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This supplemental appendix contains two sections. In the first, we describe the estimation procedure

of our algorithm. The second presents additional results from our simulations and the main empirical

application.

A MD2S Estimation

Estimation proceeds in two steps. First, we recover estimates of the shared and idiosyncratic subspaces.

Second, all the subspaces are partialed out of the data matrix. The aforementioned steps are fit for each

dimension q.

Initialize pZ0
p1q “ lsv

`

Yp1q

˘

; pZ0
p2q “ lsv

`

Yp2q

˘

; pZ0
S “ lsv

´

rY ` rYJ

¯

where rY “ Y
p1qY

J
p1qYp2qY

J
p2q.

Initialize Y0
pmq “ Ypmq; where we denote as lsvpAq a function that extracts the first left singular value of

the matrix A.

1. Convergence in each subspace,
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(a) Update pZpmq;q for m “ 1 then m “ 2.

i. pZ
ptq
pmq|S;q “ lsv

´

MppZ
pt´1q
S qY

pt´1q
pmq

¯

ii. pZ
ptq
pmq;q “

pHpXpmqqpZ
ptq
pmq|S;q

p1´γpmq;qq`MpXpmqqpZ
ptq
pmq|S;q

γpmq;qq

||HpXpmqqpZ
ptq
pmq|S;q

p1´γpmq;qq`MpXpmqqpZ
ptq
pmq|S;q

γpmq;q ||

where Xpmq represents a the matrix of covariates informing the mth subspace and γpmq;q

is estimated as the argmax of:

pHpXpmqqpZ
ptq
pmq|S;q

p1´γq`MpXpmqqpZ
ptq
pmq|S;q

γq
J
Y
pt´1q
m Y

pt´1qJ
m pHpXpmqqpZ

ptq
pmq|S;q

p1´γq`MpXpmqqpZ
ptq
pmq|S;q

γq

||HpXpmqqpZ
ptq
pmq|S;q

p1´γq`MpXpmqqpZ
ptq
pmq|S;q

γ||2

The parameter γpmq;q seeks to balance how much the covariates explain the data either by ex-

plaining Z
ptq
pmq|S;q through the linear projection HpXpmqq

pZ
ptq
pmq|S;q or via the residual MpXpmqq

pZ
ptq
pmq|S;q

(b) Update pZ
ptq
S;q.

i. Update pZ
ptq
S|1;q “ lsv

´

MppZ
ptq
p1qqYp1q

¯

; pZ
ptq
S|2;q “ lsv

´

MppZ
ptq
p2qqYp2q

¯

ii. Update pZ
ptq
S|12;q “ p

pZ
ptq
S|1;qυ1;q `

pZ
ptq
S|2;qυ2;qq{||

pZ
ptq
S|1;qυ1;q `

pZ
ptq
S|2;qυ2;q||

where XS represents the matrix of covariates informing the shared subspace and υ1;q and

υ2;q, with υ1;q ` υ2;q “ 1, represent the weights balancing the proportion of information

coming from each source which are estimated as the argmax of:

ppZ
ptq
S|1;qp1´ υq `

pZ
ptq
S|2;qυq

J
rYpt´1qp pZ

ptq
S|1;qp1´ υq `

pZ
ptq
S|2;qυq

||pZ
ptq
S|1;qp1´ υq `

pZ
ptq
S|2;qυ||

2

iii. Update pZ
ptq
S;q “

pHpXSqpZ
ptq
S|12;q

p1´γS;qq`MpXSqpZ
ptq
S|12;q

γS;qq

||HpXSqpZ
ptq
S|12;q

p1´γS;qq`MpXSqpZ
ptq
S|12;q

γS;q ||
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where γS;q is estimated as the argmax of:

´

HpXSqpZ
ptq
S|12;qp1´ γq `MpXSqpZ

ptq
S|12;qγ

¯J
rYpt´1q

´

HpXSqpZ
ptq
S|12;qp1´ γq `MpXSqpZ

ptq
S|12;qγ

¯

||HpXSqpZ
ptq
S|12;qp1´ γq `MpXSqpZ

ptq
S|12;qγ||

2

We can give γS;q a mirror interpretation to the one given to γpmq;q, but now we respect to

Z
ptq
S|12;q and rYpt´1q.

