitter messages. These politicians might not be interested in
distinguishing whether the spillover effects arise through Twitter or through unobserved face-
to-face interactions. Thus, the ATSE is of relevance when the target network is predetermined
and the mechanism can be ignored.

In contrast, the ANSE is essential for disentangling different channels through which
spillover effects arise. It is the main quantity of interest when researchers wish to exam-
ine the causal role of individual networks or to discover the most causally relevant network to
target. For example, it is of scientific interest to distinguish how much spillover effects arise
through the Twitter network or through offline communications. By estimating the ANSE,

researchers can learn about the importance of online human interactions.
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C Proofs

This section provides proofs for all theorems in the paper.

C.1 Proof of Theorem 1

C.1.1 ADE

First, we rewrite the estimator with the standard IPW representation.
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Then, the theorem follows from the standard proof for the IPW estimator.

E[d]

1 N
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=1 (g,u)eAd"
E[{T; = 1,G; = g,U; = u}Y]] _ E[{T; = 0,Gi = g, U; = u}Yj]
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N
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= 0
where the second equality follows from the consistency of potential outcomes. a
C.1.2 ANSE

First, we rewrite the estimator with the standard IPW representation.
5_\

N N
1 H 1 L
= Nzl{Ti:d,Gi:g }’wz’Y;—Nzl{Ti:d,Gizg}in}

i=1 i=1



N
= %ZZPr(Ui:u\Tizd,Gisz)x
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Then, the theorem follows from the standard proof for the IPW estimator.
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N
1
= DY Pl = u| T = d,Gy = M) {Yi(d g ) — Yild, 6", )}
i=1 ucAy
= (", 9" d),
which completes the proof. a

C.2 Proof of Theorem 2

The expectation of an estimator 75(g”, g*; d) is

N

) |
E[7s(g", g"; d)] = NZ{EDQ | Ti=d, G, =g"] -ElY; | T, =d,G; = gL]}

i=1

- —ZZ{ (d, g7 u)Pr(U; =u | T; = d,G; = g") — Yi(d, g", u) Pr(U; _u|T_dG—g)}.

=1 uelAy

Therefore, we get

E[75(9", g% d)] — 7(¢", g"; d)

- %ZZ{ (d, ", u){Pr(U; =u | Ty =d,G; = g") = Pr(U; = u | T; = d,G; = ¢g")}

=1 ueA}

—Yi(d, ", u{Pr(U; =u | T, = d,G; = g") = Pr(Uy = u | T; = d,G; = g )}}
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for any u' € A" O
C.2.1 Lemma: Bias in ADE

First, we can rewrite the estimator as the standard IPW estimator.

N N
~ 1 5 1 5
op = N ;_1 T, = 1}w;Y; — N E H{T; = 0}w;Y;

i=1
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We have the following equality for any g,

E[{T; = d,G; = g}Yi]

= E[ Y UT,=d,G;=g,U =u}Yi(d, g, u)

u€AY(g)

= Z Pr(T; =d,G; = g,U; = u)Yi(d, g,u)

u€A¥(g)

where AY(g) is the support {u : Pr(U; = u | G; = g) > 0}. Therefore, the expectation of g is

E[dg]
g B [1{T; =1,G; = g}Vi] E[{T; =0,G; = g}
N N;QEMPY(Q—Q){ Pr(T,=1,G;=¢g)  Pr(T,=0,G; = g) }
_ %Z Pr(Gi:g){
i=1 geA?
{Pr(Tizl Gi=g,U=uYi(l,g,u) Pr(T;=0,G;=g,U; = )Y(O,g,u)}
rers Pr(T; =1,G; = g) Pr(T; =0,G; = g)
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Then, we have

1

u€A¥

Z{Ylg, Yi(1, g, u)H{Pr(Uy=u | Ty =1,G; = g) = Pr(U; =u | G; = g)}

u€A¥(g)

