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Appendix A Deriving the Bounds of the Bias in Non-Spatial Models

In the following we derive the bounds given in Betz, Cook, Hollenbach (n.d.). In keeping with the

literature, we assume the weights matrix is a fixed, hollow matrix (no self ties) with exogenously

determined non-negative elements. We consider both symmetric and asymmetric spatial weights

matrices W that have been row standardized or scalar normalized using min-max normalization.

To ease notation, we assume that x has mean zero. In detailing our derivation, it is more convenient

to re-express the bias expression from the SLX model from the manuscript (equation 2) as1

(x′x)−1x′Wx ≤ 1. (1)

For those familiar with spatial models, the parallel to Moran’s I will be obvious, as it is the same

ratio used in that measure. There are three virtues of this parallel for our purposes. First, for

non-technical readers, it allows us to simplify our bounding condition as being satisfied whenever

Moran’s I produces values between -1 and 1, which is generally the case (Cliff and Ord, 1981).2

Second, in our technical derivation, we are able to borrow from the literature on Moran’s I in de-

tailing the regularity conditions (i.e., assumptions) necessary for this inequality to obtain. Finally,

when this condition is not satisfied, it typically also implies that the process is not stationary, mean-

ing the straight-forward application of spatial econometric methods would be ill-advised without

additional transformations of the data.

To identify the conditions for inequality (1) to hold, it is useful to distinguish between sym-

metric and non-symmetric W matrices. We first show that the condition holds for any arbitrary

symmetric W, and then detail sufficient conditions under which it holds for non-symmetric W.

1We focus on the case where x′Wx is positive, but the same conditions which ensure inequality (1) to hold also
ensure that (x′x)−1x′Wx ≥ −1.

2Moran’s I includes a scaling factor as well, which is the sample size N divided by the sum of all elements of W.
After row or min-max normalization, this ratio is always larger than one. The sum of all elements of W is equal to
the sum of all row sums as well as to the sum of all column sums. With row-normalization, this sum is identical to N ;
with min-max normalization, it is at most N .
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Symmetric W

Our derivation uses that, for any non-zero vector x, the expression (x′x)−1x′Wx takes on values

within the field of values (or the numerical range) of the matrix W. For symmetric W, the numer-

ical range is on the real line, with endpoints determined by the largest and the smallest eigenvalues

of W. De Jong, Sprenger and Van Veen (1984), for example, use this feature when showing that

for symmetric W, (x′x)−1x′Wx lies within the smallest and largest eigenvalue of W. There-

fore, applying any familiar normalization strategy (row standardization, min-max, spectral) to a

symmetric weights matrix (including common constructions based on contiguity, inverse distance,

block group, common border length, fixed buffer) ensures that condition (1) holds, since the maxi-

mum eigenvalue of the normalized matrix is 1 (this is also the largest eigenvalue in absolute terms,

that is, no eigenvalue is smaller than -1; and note that for real symmetric matrices, no eigenvalues

are complex).

Using a different approach, we prove this independently by right multiplying and subtracting

both sides by x′x. Re-arranging terms this can now be written as:

x′(W − I)x ≤ 0, (2)

where I is an identity matrix of size N . This expression is now in the more-familiar quadratic form

– i.e., x′Ax, where x is a vector and A = (W − I) is a symmetric matrix – allowing us to exploit

well-known results.

By definition, the expression in (2) is satisfied whenever A is negative semi-definite. As such,

we need only demonstrate the conditions under which A = W − I is negative semi-definite to

prove (1). One way to prove that A is negative semi-definite is to show that all eigenvalues of A are

non-positive or, equivalently, that the largest eigenvalues of W is at most one. From Gershgorin’s

circle theorem, this condition holds for all W that have been normalized using min-max or row-

normalization.3 To see why, note that Gershgorin’s circle theorem implies that all eigenvalues λ of

3Note that this is true trivially for spectral normalization, which normalizes W to ensure its largest eigenvalue is
one.
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W are located in discs with origin wii, such that:

|λ− wii| ≤
∑
j 6=i

|wij|. (3)