2. After convergence in the previous step, update Yptq
pmq “MprpZS;q, pZpmq;qsqY

pt´1q
pmq MprxWpmq;q, pBpmq;qsq

where xWpmq;q “ YJ
pmq

pZS;q and pBpmq;q “ YJ
pmq

pZpmq;q, both normed to have length one.
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B Supplemental Results

B.1 Simulations: Bridging

As noted in the main text, our method can be used to combine information coming from different datasets.

One such instance of combining data is bridging across different actors. To assess the performance of the

proposed method along that direction, we conduct an additional simulation study. The main difference

with the other simulations is that the actors across datasets are allowed to differ and only common items

between datasets are used to jointly scale the actors (bridging).1

The simulation setup is going to be quite similar. Again, the observed data consist of matrices Yp1q and

Yp2q with N rows (common items) and Kp1q (number of actors in dataset 1) and Kp2q (number of actors

in dataset 2) columns respectively. N is varied along t50, 500, 1000u. For Kp1q we have two scenarios.

The first one we call it “balanced” as Kp1q is set in t20, 40, 200u and Kp2q is chosen such that the ratio

Kp1q:Kp2q is equal to 2:3. In the second case, we varied Kp1q along t10, 20, 100u and Kp2q is chosen such

that the ratio Kp1q:Kp2q is equal to 1:4. The latter is to mimic a situation where the number of actors in

one dataset is significantly smaller if compared to the number of actors in the other dataset. As before, the

data are generated according to equations (18) and (19) in the main text. All simulations were run 1,000

times.

As shown in Figure 1, MD2S does a remarkable job in terms of recovering the true ordering for each

actor (Wm). Similarly, the correlation between the true scaling and the estimates obtained from MD2S is

almost perfect as both the number of actors and the number of items used to bridge increases. The latter

is true even in the lopsided case. In table 1 we compare MD2S to multidimensional scaling (MDS) as

implemented in the R-package smacof. For MDS we bridge estimates by pooling datasets.2 As table 1
1We thank an anonymous reviewer for suggesting the inclusion of this simulation exercise.
2MDS is a scaling method designed to take either continuous or discrete valued values as inputs. Due to the continuous
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shows, MD2S recovers the estimates that correlate highly with true actors’ subspace and its precision

grows with the number of common items to bridge. In contrast, MDS does not recover a the true actors’

subspace and its performance decreases as the number of actors increases.

We believe these are promising results to motivate additional tests of the bridging capabilities of MD2S

– which offers a built-in approach when there are common items across datasets. A main advantage

of MD2S over previous alternatives is that pooling the datasets is not needed. For MD2S bridging is a

consequence of assuming that common items between datasets exist and that these items connect the scaled

positions of the actors. Furthermore, through the dimension weights and the idiosyncratic subspaces,

MD2S provides a more flexible approach to address the “constant behavior” assumption which requires

that actors across datasets face the same concerns when referring to a particular issue.3 However, having

common items to bridge might not be an possibility in some situations, making bridging an impossible

task in our framework. We leave for future research a thorough evaluation of the bridging properties of

MD2S.

nature of values each observation in our simulated datasets take, we use MDS as a reference point.
3See the work of Lewis and Tausanovitch (2015) for a literature review of the bridging literature and a formal set of tests

for the “constant behavior” assumption across other scaling models.
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Panel (a) Balanced Number of Actors i.e., ratio Kp1q:Kp2q is 2:3

Simulations: Bridging Different Actors Across Two Datasets
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Panel (b) Lopsided Number of Actors i.e., ratio Kp1q:Kp2q is 1:4

