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A Details of Setup

We describe regularity conditions for the support of treatment exposure probabilities to ensure

well-defined causal estimands.

The required regularity conditions are as follows: (1) the support of Pr(Gi = g, Ui =

u|Ti = 1) is equal to the support of Pr(Gi = g, Ui = u|Ti = 0) for all i, and (2) the support

of Pr(Ui = u|Ti = d,Gi = gH) is equal to the support of Pr(Ui = u|Ti = d,Gi = gL) for all i.

We discuss them in order.

When we define the unit level direct effect, we avoid ill-defined causal effects by focusing

on settings where the support of Pr(Gi = g, Ui = u | Ti = 1) is equal to the support of Pr(Gi =

g, Ui = u | Ti = 0) for all i. This can be violated when the total number of treated units is

small so that for some (g, u), Pr(G = g, U = u|Ti = 1) = 0 and Pr(G = g, U = u|Ti = 0) > 0.

One extreme example is that when we use complete randomization with the total number of

treated units equal to 1. In this case, whenever Ti = 1, Pr(G = g, U = u|Ti = 1) = 0 for

all (g, u), but when Ti = 0, Pr(G = g, U = u|Ti = 0) > 0 for some (g, u). Another extreme

example is that the total number of treated units is too large. For example, when we use

complete randomization with the total number of treated units equal to N − 1. In this case,

whenever Ti = 0, Pr(G = g, U = u|Ti = 0) = 0 for all (g, u) except for (g, u) = (1, 1), but

when Ti = 1, Pr(G = g, U = u|Ti = 1) > 0 for some (g, u) other than (g, u) = (1, 1). It is

clear that when researchers use a Bernoulli design, the support of Pr(Gi = g, Ui = u | Ti = 1)

is equal to the support of Pr(Gi = g, Ui = u | Ti = 0) for all i.

When we define the unit level network-specific spillover effect, we avoid ill-defined causal

effects by focusing on settings where Pr(Ui = u | Ti = d,Gi = gH) and Pr(Ui = u | Ti =

d,Gi = gL) have the same support for all i. This requires that gH and gL are small enough

so that the distribution over the fraction of treated neighbors in network U is not restricted,

especially Pr(Ui = 0 | Ti = d,Gi = gH) > 0 and Pr(Ui = 0 | Ti = d,Gi = gL) > 0

for all i. Formally, gH , gL ≤ gs where gs ≡ min
i
{1 − |N (G,U)

i |/|N G
i |}. The desired support

condition can be violated when the total number of treated units is too small so that for
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some u, Pr(U = u|Ti = 1, Gi = gH) = 0 and Pr(U = u|Ti = 1, Gi = gL) > 0. One extreme

example is that when we use complete randomization with the total number of treated units

equal to 1 + gH × |N G
i |. In this case, whenever Gi = gH , Pr(U = u|Ti = 1, Gi = gH) = 0

for all u > |N (G,U)
i |/|N U

i |, but when Gi = gL < gH , Pr(U = u|Ti = 0, Gi = gL) > 0

for some u > |N (G,U)
i |/|N U

i |. Finally, it is clear that Pr(Ui = u | Ti = d,Gi = gH) and

Pr(Ui = u | Ti = d,Gi = gL) have the same support for all i if researchers use a Bernoulli

design and gH , gL ≤ gs.

B Connection between Total Spillover Effects and Network-

Specific Spillover Effects

Here, we connect the ANSE to the popular estimand in the literature. In particular, we show

that the ANSE can be seen as the decomposition of the average total spillover effect (Hudgens

and Halloran, 2008).

First, by extending Hudgens and Halloran (2008) to settings with multiple networks, the

individual average potential outcome are defined as follows.