Since wii = 0 for all i and the off-diagonal elements are non-negative, this is equivalent to

|λ| ≤
∑
i

wij, (4)

which implies that the absolute value of the largest eigenvalue of W is bounded by the largest

row-sum. Moreover, because eigenvalues are identical for the transpose of a matrix, Gershgorin’s

circle theorem implies that all eigenvalues must also be bounded by the largest column-sum. The

minimum of the largest row-sum and the largest column-sum therefore provides a bound on the

largest eigenvalue of W. More simply, note that for symmetric matrices,
∑

j 6=iwij =
∑

i 6=j wij ,

such that row- and column-sums are identical. For min-max normalization it follows that the

largest eigenvalue is bounded by one.4 Similarly, for row-normalization, the largest eigenvalue

is one, because all row-sums are equal to one (Ord, 1975). This proves that condition (1) holds

for any symmetric W. Note that inequality (4) also rules out eigenvalues smaller than −1, which

ensures that the bound in condition (1) also holds when covariance between Wx and x is negative.

Before proceeding, we note that symmetric spatial weights matrices are frequently suggested

from theoretical models, and commonly used in applied work. They include any matrix that is

based on (undirected) attributes of pairs of observations, such as contiguity matrices, inverse dis-

tance matrices, matrices based on bilateral trade flows, and matrices based on distance thresholds.

Non-symmetric W

Extending this approach directly to non-symmetric matrices (as found in network-based ties)

proves more challenging. Above we used the fact that negative semi-definite matrices always

satisfy (1). For non-symmetric matrices B, the quadratic form is instead given by x′
[
B+B′

2

]
x,

4Alternatively, note that because the largest eigenvalue is bounded by the minimum of the largest row-sum and
largest column-sum, spectral normalization ensures a smaller normalization factor than min-max normalization.
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such that our condition becomes

x′
[
W +W′

2
− I

]
x ≤ 0. (5)

As before, the goal is to identify which W satisfy this condition. Above, the corresponding condi-

tion (4) held anytime the row sums or column sums of the non-diagonal elements were one or less,

which was guaranteed by min-max and row-normalization. Relying again on Gershgorin’s circle

theorem, the non-symmetric case instead requires that, for all eigenvalues λ of W+W′

2
,

|λ| ≤
∑

j 6=iwij +
∑

i 6=j wij

2
≤ 1. (6)

That is, the non-symmetric case requires that the sum of the row and column sums needs to be less

than 2 for each unit or that the largest eigenvalue of W+W′

2
is bounded by one. Note that, for non-

symmetric matrices, it is not the case that the eigenvalues of the sum of matrices are identical to

the sum of the eigenvalues. Condition (6) therefore does not hold in general after normalization of

W. However, it is satisfied in many cases, and in particular for common spatial weights matrices.

First, the above condition holds for all matrices that are doubly-stochastic, such that a unit’s

column sum equals its row sum, with elements adding up to one. These matrices need not be sym-

metric, but they ensure that the largest eigenvalue of W+W′

2
is bounded by one, which in turn guar-

antees that our condition holds. Doubly-stochastic matrices comprise a large number of weights

matrices and are commonly used in theoretical work on the properties of spatial econometric es-

timators. They imply that each element of Wx is a weighted average of x, where each x has the

same total influence on the network (note that this influence can be distributed arbitrarily across

units). Among others, and in addition to all symmetric variants of doubly-stochastic matrices

(including inverse distance and contiguity matrices), this applies to many potentially asymmetric

weights matrices based on nearest neighbors (LeSage and Pace, 2014). Indeed, the class of matri-

ces that satisfy our bounds is more general than this and includes all line-sum symmetric matrices,

such that the sum of elements in each row equals the sum of elements in each column (but row

4



sums need not be identical to each other).

Second, a set of possibly asymmetric matrices that satisfies the above conditions are spectral

matrices. Min-max, row, and spectral normalization all ensure that the largest eigenvalue of W is

at most one; this holds for arbitrary W. For spectral matrices, the largest eigenvalue is identical

to the numerical radius, and normalization thus ensures that x′Wx ≤ x′x. Spectral matrices

include all symmetric matrices (providing another approach to prove the above result for symmetric

matrices), but they also include a large class of asymmetric matrices (for a characterization, see,

e.g., Goldberg and Zwas 1975).