Y V0w — V0. P, = u | T, = 0.6, = g) — Pr(U, —u|G—g>}}

u€A¥(g)

which completes the proof. a

C.3 Proof of Theorem 3

Using Theorem 2, under Assumption 3,

El7s(g", 9" d)] — (9", g"; d)
N
1 H L
From here, we focus on E[U; | T; = d, G; = g"]. For notational simplicity, we use ng(i) to
denote the number of neighbors in the network G for individual i and ny (¢) is similarly defined.
Also, for individual i, let mgy(2) be the fraction of the neighbors in & who are neighbors in G
as well. Formally, ng(i) = |NF|, ny (i) = |N¥| and may (i) = NSO/ IV,
First, we consider Bernoulli randomization with probability p. Under this setting,
E[UZ | Tl =1, Gl = gH] = 7TGU('i) X gH + (1 — WGU(Z.)) X P.
Therefore, we have
E75(g H,gL‘ d)] = 7(g", 9" d)

= )\X—Z{E =u|T,=d,G;=g"—E[U; =u| T, =d,G; = g“]}.



N
1 : H_ L
= /\XN;WGU(Z)X(Q —g")
= A x7ar x (g% —g").

where the final equality follows from the definition of gy .
Next, we consider complete randomization with the number of treated units K. Under

this setting,

E[U; | T; = d,G; = ¢"]
- ot Xnm([;)(i) o + (1 = meu(i))

K —d—ng(i) x g?
N —1—ng(1)
K —d—ng(i) x g%
N —1—ng(i)

(1 —mau(i) }g" +

= mau(i) x ¢" + (1 = mgu (7))

ng(7) K—d
—1- n(;(z) N-—1-— ng(Z)

When N is much larger than ng (i), ng(i)/(N —1 —ng(i)) ~ 0. Then, we have

K—d |
N—1—ng v

EU; | T, =d,G; = g"| —E[U; = u | T; = d,G; = g*] = mau(i) (g™ — ¢b).

= {rau(i) - (E0)

Therefore, when N is much larger than ng(i) for all i, we get the simplified bias formula.
E[7s(g", g% d)] — 7(g", ¢"; d)

N
= ! = - o _ Hy o o T
- )\XN;{E[Ul—lﬂTl—d,GZ—g] E[U; =u | T, = d,G; = gH]}.

Q

N

1 - H_ L
)\XN;WGU(Z)X(Q -9")
= A x7ar x (g% —g").

Finally, we consider a situation when N is not large enough to have the aforementioned

approximation. Suppose N = (C' + 1)ng(i) + 1 for all 4. Then,

C+1 . 1 K —d )
ElU; | T, =d,G; = g"] = { c Tau(i) — 5} x g + N1 _nG<Z.>(1 —mau(i)),
EU; | T, =d,Gi=¢" | -ElUi=u|T,=d,G; =g ]%{ C WGU(Z)_E}(Q —g").

Therefore, the bias can be written as,

El75(g", g"; d)] — 7(g", g"; d)
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C.4 Proof of Theorem 4

First, we set the following notations. We

d,G;=g" —ElUi=u|T; =d,G; = g"]}

')—é} x (" —g")

T gl (A4)
O

define the support A¥ to be the support A} for all

i with S; = s. We drop subscript s whenever it is obvious from contexts. For g € {g”, g*},

— min, 75(u)} Pr(

) = 5 3 Yildgw
i:5;=s
() = et

2 ueauirg(u)

— min,, r5(u) } Pr(

max,, 73(u) — min, r5(u)

Uy=u|Ti=d G =g")

v (g) = )
oy = 18) _ Taear ) mine ()} PV = | T = G =
vgr(3)  Duenwirs(w) —ming r5(uw)} Pr(U; = u | Ti = d,G; = g*)
MR (gH ¢t s) = ZueAu a(uw)Pr(U; =u | T; = d,G; = g7)
> uens T (W) Pr(Us = u | T; = d,G; = g*)
MR?“G(QH,gL; s) = Zuem H(“) Pr(U;=u|T,=d,G; = ?)
EuGA“ () Pr(Us =u | T; = d,G; = g)

where 0 < vyu (g), v,z

7 g

Lemma 1 For (g%, g%),

ME™(g",g%5) _ 5
MRtrue<gH gL. ) —
obs L H
MRtT”LLe( S) S B
MR](g", g™ )

Proof This proof closely follows Ding an

(g) < 1 because of non-negative outcomes.