Y i(d, g) ≡
∑
u∈∆u

i

Yi(d, g, u) Pr(Ui = u | Ti = d,Gi = g), (A1)

where the potential outcome of individual i is averaged over the conditional distribution of

the treatment assignment Pr(Ui = u | Ti = d,Gi = g). Here, the individual average potential

outcome represents the expected outcome of unit i when she receives the direct treatment

d and the treated proportion g in network G. Taking the difference in the two individual

average potential outcomes, the average total spillover effect (ATSE) in network G is defined

as follows (Halloran and Hudgens, 2016).8

ψ(gH , gL; d) ≡ 1

N

N∑
i=1

{Y i(d, g
H)− Y i(d, g

L)}. (A2)

This causal quantity is the total spillover effect of changing the treated proportion in network

G from gL to gH as the following decomposition of the ATSE demonstrates.

ψ(gH , gL; d) = τ(gH , gL; d) + (A3)

8This quantity is called the average indirect causal effect in Hudgens and Halloran (2008). We define it as

the average total spillover effect to clarify how it combines multiple network-specific spillover effects.
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1

N

N∑
i=1

∑
u∈∆u

i

{Yi(d, gH , u)− Yi(d, gH , u′)}{Pr(Ui = u | Ti = d,Gi = gH)− Pr(Ui = u | Ti = d,Gi = gL)}

 ,

for any u′ ∈ ∆u
i . The first term is the ANSE in network G (Definition 3), which quantifies

the spillover effect specific to network G. The second term represents the spillover effect in U ,

Yi(d, g
H , u)−Yi(d, gH , u′), weighted by the change in the conditional distribution of Ui due to

the change in Gi, Pr(Ui = u | Ti = d,Gi = gH)−Pr(Ui = u | Ti = d,Gi = gL). This is because

Ui, the treated proportion of neighbors in the other network U , is not fixed at constant and

thus, they change as Gi, the treated proportion of neighbors in G, changes. Thus, the ATSE

captures the sum of the spillover effect specific to network G and the spillover effect specific

to U induced by the change in Ui associated with the change in Gi. For example, the ATSE

of changing from gL to gH on the Facebook network captures two spillover effects together;

(1) the spillover effect specific to the Facebook and (2) the spillover effect in the face-to-face

network. This is because the treated proportion in the offline network Ui is associated with

the change in the treated proportion in the Facebook network Gi. We discuss this issue in

further details when we derive the exact bias formula in Section 3. When network U , such as

the offline network, is causally irrelevant, the ATSE is equal to the ANSE in the Facebook

network, but in general, the two estimands do not coincide.

While both the ATSE and the ANSE quantify spillover effects, their substantive meanings

differ. The ATSE is useful when researchers wish to know the total amount of spillover effects

that result from interventions on an observed network. For instance, politicians decided to

run online campaigns on Twitter and want to estimate the total amount of spillover effects

they can induce by their Twitter messages. These politicians might not be interested in

distinguishing whether the spillover effects arise through Twitter or through unobserved face-

to-face interactions. Thus, the ATSE is of relevance when the target network is predetermined

and the mechanism can be ignored.

In contrast, the ANSE is essential for disentangling different channels through which

spillover effects arise. It is the main quantity of interest when researchers wish to exam-

ine the causal role of individual networks or to discover the most causally relevant network to

target. For example, it is of scientific interest to distinguish how much spillover effects arise

through the Twitter network or through offline communications. By estimating the ANSE,

researchers can learn about the importance of online human interactions.
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C Proofs

This section provides proofs for all theorems in the paper.

C.1 Proof of Theorem 1

C.1.1 ADE

First, we rewrite the estimator with the standard IPW representation.

δ̂

=
1

N

N∑
i=1

1{Ti = 1}w̃iYi −
1

N

N∑
i=1

1{Ti = 0}w̃iYi

=
1

N

N∑
i=1

∑
(g,u)∈∆gu

i

Pr(Gi = g, Ui = u)

{
1{Ti = 1, Gi = g, Ui = u}Yi
Pr(Ti = 1, Gi = g, Ui = u)

− 1{Ti = 0, Gi = g, Ui = u}Yi
Pr(Ti = 0, Gi = g, Ui = u)

}
.

Then, the theorem follows from the standard proof for the IPW estimator.