Simulations: Bridging Different Actors Across Two Datasets
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Figure 1: Correlation between the True Actors’ Subspaces (Wpmq) and their Corresponding MD2S
estimates. Number of common items used to bridge datasets is (N P t50, 500, 1000u) and the number
of distinct actors in each dataset is set to pKp1q, Kp2qq P tp20, 30q, p40, 60q, p200, 300qu in panel (a) and to
pKp1q, Kp2qq P tp10, 40q, p20, 80q, p100, 400qu. The total number of actors represents the sum of Kp1q and
Kp2q. The y-axis ranges from 0 to 1 and measures the correlation between the true and estimated values
across 1000 simulations per combination of N and Kp1q. As in the simulations presented in the main text,
MD2S does a remarkable job in terms of recovering the true ordering for each actor. In addition, MD2S
improves its performance in the number of actors and the number of items used to bridge.
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MD2S MDS

Mean 2.5% 97.5% Mean 2.5% 97.5%

50 Items
50 Actors 0.88 0.68 0.97 0.27 0.02 0.69
100 Actors 0.90 0.74 0.97 0.21 0.01 0.56
500 Actors 0.91 0.79 0.97 0.16 0.01 0.43

500 Items
50 Actors 0.96 0.90 0.99 0.26 0.01 0.65
100 Actors 0.97 0.94 0.99 0.19 0.00 0.51
500 Actors 0.98 0.97 0.99 0.11 0.00 0.33

1000 Items
50 Actors 0.97 0.91 0.99 0.28 0.01 0.63
100 Actors 0.98 0.95 0.99 0.22 0.01 0.52
500 Actors 0.99 0.98 1.00 0.11 0.00 0.34

Table 1: Correlation between the True Actors’ Subspaces (Wpmq) and their Corresponding MD2S
and MDS estimates. Number of common items used to bridge datasets is (N P t50, 500, 1000u) and the
number of distinct actors in each dataset is set to pKp1q, Kp2qq P tp20, 30q, p40, 60q, p200, 300qu. The total
number of actors represents the sum of Kp1q and Kp2q. As in the simulations presented in the main text,
MD2S performs well in terms of recovering the true ordering for each actor. In the case of MDS, it does
not perform as well and as the number of actors increases its performance decreases.

B.2 Simulations: Sparsity

While in some settings of our simulations we mimic the large size of a document term matrix, sparsity (a

common feature of text data) is not accounted for in the main results. In this simulation study, we replicate

our original simulation setting with N “ 100, Kp1q “ 40, Kp2q “ 5000 but we add sparsity (completely at

random) to Yp2q according to three levels: 20%, 50%, and 80%. As shown in figure 2, the performance of

all scaling methods decrease with the degree of sparsity. However, it is worth nothing that even for high

levels of sparsity, MD2S outperforms V-BIBFA and INDSCAL methods.
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Panel (a): Shared Subspace
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Panel (b): Idiosyncratic Subspace Yp1q
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Panel (c): Idiosyncratic Subspace Yp2q
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Figure 2: Scaled Locations Across Levels of Sparsity.

B.3 Simulations: Correlation Across Dimensions within Subspaces

In this simulation, we add different levels of correlations between the dimensions of each subspace. In

particular, we use three levels: 0.20 (low), 0.50 (medium), and 0.80 (high) and set N “ 100, Kp1q “ 40,
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Kp2q “ 2500. As shown in figure 3, the performance of M2DS is not affected by increasing the correlation

across the dimensions within a subspace. While even for high of correlation MD2S outperforms the

alternatives, it is worth noting that V-BIBFA performs as well as MD2S as the correlation between the

dimensions within each subspace gets larger.
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Figure 3: Scaled Locations Across Levels of Correlation between the Dimensions of each Subspace.
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B.4 Simulations: Average Correlation Across Simulations

Tables (2), (3), and (4) present the average correlation across each of the simulation scenarios presented

in Figures 1 and 2 in the main text.