ME™(g",g%5) _ 5

MRt’rue<gH gL. ) ’
obs L H

MR (g i S) < B

MRi(g", g™ s)

d VanderWeele (2016). The key difference is that we

study bias due to an unmeasured relevant network in the presence of interference in multiple

networks in contrary to bias due to an unmeasured confounder in observational studies without

interference (Ding and VanderWeele, 2016).



For g € {g”,¢"} and s,
T ZueAu{Tg(U) — min, Tg(u)} PI’(UZ =U | T'z = d, Gz = gH)
9 = 3 ra(0) — i 1y (@)} Pr(U; = u | T, = 4,Gr = g7)
. r(Ui=u|T;=d,Gi=g"
ZueAg{rg(u) — My TQ(u) ir((gi=u||§:i=6cll,gi=zL)) Pr(Ui=ul|Ti=d,G; = gL)

ZueAg{r§<U’) — min, Tg(u)} PI‘(Ul =Uu ’ T, = d, Gz = gL)

< RRgu

Also, for g € {g”, g"} and s,
1 ZueAg{rg(u) - minu Tg(u)} PI’(UZ =Uu | T; = d, Gz = gL)
r') > uenr{rg(u) —ming r5(u)} Pr(U; = u | Ti = d,Gi = g")
. r(Ui=u|T;=d,G;=g"~
Cuear{ra(u) — minury(u)} e Sir=icmim Pr(Ui = u | Ts = d,Gi = ¢")
ZuGAg{rg(u) - minu 7’§<U)} PI‘(UZ =Uu ’ E = d’ Gz = gH)

< RRegy.

Then, we have
MR (gH gL s)
MRT(g", g"; s)
Duens Tgn (W Pr(Us =u | Ty =d,G; = g D uenn T (W Pr(Us =u | T, = d, G; = gb)
D uenn Tgr (W Pr(Us = u | Ty = d, G; = g~) X > uens T (U) Pr(Us = uw | T, = d,G; = g*)
ZueAg TgH(u)P Ui=u|T,=d,G; = gH)
> uenn Tg (W) Pr(Us = u | T; = d, G; = g*)

{max, ryu (u) — min, ryu (w) yvgu (g7) + min, rym (u)

v H
{max, 7ym (u) — min, 7ym (u) % + min,, 7ym (u)

T

From Lemma A.1 in Ding and VanderWeele (2016), when T'(g¥) > 1, W is increas-
gt 7

H). Therefore, it takes the maximum value when vy (g7) = 1.

MR (g, g": ) _ I'(g") x MRyy (9", )
MR“(¢%, g¥;s) = T(g") + MRyy (g%, s) — 1
RRqu x MRyy
RRgy + MRyy — 1

where the second inequality comes from Lemma A.2 in Ding and VanderWeele (2016) and
I'(g") < RRgr, MRyy = max, s MRyy (g, s).

From Lemma A.1 in Ding and VanderWeele (2016), when I'(¢¥) < 1, W is
gL .

ing in vyr (g

non-increasing in vyu (g*). Therefore, it takes the maximum value at v,u (g™) = 0.

MR™(g", g"; s) <1< MReu x MRyy
MRZ"L“e(gH, glis) 7 RReu + MRyy — 1
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where the second inequality comes from Lemma A.2 in Ding and VanderWeele (2016) and

RRgy =2 1, MRyy 2> 1.

Hence, we obtain the desired result.