E[δ̂]

=
1

N

N∑
i=1

∑
(g,u)∈∆gu

i

Pr(Gi = g, Ui = u)×

{
E[1{Ti = 1, Gi = g, Ui = u}Yi]

Pr(Ti = 1, Gi = g, Ui = u)
− E[1{Ti = 0, Gi = g, Ui = u}Yi]

Pr(Ti = 0, Gi = g, Ui = u)

}
=

1

N

N∑
i=1

∑
(g,u)∈∆gu

i

Pr(Gi = g, Ui = u)×

{
Pr(Ti = 1, Gi = g, Ui = u)Yi(1, g, u)

Pr(Ti = 1, Gi = g, Ui = u)
− Pr(Ti = 0, Gi = g, Ui = u)Yi(0, g, u)

Pr(Ti = 0, Gi = g, Ui = u)

}
=

1

N

N∑
i=1

∑
(g,u)∈∆gu

i

Pr(Gi = g, Ui = u){Yi(1, g, u)− Yi(0, g, u)}

= δ

where the second equality follows from the consistency of potential outcomes. 2

C.1.2 ANSE

First, we rewrite the estimator with the standard IPW representation.

τ̂

=
1

N

N∑
i=1

1{Ti = d,Gi = gH}wiYi −
1

N

N∑
i=1

1{Ti = d,Gi = gL}wiYi
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=
1

N

N∑
i=1

∑
u∈∆u

i

Pr(Ui = u | Ti = d,Gi = gL)×

{
1{Ti = d,Gi = gH , Ui = u}Yi
Pr(Ti = d,Gi = gH , Ui = u)

− 1{Ti = d,Gi = gL, Ui = u}Yi
Pr(Ti = d,Gi = gL, Ui = u)

}
,

Then, the theorem follows from the standard proof for the IPW estimator.

E[τ̂(g, g′; d)]

=
1

N

N∑
i=1

∑
u∈∆u

i

Pr(Ui = u | Ti = d,Gi = gL)×

{
E[1{Ti = d,Gi = gH , Ui = u}Yi]

Pr(Ti = d,Gi = gH , Ui = u)
− E[1{Ti = d,Gi = gL, Ui = u}Yi]

Pr(Ti = d,Gi = gL, Ui = u)

}
=

1

N

N∑
i=1

∑
u∈∆u

i

Pr(Ui = u | Ti = d,Gi = gL)×

{
Pr(Ti = d,Gi = gH , Ui = u)Yi(d, g

H , u)

Pr(Ti = d,Gi = gH , Ui = u)
− Pr(Ti = d,Gi = gL, Ui = u)Yi(d, g

L, u)

Pr(Ti = d,Gi = gL, Ui = u)

}
=

1

N

N∑
i=1

∑
u∈∆u

i

Pr(Ui = u | Ti = d,Gi = gL){Yi(d, gH , u)− Yi(d, gL, u)}

= τ(gH , gL; d),

which completes the proof. 2

C.2 Proof of Theorem 2

The expectation of an estimator τ̂B(gH , gL; d) is

E[τ̂B(gH , gL; d)] =
1

N

N∑
i=1

{
E[Yi | Ti = d,Gi = gH ]− E[Yi | Ti = d,Gi = gL]

}

=
1

N

N∑
i=1

∑
u∈∆u

i

{
Yi(d, g

H , u) Pr(Ui = u | Ti = d,Gi = gH)− Yi(d, gL, u) Pr(Ui = u | Ti = d,Gi = gL)

}
.

Therefore, we get

E[τ̂B(gH , gL; d)]− τ(gH , gL; d)

=
1

N

N∑
i=1

∑
u∈∆u

i

{
Yi(d, g

H , u){Pr(Ui = u | Ti = d,Gi = gH)− Pr(Ui = u | Ti = d,Gi = gL)}

−Yi(d, gL, u){Pr(Ui = u | Ti = d,Gi = gL)− Pr(Ui = u | Ti = d,Gi = gL)}
}
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=
1

N

N∑
i=1

∑
u∈∆u

i

{
{Yi(d, gH , u)− Yi(d, gH , u′)}

×{Pr(Ui = u | Ti = d,Gi = gH)− Pr(Ui = u | Ti = d,Gi = gL)}
}
.

for any u′ ∈ ∆u. 2

C.2.1 Lemma: Bias in ADE

First, we can rewrite the estimator as the standard IPW estimator.