INDSCAL MD2S Random V-BIBFA

N “ 20;K2 “ 20 0.39 0.88 0.19 0.93
N “ 20;K2 “ 100 0.40 0.90 0.18 0.94
N “ 20;K2 “ 250 0.40 0.91 0.19 0.95
N “ 20;K2 “ 500 0.39 0.90 0.19 0.92
N “ 20;K2 “ 1000 0.39 0.91 0.18 0.91
N “ 20;K2 “ 2500 0.38 0.91 0.18 0.81
N “ 20;K2 “ 5000 0.41 0.91 0.19 0.70

N “ 50;K2 “ 20 0.31 0.94 0.12 0.95
N “ 50;K2 “ 100 0.31 0.97 0.11 0.96
N “ 50;K2 “ 250 0.30 0.97 0.12 0.95
N “ 50;K2 “ 500 0.30 0.97 0.11 0.95
N “ 50;K2 “ 1000 0.30 0.98 0.12 0.90
N “ 50;K2 “ 2500 0.30 0.97 0.12 0.73
N “ 50;K2 “ 5000 0.30 0.97 0.12 0.67

N “ 100;K2 “ 20 0.25 0.96 0.08 0.95
N “ 100;K2 “ 100 0.25 0.98 0.08 0.96
N “ 100;K2 “ 250 0.23 0.98 0.08 0.96
N “ 100;K2 “ 500 0.23 0.99 0.08 0.95
N “ 100;K2 “ 1000 0.24 0.99 0.08 0.90
N “ 100;K2 “ 2500 0.23 0.99 0.08 0.66
N “ 100;K2 “ 5000 0.24 0.99 0.08 0.60

Table 2: Average Correlation Across Simulations: Shared Subspace.
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INDSCAL MD2S Random V-BIBFA

N “ 20;K2 “ 20 0.34 0.94 0.18 0.90
N “ 20;K2 “ 100 0.30 0.94 0.18 0.90
N “ 20;K2 “ 250 0.30 0.94 0.19 0.90
N “ 20;K2 “ 500 0.29 0.94 0.19 0.91
N “ 20;K2 “ 1000 0.28 0.94 0.18 0.91
N “ 20;K2 “ 2500 0.27 0.95 0.18 0.91
N “ 20;K2 “ 5000 0.29 0.94 0.19 0.90

N “ 50;K2 “ 20 0.23 0.97 0.11 0.91
N “ 50;K2 “ 100 0.22 0.98 0.11 0.91
N “ 50;K2 “ 250 0.21 0.98 0.12 0.91
N “ 50;K2 “ 500 0.20 0.97 0.11 0.91
N “ 50;K2 “ 1000 0.21 0.98 0.12 0.91
N “ 50;K2 “ 2500 0.19 0.97 0.12 0.92
N “ 50;K2 “ 5000 0.20 0.97 0.11 0.91

N “ 100;K2 “ 20 0.18 0.98 0.08 0.91
N “ 100;K2 “ 100 0.18 0.98 0.08 0.91
N “ 100;K2 “ 250 0.16 0.98 0.08 0.90
N “ 100;K2 “ 500 0.16 0.98 0.08 0.90
N “ 100;K2 “ 1000 0.17 0.98 0.08 0.89
N “ 100;K2 “ 2500 0.15 0.98 0.08 0.90
N “ 100;K2 “ 5000 0.15 0.98 0.08 0.91

Table 3: Average Correlation Across Simulations: Idiosyncratic Subspace Yp1q.
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INDSCAL MD2S Random V-BIBFA

N “ 20;K2 “ 20 0.35 0.90 0.19 0.85
N “ 20;K2 “ 100 0.39 0.94 0.18 0.86
N “ 20;K2 “ 250 0.39 0.95 0.19 0.84
N “ 20;K2 “ 500 0.40 0.95 0.18 0.81
N “ 20;K2 “ 1000 0.40 0.95 0.18 0.77
N “ 20;K2 “ 2500 0.43 0.95 0.19 0.73
N “ 20;K2 “ 5000 0.42 0.95 0.19 0.69