Third, note that for scalar normalizations, condition (6) always holds if we normalize by the

maximum row or column sum – that is, the max-max. While not common to the literature, Kele-

jian and Prucha (2010) emphasize that any matrix norm ||W|| – e.g., the maximum eigenvalue,

the maximum absolute row sum, the maximum absolute column sum, etc. – serves as a useful

normalization factor since it bounds the spectral radius. The choice between different norms is

theoretically arbitrary, since each is proportionally equivalent.

Fourth, a vast literature addresses the distribution of Moran’s I. Cliff and Ord (1981) demon-

strate that generally “the upper bound for |I| will be less than unity, although it could exceed unity

for an irregular pattern of weights if [observations] with extreme values of zi are heavily weighted.”

Put differently, to obtain bounds of Moran’s I larger than one in absolute value requires not only

an unusual composition of W, but that unusual W must also coincide in predictable ways with the

structure of x. In deriving the feasible range for Moran’s I for tessellations, Boots and Tiefelsdorf

(2000) have shown this rarely occurs. This is because the combinations of a matrix W and predic-

tor x are so atypical that they are unlikely to hold in reasonable observational settings. Conversely,

if W is sufficiently dense, these atypical cases cannot arise, because W effectively averages over

xi.

Importantly, if Moran’s I is bounded by one – and we are outside the realm of ‘irregular’ cases
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– our condition always holds. To see why, note that Moran’s I is defined as

I =
N

S

cov(Wx,x)

var(x)
, (7)

where N is the sample size N as before and S is the sum of all elements of W. For row-

normalization and min-max normalization, S ≤ N because both normalizations ensure that either

each row-sum or each column sum is at most one. Because the sum of all elements of W is at most

the sum of all row-sums or the sum of all column sums, it follows that S ≤ N . It follows that if

Moran’s I is bounded by 1 that cov(Wx,x)
var(x)

≤ 1 must hold as well. In other words, the matrices that

spatial econometric models typically envision ensure that our bounds hold.

Finally, and building on this notion of extreme and unusual cases, we can establish bounds for

these outlier scenarios. Because these outlier scenarios depend on the specific realizations of x,

we can calculate a bound based on the sample. Observe that the worst case for our bounds is a

scenario that creates the largest possible value for cov(Wx,x). With the mean of x being zero,

this expression is identical to 1
N

∑N
i=1 xi

∑N
j=1wijxj and is maximized if the most extreme values

of xi are paired with the largest values that can be produced by
∑N

j=1wijxj .

First consider a row-normalized W or W such that min-max normalization results in row-

sums that are at most one. Note that in both cases, W preserves the range of x. Then, cov(Wx,x)

takes its maximum value if W is such that each observation is exclusively connected to one of

the two most extreme cases realized in the sample – i.e., max{xi} and min{xi}. This corresponds

to a weights matrix that has almost all zero elements. We emphasize that these matrices present

extreme forms of asymmetry (in particular, after normalization, the largest row-sum is one while

the the largest column sum is N − 1), violate standard assumptions about W (e.g., those presented

in Anselin (1988)), and also represent a network with almost no interdependence: the two largest

observations on x determine the values of Wx of all other observations in the sample, with no

observation being exposed to more than one observation, and no path of any length that connects

the two most extreme observations.
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To obtain a bound for cov(Wx,x), sort x such that x1 ≥ x2 ≥ x3 . . . ≥ xN . Then, let k such

that for i ≤ k, xi ≥ 0 and for i > k, xi < 0. Then we have that

cov(Wx,x) =
1

N

N∑
i=1

[
xi

N∑
j=1

wijxj

]
(8)

≤ 1

N

k∑
i=1

xix1 +
1

N

N∑
i=k+1

xixN , (9)

which can be calculated in any given sample as an upper bound on cov(Wx,x). Note that∑k
i=1 xi = −

∑N
i=k+1 xi because

∑N
i=1 xi = 0 (which implies that the largest positive covari-

ance is identical to the largest negative covariance, such that we do not have to consider these

cases separately).