δ̂B =
1

N

N∑
i=1

1{Ti = 1}w̃B
i Yi −

1

N

N∑
i=1

1{Ti = 0}w̃B
i Yi

=
1

N

N∑
i=1

∑
g∈∆g

i

Pr(Gi = g)

{
1{Ti = 1, Gi = g}Yi
Pr(Ti = 1, Gi = g)

− 1{Ti = 0, Gi = g}Yi
Pr(Ti = 0, Gi = g)

}
.

We have the following equality for any g,

E[1{Ti = d,Gi = g}Yi]

= E[
∑

u∈∆u
i (g)

1{Ti = d,Gi = g, Ui = u}Yi(d, g, u)]

=
∑

u∈∆u
i (g)

Pr(Ti = d,Gi = g, Ui = u)Yi(d, g, u)

where ∆u
i (g) is the support {u : Pr(Ui = u | Gi = g) > 0}. Therefore, the expectation of δ̂B is

E[δ̂B]

=
1

N

N∑
i=1

∑
g∈∆g

i

Pr(Gi = g)

{
E[1{Ti = 1, Gi = g}Yi]

Pr(Ti = 1, Gi = g)
− E[1{Ti = 0, Gi = g}Yi]

Pr(Ti = 0, Gi = g)

}

=
1

N

N∑
i=1

∑
g∈∆g

i

Pr(Gi = g)

{
∑

u∈∆u
i (g)

{
Pr(Ti = 1, Gi = g, Ui = u)Yi(1, g, u)

Pr(Ti = 1, Gi = g)
− Pr(Ti = 0, Gi = g, Ui = u)Yi(0, g, u)

Pr(Ti = 0, Gi = g)

}}

=
1

N

N∑
i=1

∑
g∈∆g

i

Pr(Gi = g)

{
∑

u∈∆u
i (g)

{
Yi(1, g, u) Pr(Ui = u | Ti = 1, Gi = g)− Yi(0, g, u) Pr(Ui = u | Ti = 0, Gi = g)

}}
.
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Then, we have

E[δ̂B]− δ

=
1

N

N∑
i=1

∑
g∈∆g

i

Pri(Gi = g)

{∑
u∈∆u

i

Yi(1, g, u){Pri(Ui = u | Ti = 1, Gi = g)− Pri(Ui = u | Gi = g)}

−
∑
u∈∆u

i

Yi(0, g
′, u){Pr(Ui = u | Ti = 0, Gi = g)− Pr(Ui = u | Gi = g)}

}

=
1

N

N∑
i=1

∑
g∈∆g

i

Pr(Gi = g)

{
∑

u∈∆u
i (g)

{Yi(1, g, u)− Yi(1, g, u′)}{Pr(Ui = u | Ti = 1, Gi = g)− Pr(Ui = u | Gi = g)}

−
∑

u∈∆u
i (g)

{Yi(0, g′, u)− Yi(0, g′, u′)}{Pr(Ui = u | Ti = 0, Gi = g)− Pr(Ui = u | Gi = g)}
}
,

which completes the proof. 2

C.3 Proof of Theorem 3

Using Theorem 2, under Assumption 3,

E[τ̂B(gH , gL; d)]− τ(gH , gL; d)

= λ× 1

N

N∑
i=1

{E[Ui = u | Ti = d,Gi = gH ]− E[Ui = u | Ti = d,Gi = gL]}.

From here, we focus on E[Ui | Ti = d,Gi = gH ]. For notational simplicity, we use nG(i) to

denote the number of neighbors in the network G for individual i and nU(i) is similarly defined.

Also, for individual i, let πGU(i) be the fraction of the neighbors in U who are neighbors in G

as well. Formally, nG(i) = |N G
i |, nU(i) = |N U

i | and πGU(i) = |N (G,U)
i |/|N U

i |.