MR (g™, g% 5) - RReu X MRyy
MRZL“E(QHJL; s) ~ RRgu + MRyy — 1

Similar derivations apply to the other three inequalities. a

Proof of the theorem. For notational simplicity, we use the following representation.

m(d, g; s)

1
~ 2 BV [T =d.Gi =]

1:5;=s

1 ZuEA# PI‘(E = d7 Gz =9, Uz = U)Yz(daga u)
N NSZ Pr(T; = d,G; = g)
1
zS =su

- ZPr i =ul| T, =d,G; = g)Yi(d, g,u)
DI

1S

— ro(u)Pr(U; =u | T; =d,G; = g).

u€EAY

i(d, g, )}Pr( =u|T;=d,G;=g)

=S

We want to show that, for ¢, ¢*,

m(d, g"; s)

B _me(dng;S) <

1
< 5 (9", g% d) < Bxm(d, g";s) —
25,

Because this implies the desired result.

m(d, g"; s)

5 — B xm(d,g";s) <

(9", " d) < Bxm(d,g";s)—

ZSES w — B X m<d7 gL7 8) 2368{%\[ Zi:Si:s Ti(gHv gL7 d)}

:S;=
<
m(d,g;s
ZSES %Zizsi s (g g d)} S ZSES{B X m(d’gH’S) - %}

E[riv(d, g")]

7 — BxEl(d ¢")] < 7(9",9"d) <BxElm(d g")] - —E[mg’ ail}

First, using Lemma 1,
m(d, g"; s)
EueAg w(w)Pr(U;=u | T, =d,G; = g%)
S ueay o (w) Pr(Us = u| T, = d,G; = g")
S eas Ton (W) Pr(Us = u | T, = d, G = gF)
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Duear Tgn (W) Pr(Ui = u | T; = d, Gy = g") y > uenu Tgr (W) Pr(Us = u | Ty = d,G; = g")
Duenn Tgr (W Pr(Us = u | Ti = d, Gy = g%)  Yyepnron (W) Pr(Ui = u | T; = d, G; = g")
MR*(g", g"; )

= < B
MR (g, g% s) —

where the final equality follows from the lemma. Therefore,
m(d, g"
—<ZrH U=ul|Ty=d,G;=g"). (A5)
Also, since B > 1,

Z L) Pr(Us=u | T, =d,G; = g~) =m(d, g% s) < Bxm(d,g";s). (A6)

uEAY

Finally, taking equations (A5) and (A6) together,

H.
M B><m(dg 9
S P =0 | Ty .Gy o)~ 3 o) Pl = | T, G
uEAY ueAY
Y () 1 () P = | = Gy = )
u€EAY
1
1:5;=s uEAY
1
= N > 7ilg" g% d).
iZSiZS

Similarly, we want to prove

1 H L H m(d,gL;s)
1y .d) < B 18) =
Ni-s.:fz(g ,975d) < B xm(d, g"; ) B
First, since B > 1,
L.
PEIE) < gt = Y ) PrU = | T=d,Gi= ") (AT

u€eAY

Then, using Lemma 1,

ZzLeAgrgH( w)Pr(U; =u | T, =d,G; = g")
m(d, g"; s)

Yueau T (W) Pr(U; = u | T, = d,G; = g*)

ZueAurH(u)Pr( U=ul|T,=d,G; =g")
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S o0 Pr{U = | T = G = ) Sy el P = 0| T, = .G = g
Y e T (W PHUi = u [ Ty = d,Gi = g5) = 3 cpnu 7 (U) Pr(Us = u | T, = d, G; = g')
MRobs( L H 8)

= < B.
Aﬂ@?@,g;ﬁ_
Therefore, we have
Y ru(U)Pr(U;=u| Ty =d,G; = g*) < Bxm(d,g";5s). (A8)

UEAY

Finally, taking equations (A7) and (A8) together,

L.
B x m(d, g";s) — m(d, g7 )

B

> 3 () Pr(Ui=u | T, = d,Gi=g") = 3 ryu(w) Pr(Ui = u | T, = d,G; = ¢")

u€EAY weAY

Z{TH — 1} Pr(Ui = u | T = d,G; = g")

ueAY

zS =sucAlY

_ 1 oL
- Ni;STZ(g v g ad)

Hence we have

H. 1 d L.
@@£49—mewyﬂﬁé-— n@ﬁfﬂ)Smewyﬁﬁ—TLﬁli
B N — B
which completes the proof. a
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