This bound can be larger than one, but it need not be. For example, it is easy to verify that for

any binary x,5 this expression simplifies to cov(Wx,x) ≤ 1. That the bound is always smaller

than one for binary x, but not more generally, also reinforces the earlier point: for our main con-

dition to fail, we would need to have a specific constellation of W and x. Moreover, this bound

allows calculating the largest possible value of cov(Wx,x) in any given sample and, from that,

the minimum value of ρ that would be necessary to obtain a bias larger than β.

To obtain more intuition for the inequality for our worst-case bounds, we can also write

cov(Wx,x)

var(x)
≤
[
(x1 − xN)2

4var(x)

] [
E[xi|xi ≥ 0] + E[xi|xi < 0]

x1 − xN

]
,

The first term in this expression is a Popoviciu ratio: it shows how close var(x) is to its possible

maximum based on the largest and smallest value of x. This ratio is at least one and attains the

lower bound of 1 if x is dichotomous. The second term is an indicator of how spread out x is over

its interior. This ratio is at most 1 and attains its upper bound again if x is dichotomous.

We next consider the case where W has been normalized with min-max normalization that re-

sulted in column-sums of at most one but potentially larger row-sums (because the largest column-

5Recall that we assume that x has mean zero, which implies that a binary x takes on values 1− p and −p, where p
is the proportion of positive observations in the sample.
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sum was smaller than the largest row-sum). The key here is to observe that in this case, each unit

has a total influence of at most one on the entire network. Thus, the largest possible value for

cov(Wx,x) is obtained if W is a matrix that sums all positive values of x and associates them

with x1 and that sums all negative values of x and associates them with xN . Put differently,

cov(Wx,x) =
1

N

N∑
i=1

[
xi

N∑
j=1

wijxj

]

≤ 1

N

k∑
i=1

xix1 +
1

N

N∑
i=k+1

xixN ,

which is identical to the expression in (9).

Recall that these bounds would imply that all units are only connected to the most extreme

observations. If this were unreasonable, as it often is, tighter bounds would obtain. For example, if

one is willing to assume that each unit is connected to a minimum number of observations, tighter

bounds can be derived. Consequently, in almost all practical examples the bounds given by (1) will

give a more typical approximation than those given by (9) – as we demonstrate using simulations

for k-nearest neighbors and row standardization in the appendix. However, for completeness, we

have presented both sets of bounds here.

SAR: powers of matrices and bounds

For any (symmetric or non-symmetric) matrix that satisfies cov(Wx,x)/var(x) ≤ 1, it fol-

lows that cov(Wkx,x)/var(x) ≤ 1 for k = 1, 2, 3, . . .. To prove this, note that the maxi-

mum of cov(Wkx,x)/var(x) is equal to the numerical radius of W. Denoting the numerical

radius with r(W), the Halmos inequality establishes that r(Wk) ≤ rk(W) – see, e.g., Gold-

berg and Zwas (1975). If r(W) ≤ 1, it follows that r(Wk) ≤ rk(W) ≤ 1, which proves that

cov(Wkx,x)/var(x) ≤ 1 whenever cov(Wx,x)/var(x) ≤ 1.

Alternatively, an analogous approach to above can be used to derive bounds from the sample

data on x and y to calculate a bound on the covariance cov(Wy,x) for arbitrary W. For W

such that normalization results in a largest row-sum of at most one, the largest possible value for
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cov(Wy,x) obtains if W matches all positive xi with the largest value of y and all negative values

of xi with yT = min{0,min{yi}}. Note that if yi > 0 for all i, this implies a matrix W such that

observations with xi < 0 are ‘islands’, with only zero elements in the corresponding rows (which

is inconsistent with a large class of standard spatial weights matrices and hence results in a bound

larger than what those matrices would permit). Then, defining k as before such that xi ≥ 0 for

i ≤ k and xi < 0 for i > k,

cov(Wy,x) <=
1

N

[
k∑

i=1

ymaxxi +
N∑

i=k+1

yTxi

]
,

which can be calculated from the data. A similar expression follows for W if normalization results

in a column sum of at most one. The larger of the two expressions can then be used to derive an

upper bound for the bias in the SAR case.
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Appendix B Propagation of Measurement Error in the IV Estimation