First, we consider Bernoulli randomization with probability p. Under this setting,

E[Ui | Ti = t, Gi = gH ] = πGU(i)× gH + (1− πGU(i))× p.

Therefore, we have

E[τ̂B(gH , gL; d)]− τ(gH , gL; d)

= λ× 1

N

N∑
i=1

{E[Ui = u | Ti = d,Gi = gH ]− E[Ui = u | Ti = d,Gi = gL]}.
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= λ× 1

N

N∑
i=1

πGU(i)× (gH − gL)

= λ× πGU × (gH − gL).

where the final equality follows from the definition of πGU .

Next, we consider complete randomization with the number of treated units K. Under

this setting,

E[Ui | Ti = d,Gi = gH ]

=
nU(i)× πGU(i)× gH

nU(i)
+ (1− πGU(i))

K − d− nG(i)× gH

N − 1− nG(i)

= πGU(i)× gH + (1− πGU(i))
K − d− nG(i)× gH

N − 1− nG(i)

=
{
πGU(i)− nG(i)

N − 1− nG(i)
(1− πGU(i))

}
gH +

K − d
N − 1− nG(i)

(1− πGU(i))

When N is much larger than nG(i), nG(i)/(N − 1− nG(i)) ≈ 0. Then, we have

E[Ui | Ti = d,Gi = gH ] ≈ πGU(i)gH +
K − d

N − 1− nG(i)
(1− πGU(i)),

E[Ui | Ti = d,Gi = gH ]− E[Ui = u | Ti = d,Gi = gL] ≈ πGU(i)(gH − gL).

Therefore, when N is much larger than nG(i) for all i, we get the simplified bias formula.

E[τ̂B(gH , gL; d)]− τ(gH , gL; d)

= λ× 1

N

N∑
i=1

{E[Ui = u | Ti = d,Gi = gH ]− E[Ui = u | Ti = d,Gi = gL]}.

≈ λ× 1

N

N∑
i=1

πGU(i)× (gH − gL)

= λ× πGU × (gH − gL).

Finally, we consider a situation when N is not large enough to have the aforementioned

approximation. Suppose N ≈ (C + 1)nG(i) + 1 for all i. Then,

E[Ui | Ti = d,Gi = gH ] ≈
{C + 1

C
πGU(i)− 1

C

}
× gH +

K − d
N − 1− nG(i)

(1− πGU(i)),

E[Ui | Ti = d,Gi = gH ]− E[Ui = u | Ti = d,Gi = gL] ≈
{C + 1

C
πGU(i)− 1

C

}
(gH − gL).

Therefore, the bias can be written as,

E[τ̂B(gH , gL; d)]− τ(gH , gL; d)
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= λ× 1

N

N∑
i=1

{E[Ui = u | Ti = d,Gi = gH ]− E[Ui = u | Ti = d,Gi = gL]}.

≈ λ×
{C + 1

C
× 1

N

N∑
i=1

πGU(i)− 1

C

}
× (gH − gL).

= λ×
{C + 1

C
πGU −

1

C

}
× (gH − gL). (A4)

2

C.4 Proof of Theorem 4

First, we set the following notations. We define the support ∆u
s to be the support ∆u

i for all

i with Si = s. We drop subscript s whenever it is obvious from contexts. For ḡ ∈ {gH , gL},

rḡ(u) ≡ 1

N

∑
i:Si=s

Yi(d, ḡ, u)

vgH (ḡ) ≡
∑

u∈∆u
s
{rḡ(u)−minu rḡ(u)} Pr(Ui = u | Ti = d,Gi = gH)

maxu rḡ(u)−minu rḡ(u)

vgL(ḡ) ≡
∑

u∈∆u
s
{rḡ(u)−minu rḡ(u)}Pr(Ui = u | Ti = d,Gi = gL)

maxu rḡ(u)−minu rḡ(u)