N “ 50;K2 “ 20 0.31 0.94 0.12 0.85
N “ 50;K2 “ 100 0.32 0.98 0.12 0.87
N “ 50;K2 “ 250 0.33 0.98 0.12 0.86
N “ 50;K2 “ 500 0.35 0.98 0.12 0.82
N “ 50;K2 “ 1000 0.35 0.99 0.12 0.76
N “ 50;K2 “ 2500 0.37 0.99 0.11 0.70
N “ 50;K2 “ 5000 0.38 0.99 0.12 0.69

N “ 100;K2 “ 20 0.27 0.95 0.08 0.85
N “ 100;K2 “ 100 0.27 0.99 0.09 0.88
N “ 100;K2 “ 250 0.27 0.99 0.08 0.86
N “ 100;K2 “ 500 0.28 0.99 0.08 0.81
N “ 100;K2 “ 1000 0.28 0.99 0.08 0.74
N “ 100;K2 “ 2500 0.30 0.99 0.08 0.69
N “ 100;K2 “ 5000 0.32 0.99 0.08 0.66

Table 4: Average Correlation Across Simulations: Idiosyncratic Subspace Yp2q.
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B.5 Combining Senate Rollcall and Text Data.

B.5.1 Estimates from MD2S without Senator-level Covariates

Figure (4) through (6) reproduce the results presented in the main text, with the sole difference that co-

variates are not used to inform each of the subspaces obtained from MD2S. The shared subspace and the

idiosyncratic subspace for speech are substantively the same regardless whether we include covariates or

not. The ranking obtained from the idiosyncratic subspace informed by the roll call data is slightly differ-

ent when we omit covariates from the estimation stage. Again, we have conservative senators like DeMint,

Lee, Toomey, Paul, and Risch, on one extreme, while the remaining Senators from the Republican party

are located on the other. Thus, the idiosyncratic subspace obtained from vote data, again, reveals a party

divide among Republicans.
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Figure 4: Shared Subspace Locations Estimated via MD2S for the Members of the 112th U.S. Senate.
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Figure 5: Idiosyncratic Vote Subspace Locations Estimated via MD2S for the Members of the 112th
U.S. Senate.
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Figure 6: Idiosyncratic Word Subspace Locations Estimated via MD2S for the Members of the 112th
U.S. Senate. First Dimension.
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B.5.2 Different Levels of Sparsity

In this subsection we present evidence that our method is robust to several pre-processing steps when

working with text data, namely whether we use unigrams and bigrams, and how we trim sparse terms from

the term-document matrix (with low, medium, and high levels of sparsity in the term document matrix).

As shown in table 5 across the six settings (tunigram, bigramuˆtlow,med, hiu), the correlations across

the first-dimension estimates are no lower than 0.9 for the shared subspace, 0.97 for the vote idiosyncratic

subspace, and 0.86 in the word idiosyncratic subspace.
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Unigrams and Bigrams

Levels of Sparsity
(High, Medium) (High, Low) (Medium, Low)

Shared subspace correlation 0.98 0.91 0.97

Word subspace correlation 0.95 0.86 0.97

Vote subspace correlation 0.99 0.97 0.98

Unigrams only

Levels of Sparsity
(High, Medium) (High, Low) (Medium, Low)

Shared subspace correlation 0.99 0.95 0.98

Word subspace correlation 0.96 0.87 0.97

Vote subspace correlation 0.99 0.96 0.98

Table 5: Correlations Between Subspaces (1st Dimension) for Different Levels of Sparsity across the
Document-Term Matrix. Low sparsity is equal to removing terms that are not used by at least 20 senators
for a total of 1852 terms. Medium sparsity is equal to removing terms that are not used by at least 30
senators for a total of 2616 and High sparsity is equal to removing terms that are not used by at least 40
senators for a total of 3622 terms.