To see that the measurement error in W is not solved by instrumental variable estimation of the

SAR model, consider that pre-multiplying both sides of equation (4) by W and using repeated

substitution for Wy yields

Wy = βWx+ βρW2x+ βρ2W3x+ . . .+Wε+ ρW2ε+ ρ2W3ε . . . , (10)

which demonstrates how Wx and its powers have strength as instruments for Wy. However, if

we rely on W̃ from equation (8) we obtain:

W̃y = βW̃x+ βρW̃2x+ βρ2W̃3x+ . . .+ W̃ε+ ρW̃2ε+ ρ2W̃3ε . . . (11)

Due to the common transformation via W̃, the instrument W̃x is related to the measurement error

in W̃y. IV estimation will resolve the simultaneity bias – the usual concern with spatially-lagged

outcomes – but not the bias due to measurement error.
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Appendix C Additional Simulation Results

C.1 Additional SAR Simulation Results

In this section, we present results from the additional simulations of the SAR process.6 First,

Figure C.1 shows the results from the simulations where W is based on 10-nearest-neighbors but

is row-normalized. Again, spatial dependence in X increases from left to right, while the spatial

parameter of Y increases from zero for simulation results depicted in the top row to 0.6 in the

bottom row. The results are quite similar to those presented in the paper. The biases in the standard

linear models and the misspecified SAR models increase with higher spatial dependence in both

X and Y. Again, under all scenarios, the bias misspecified in SAR models is bounded from above

by the bias in the non-spatial models.

ρx = 0 ρx = 0.3 ρx = 0.6

ρ y =
 0

ρ y =
 0.

3

ρ y =
 0.

6

1.0 1.5 2.0 2.5 3.0 3.5 1.0 1.5 2.0 2.5 3.0 3.5 1.0 1.5 2.0 2.5 3.0 3.5

0

2

4

0

2

4

0

2

4

Coefficient Estimates

Density

0
0.25
0.5
0.75
1

Misspecification 
Probability

Figure C.1: Misspecification of W in SAR models – KNN & Row-Normalization

6The replication materials for the results presented both here and in the main text can be found at Hollenbach, Betz
and Cook (2019).
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The derivation of our analytical bounds allows us to calculate the expected bias for SAR mod-

els. In particular, equation 5 in the manuscript can be rearranged such that we can derive an

expected β̂ given the simulated scenarios: plimn→∞ β̂OLS = β + ρ cov(Wy,x)
var(x)

.

In Table C.1, we compare the expected β̂ given our analytical derivation to the average OLS

estimate in our simulations given combinations of the spatial parameters in the simulations based

on 10-nearest-neighbors and min-max normalization. The first two columns show the variation

in the simulated spatial dependence (ρx and ρy), next we calculate the average cov(Wy,x), and

var(x), and their ratio from the simulations. Based on the ratio cov(Wy,x)
var(x)

and true β = 2, we can

then calculate the expected β̂ given the analytical results. In contrast, the last column shows the

average β̂ estimated in the standard linear model at a given scenario. As one can see, the analytical

results and the simulated quantities are effectively the same.

Table C.1: Analytical β̂ & Mean β̂ in Simulations – SAR

ρx ρy cov(Wy,x) var(x) cov(Wy,x)
var(x)

Expected β̂ Mean β̂OLS

0.00 0.00 0.00 0.91 0.00 2.00 2.00
0.00 0.30 0.07 0.91 0.08 2.02 2.03
0.00 0.60 0.22 0.91 0.24 2.14 2.14
0.30 0.00 0.17 0.94 0.18 2.00 2.00
0.30 0.30 0.30 0.94 0.32 2.09 2.10
0.30 0.60 0.56 0.94 0.59 2.36 2.35
0.60 0.00 0.69 1.18 0.58 2.00 2.00
0.60 0.30 1.00 1.18 0.85 2.26 2.26
0.60 0.60 1.71 1.18 1.45 2.87 2.87

C.2 Additional SLX Simulation Results

To simulate the SLX models we begin with the following data generating process:

y = α + βx+ θWx+ ε, (12a)

x = (I− ρxW)−1u, (12b)

where u and ε are N (0, 1). The effect paramaters are β, θx, and ρx, with β reflecting the direct
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(i.e., pre-spatial) effect of x on y, θx the spillover effect, and ρx the spatial interdependence in x.