Γ(ḡ) ≡
vgH (ḡ)

vgL(ḡ)
=

∑
u∈∆u

s
{rḡ(u)−minu rḡ(u)}Pr(Ui = u | Ti = d,Gi = gH)∑

u∈∆u
s
{rḡ(u)−minu rḡ(u)}Pr(Ui = u | Ti = d,Gi = gL)

MRobs(gH , gL; s) ≡
∑

u∈∆u
s
rgH (u) Pr(Ui = u | Ti = d,Gi = gH)∑

u∈∆u
s
rgL(u) Pr(Ui = u | Ti = d,Gi = gL)

MRtrue
ḡ (gH , gL; s) ≡

∑
u∈∆u

s
rgH (u) Pr(Ui = u | Ti = d,Gi = ḡ)∑

u∈∆u
s
rgL(u) Pr(Ui = u | Ti = d,Gi = ḡ)

where 0 ≤ vgH (ḡ), vgL(ḡ) ≤ 1 because of non-negative outcomes.

Lemma 1 For (gH , gL),

MRobs(gH , gL; s)

MRtrue
gL

(gH , gL; s)
≤ B

MRobs(gH , gL; s)

MRtrue
gH

(gH , gL; s)
≤ B,

MRobs(gL, gH ; s)

MRtrue
gL

(gL, gH ; s)
≤ B

MRobs(gL, gH ; s)

MRtrue
gH

(gL, gH ; s)
≤ B.

Proof This proof closely follows Ding and VanderWeele (2016). The key difference is that we

study bias due to an unmeasured relevant network in the presence of interference in multiple

networks in contrary to bias due to an unmeasured confounder in observational studies without

interference (Ding and VanderWeele, 2016).
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For ḡ ∈ {gH , gL} and s,

Γ(ḡ) =

∑
u∈∆u

s
{rḡ(u)−minu rḡ(u)}Pr(Ui = u | Ti = d,Gi = gH)∑

u∈∆u
s
{rḡ(u)−minu rḡ(u)}Pr(Ui = u | Ti = d,Gi = gL)

=

∑
u∈∆u

s
{rḡ(u)−minu rḡ(u)}Pr(Ui=u|Ti=d,Gi=gH)

Pr(Ui=u|Ti=d,Gi=gL)
Pr(Ui = u | Ti = d,Gi = gL)∑

u∈∆u
s
{rḡ(u)−minu rḡ(u)} Pr(Ui = u | Ti = d,Gi = gL)

≤ RRGU

Also, for ḡ ∈ {gH , gL} and s,

1

Γ(ḡ)
=

∑
u∈∆u

s
{rḡ(u)−minu rḡ(u)}Pr(Ui = u | Ti = d,Gi = gL)∑

u∈∆u
s
{rḡ(u)−minu rḡ(u)}Pr(Ui = u | Ti = d,Gi = gH)

=

∑
u∈∆u

s
{rḡ(u)−minu rḡ(u)} Pr(Ui=u|Ti=d,Gi=gL)

Pr(Ui=u|Ti=d,Gi=gH)
Pr(Ui = u | Ti = d,Gi = gH)∑

u∈∆u
s
{rḡ(u)−minu rḡ(u)} Pr(Ui = u | Ti = d,Gi = gH)

≤ RRGU .

Then, we have

MRobs(gH , gL; s)

MRtrue
gL

(gH , gL; s)

=

∑
u∈∆u

s
rgH (u) Pr(Ui = u | Ti = d,Gi = gH)∑

u∈∆u
s
rgL(u) Pr(Ui = u | Ti = d,Gi = gL)

×
∑

u∈∆u
s
rgL(u) Pr(Ui = u | Ti = d,Gi = gL)∑

u∈∆u
s
rgH (U) Pr(Ui = u | Ti = d,Gi = gL)

=

∑
u∈∆u

s
rgH (u) Pr(Ui = u | Ti = d,Gi = gH)∑

u∈∆u
s
rgH (u) Pr(Ui = u | Ti = d,Gi = gL)

=
{maxu rgH (u)−minu rgH (u)}vgH (gH) + minu rgH (u)

{maxu rgH (u)−minu rgH (u)}vgH (gH)

Γ(gH)
+ minu rgH (u)

From Lemma A.1 in Ding and VanderWeele (2016), when Γ(gH) > 1, MRobs(gH ,gL;s)

MRtrue
gL

(gH ,gL;s)
is increas-

ing in vgH (gH). Therefore, it takes the maximum value when vgH (gH) = 1.