B.5.3 Correlations Across Different Scaling Methods

Table (6) and figure (7) present the overall and within-party correlation across different scaling methods,

respectively. First, all scaling methods separate Senators in two clusters (by party). Second, both both

MD2S and SFA recover the same set of moderate and extreme senators within each party, consistent with

the results of IDEAL and DW-Nominate. Third, jointly incorporating votes and floor speech introduces

some variation in senators’ rakings within party. For instance, republican Senators such as Sessions and
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Kyl are found to be more extreme when combining vote and text data, than their scaled locations using

only votes.

Votes Only: Votes and Words:

DW-
Nominate

IDEAL MDS SFA MD2S INDSCAL

Votes Only:

DW-Nominate 1.00

IDEAL 0.99 1.00

MDS 0.98 0.98 1.00

Votes and Words:

SFA 0.93 0.93 0.95 1.00

MD2S 0.94 0.95 0.96 0.97 1.00

INDSCAL 0.48 0.47 0.43 0.30 0.38 1.00

Table 6: Correlations Across Different Scaling Methods for the 112th U.S. Senate. Votes Only refers to
scaling methods that use roll call data, while Votes and Words refers to those scaling methods that use
both roll call and speech data. The correlations presented here are calculated using the first dimension
recovered by each method. In the case of MDS and INDSCAL we have reduced the roll call data to a
dissimilarity matrix using a renormalized version of the Manhattan distance (L1 norm) between each pair
of rows. The normalization factor is the number of columns in the roll call data, thus our our dissimilarity
measure tells us the share of times two legislators vote in the same way. Similarly, for INDSCAL (Votes
and Words) we have reduced the vote and speech data to two dissimilarity matrices (one per data set) using
the same renormalized distance between rows. In the case of MD2S, we use the shared subspace. The
table shows that traditional methods to scale the U.S. Congress, like IDEAL, DW-Nominate and MDS,
correlate almost perfectly with SFA, and MD2S. In contrast, if we use votes and speech data, INDSCAL
recovers a subspace does not correlate as well with the other alternatives.
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Figure 7: Scaled Locations and Partisanship. The three panels above present the results comparing
MD2S, SFA, and INDSCAL to traditional scaling methods such as DW Nominate, Ideal, and MDS. As
the three panels show, MD2S recovers a shared subspace that overall correlate well with scaling methods
that use only vote data. Not only that, MD2S separates Senators’ in two clusters (partisanship). SFA
also performs well when compared to traditional methods and INDSCAL produces estimates that are not
as highly correlated with the aforementioned traditional approaches – producing at least three clusters of
Senators.
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B.5.4 Bootstrap Estimates

Figure (8) through (10) present the 95% percentile confidence intervals obtained via the non-parametric

bootstrap (5000 replications) described in Section 3.5.
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Figure 8: Bootstrap Confidence Intervals for the Shared Subspace Locations Estimated via MD2S
for the Members of the 112th U.S. Senate.
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Figure 9: Bootstrap Confidence Intervals for Idiosyncratic Vote Subspace Locations Estimated via
MD2S for the Members of the 112th U.S. Senate.
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Figure 10: Bootstrap Confidence Intervals for Idiosyncratic Word Subspace Locations Estimated
via MD2S for the Members of the 112th U.S. Senate. First Dimension.
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B.5.5 Correlation of Subspaces with Covariates

Table (7) presents the estimated coeficients associated with Senators’ covariates that inform the estimated

subspaces in Section 5 of the main text. Note that uncertainty for these covariates can be assessed via

non-parametric bootstrap.

Table 7: Correlation with Covariates

Dependent variable:
Shared Votes Words

(1) (2) (3)

party ´0.1870 ´0.0540 ´0.0180
gender 0.0220 0.0660 ´0.0310
seniority ´0.0003 0.0030 ´0.0020
membership 0.00001 0.0004 ´0.0060
agricultural 0.0060 ´0.1100 0.0680
economics 0.0110 0.0130 0.0340
security ´0.0090 0.0940 ´0.0670
leadership 0.0030 0.1010 0.0140
Constant 0.0860 ´0.0670 0.0540

Observations 101 101 101
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