As in the main text, the binary W matrix is generated with ones assigned to each observation’s ten

nearest neighbors. We again hold W, β = 2,N = 150, and u fixed across the simulations, focusing

on variation in the spatial parameters ρx and θ. We vary ρx from 0 (no spatial interdependence)

over 0.3 to 0.6 (high spatial interdependence). θ takes on the following values: 0, 1, and 2.7 For

each of these 9 experimental settings, we simulate 2, 000 data sets, which leads to 18, 000 in total.

We again undertake the simulation excercise with W matrices normalized using two methods:

row- and min-max normalization.

Using these simulated data for y and x, we estimate a non-spatial linear model (via OLS) and

the SLX models with the different W̃’s, i.e., the user-specificed weights matrix of varying accuracy

(i.e., decreasing in p – the probability of misspecification). We record the estimated β̂ based on the

model’s coefficient to assess potential bias.

Figure C.2 shows the results of the SLX simulation analysis for W based on 10 nearest neigh-

bors and min-max normalization. Each cell in the plot shows the result for one experimental

condition, ρx increases from 0 to 0.6 in cells going from left to right, while θx increases in cells

moving from top to bottom. Each cell shows the densities of coefficient estimates for models es-

timated with OLS or SLX models at different levels of the misspecification probability p, where

darker shading is indicative of higher levels of misspecification. The densities for the OLS models

are plotted in black. As one can see, the bias in misspecified models increases in both θ and ρx,

being largest in the bottom right cell. Again, the estimates of SLX models become increasingly

worse with higher levels of misspecification, but is bounded from above by the standard linear

model estimate.

Figure C.3 shows the simulation results when the 10-NN matrix is standardized using row-

normalization. The results across these specifications are effectively the same as in the SAR pro-

cess simulations.

Lastly, we again calculate the expected β̂ based on our analytical derivation for the SLX model

7The parameter values from θ are larger than ρy in the main text because the implied effect on y from changes to
Wx are much smaller than from changes to Wy.
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ρx = 0 ρx = 0.3 ρx = 0.6

θ x =
 0

θ x =
 1

θ x =
 2

1.0 1.5 2.0 2.5 3.0 3.5 1.0 1.5 2.0 2.5 3.0 3.5 1.0 1.5 2.0 2.5 3.0 3.5

0

2

4

0

2

4

0

2

4

Coefficient Estimates

Density

0
0.25
0.5
0.75
1

Misspecification 
Probability

Figure C.2: Misspecification of W in SLX models – KNN & Min-Max Normalization

(equation 2 in the manuscript) for different scenarios in the simulation with 10 nearest neighbors

and min-max normalization. Re-writing equation 2, we can express the expected estimate from the

standard linear model as: plimn→∞ β̂OLS = β+θ cov(Wx,x)
var(x)

. As above, we calculate the expected β̂

and compare it to the average OLS estimate for each combination of parameters in the simulation.

As shown in Table C.2 the average simulation results for β̂ are again quite similar to those derived

analytically.
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Figure C.3: Misspecification of W in SLX models – KNN & Row Normalization

Table C.2: Analytical β̂ & Mean β̂ in Simulations – SLX

ρx θ cov(Wx,x) var(x) cov(Wx,x)
var(x)

Expected β̂ Mean β̂OLS

0.00 0.00 0.00 0.91 0.00 2.00 2.00
0.00 1.00 0.00 0.91 0.00 2.00 2.01
0.00 2.00 0.00 0.91 0.00 2.00 2.00
0.30 0.00 0.09 0.94 0.09 2.00 2.00
0.30 1.00 0.09 0.94 0.09 2.09 2.10
0.30 2.00 0.09 0.94 0.09 2.18 2.18
0.60 0.00 0.34 1.18 0.29 2.00 2.00
0.60 1.00 0.34 1.18 0.29 2.29 2.29
0.60 2.00 0.34 1.18 0.29 2.59 2.58
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