MRobs(gH , gL; s)

MRtrue
gL (gH , gL; s)

≤ Γ(gH)×MRUY (gH , s)

Γ(gH) + MRUY (gH , s)− 1

≤ RRGU ×MRUY

RRGU + MRUY − 1

where the second inequality comes from Lemma A.2 in Ding and VanderWeele (2016) and

Γ(gH) ≤ RRGU ,MRUY = maxg,s MRUY (g, s).

From Lemma A.1 in Ding and VanderWeele (2016), when Γ(gH) ≤ 1, MRobs(gH ,gL;s)

MRtrue
gL

(gH ,gL;s)
is

non-increasing in vgH (gH). Therefore, it takes the maximum value at vgH (gH) = 0.

MRobs(gH , gL; s)

MRtrue
gL (gH , gL; s)

≤ 1 ≤ RRGU ×MRUY

RRGU + MRUY − 1
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where the second inequality comes from Lemma A.2 in Ding and VanderWeele (2016) and

RRGU ≥ 1,MRUY ≥ 1.

Hence, we obtain the desired result.

MRobs(gH , gL; s)

MRtrue
gL (gH , gL; s)

≤ RRGU ×MRUY

RRGU + MRUY − 1
.

Similar derivations apply to the other three inequalities. 2

Proof of the theorem. For notational simplicity, we use the following representation.

m(d, g; s) ≡ 1

N

∑
i:Si=s

E[Yi | Ti = d,Gi = g]

=
1

N

∑
i:Si=s

∑
u∈∆u

s
Pr(Ti = d,Gi = g, Ui = u)Yi(d, g, u)

Pr(Ti = d,Gi = g)

=
1

N

∑
i:Si=s

∑
u∈∆u

s

Pr(Ui = u | Ti = d,Gi = g)Yi(d, g, u)

=
∑
u∈∆u

s

{
1

N

∑
i:Si=s

Yi(d, g, u)

}
Pr(Ui = u | Ti = d,Gi = g)

=
∑
u∈∆u

s

rg(u) Pr(Ui = u | Ti = d,Gi = g).

We want to show that, for gH , gL,

m(d, gH ; s)

B
−B ×m(d, gL; s) ≤ 1

N

∑
i:Si=s

τi(g
H , gL; d) ≤ B ×m(d, gH ; s)− m(d, gL; s)

B
.

Because this implies the desired result.

m(d, gH ; s)

B
−B ×m(d, gL; s) ≤ 1

N

∑
i:Si=s

τi(g
H , gL; d) ≤ B ×m(d, gH ; s)− m(d, gL; s)

B

⇔


∑

s∈S

{
m(d,g;s)

B
−B ×m(d, gL; s)

}
≤
∑

s∈S

{
1
N

∑
i:Si=s τi(g

H , gL; d)

}
∑

s∈S

{
1
N

∑
i:Si=s τi(g

H , gL; d)

}
≤
∑

s∈S

{
B ×m(d, gH ; s)− m(d,gL;s)

B

}
⇔ E[m̂(d, gH)]

B
−B × E[m̂(d, gL)] ≤ τ(gH , gL; d) ≤ B × E[m̂(d, gH)]− E[m̂(d, gL)]

B
.

First, using Lemma 1,

m(d, gH ; s)∑
u∈∆u

s
rgH (u) Pr(Ui = u | Ti = d,Gi = gL)

=

∑
u∈∆u

s
rgH (u) Pr(Ui = u | Ti = d,Gi = gH)∑

u∈∆u
s
rgH (u) Pr(Ui = u | Ti = d,Gi = gL)

11



=

∑
u∈∆u

s
rgH (u) Pr(Ui = u | Ti = d,Gi = gH)∑

u∈∆u
s
rgL(u) Pr(Ui = u | Ti = d,Gi = gL)

×
∑

u∈∆u
s
rgL(u) Pr(Ui = u | Ti = d,Gi = gL)∑

u∈∆u
s
rgH (u) Pr(Ui = u | Ti = d,Gi = gL)

=
MRobs(gH , gL; s)

MRtrue
gL

(gH , gL; s)
≤ B

where the final equality follows from the lemma. Therefore,

m(d, gH ; s)

B
≤

∑
u∈∆u

s

rgH (u) Pr(Ui = u | Ti = d,Gi = gL). (A5)

Also, since B ≥ 1,∑
u∈∆u

s

rgL(U) Pr(Ui = u | Ti = d,Gi = gL) = m(d, gL; s) ≤ B ×m(d, gL; s). (A6)

Finally, taking equations (A5) and (A6) together,

m(d, gH ; s)

B
−B ×m(d, gL; s)

≤
∑
u∈∆u

s

rgH (u) Pr(Ui = u | Ti = d,Gi = gL)−
∑
u∈∆u

s

rgL(u) Pr(Ui = u | Ti = d,Gi = gL)

=
∑
u∈∆u

s

{rgH (u)− rgL(u)}Pr(Ui = u | Ti = d,Gi = gL)

=
1

N

∑
i:Si=s

∑
u∈∆u

s

{Yi(d, gH , u)− Yi(d, gL, u)}Pr(Ui = u | Ti = d,Gi = gL)

=
1

N

∑
i:Si=s

τi(g
H , gL; d).

Similarly, we want to prove

1

N

∑
i:Si=s

τi(g
H , gL; d) ≤ B ×m(d, gH ; s)− m(d, gL; s)

B
.

First, since B ≥ 1,

m(d, gL; s)

B
≤ m(d, gL; s) =

∑
u∈∆u

s

rgL(u) Pr(Ui = u | Ti = d,Gi = gL). (A7)

Then, using Lemma 1,∑
u∈∆u

s
rgH (u) Pr(Ui = u | Ti = d,Gi = gL)

m(d, gH ; s)

=

∑
u∈∆u

s
rgH (u) Pr(Ui = u | Ti = d,Gi = gL)∑

u∈∆u
s
rgH (u) Pr(Ui = u | Ti = d,Gi = gH)
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=

∑
u∈∆u

s
rgH (u) Pr(Ui = u | Ti = d,Gi = gL)∑

u∈∆u
s
rgL(u) Pr(Ui = u | Ti = d,Gi = gL)

×
∑

u∈∆u
s
rgL(u) Pr(Ui = u | Ti = d,Gi = gL)∑

u∈∆u
s
rgH (U) Pr(Ui = u | Ti = d,Gi = gH)

=
MRobs(gL, gH ; s)

MRtrue
gL

(gL, gH ; s)
≤ B.

Therefore, we have∑
u∈∆u

s

rgH (U) Pr(Ui = u | Ti = d,Gi = gL) ≤ B ×m(d, gH ; s). (A8)

Finally, taking equations (A7) and (A8) together,

B ×m(d, gH ; s)− m(d, gL; s)

B

≥
∑
u∈∆u

s

rgH (u) Pr(Ui = u | Ti = d,Gi = gL)−
∑
u∈∆u

s

rgL(u) Pr(Ui = u | Ti = d,Gi = gL)

=
∑
u∈∆u

s

{rgH (u)− rgL(u)}Pr(Ui = u | Ti = d,Gi = gL)

=
1

N

∑
i:Si=s

∑
u∈∆u

s

{Yi(d, gH , u)− Yi(d, gL, u)}Pr(Ui = u | Ti = d,Gi = gL)

=
1

N

∑
i:Si=s

τi(g
H , gL; d).

Hence we have

m(d, gH ; s)

B
−B ×m(d, gL; s) ≤ 1

N

∑
i:Si=s

τi(g
H , gL; d) ≤ B ×m(d, gH ; s)− m(d, gL; s)

B
,

which completes the proof. 2
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