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This document contains supplementary information referred to in the article. For any

further information, please feel free to contact the author.1

A The Delta Method

Based on the mean value theorem, the delta method uses a first-order Taylor series

expansion around λ in order to approximate the asymptotic distribution of the non-

linear function g(λ̂):

g(λ̂) = g(λ) +G(λ̄)(λ̂− λ). (A1)

Let λ̄ take on values between λ̂ and λ. By Slutsky’s theorem and because of the assumed

consistency which implies that plimn→∞λ̂ = λ, the vector of partial derivatives evaluated

at λ̄, denoted G(λ̄), converges in probability to G(λ). It follows that

√
n
(
g(λ̂)− g(λ)

)
= G(λ̄)

√
n(λ̂− λ). (A2)

Consequently, g(λ̂) has the same limiting distribution as G(λ)(λ̂− λ).

The first expression on the right-hand side of Equation (A2), G(λ̄), converges in

probability to a constant and the second term,
√
n(λ̂ − λ), converges in distribution to

a multivariate normal distribution with a mean vector of 0 and an asymptotic variance-

covariance matrix given by Σ. By a linear transformation of normal variables, the product

of these terms is also normally distributed with a mean of 0 and a variance given by

G(λ̂)ΣG(λ̂)′:
√
n(g(λ̂)− g(λ))

d→ N (0,G(λ)ΣG(λ)′) . (A3)

This result is given in Equation (7) in the article.

1Email: sebastian.juhl@gess.uni-mannheim.de.
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B Correlation Between Included Regressor and Omit-

ted Variable in the DGP

Table B.1 contains the median correlation between the regressor x and the omitted vari-

able z across the 1, 000 simulation trials. As already indicated in the article, the setup of

the Monte Carlo experiment assures that an increase in γ leads to a stronger correlation.

Table B.1: Median Correlation Between Included and Omitted Regressor
γ n = 49 n = 100 n = 225 n = 400

0.0
0.00 0.00 0.00 0.00

[−0.28; 0.29] [−0.20; 0.20] [−0.13; 0.13] [−0.09; 0.10]

0.2
0.22 0.22 0.19 0.20

[−0.06; 0.46] [0.03; 0.40] [0.06; 0.30] [0.10; 0.29]

0.4
0.40 0.42 0.35 0.38

[0.14; 0.61] [0.25; 0.57] [0.24; 0.46] [0.29; 0.45]

0.6
0.55 0.57 0.49 0.52

[0.35; 0.71] [0.43; 0.68] [0.39; 0.58] [0.45; 0.58]

0.8
0.66 0.68 0.60 0.63

[0.49; 0.78] [0.58; 0.76] [0.52; 0.67] [0.57; 0.68]

1.0
0.74 0.76 0.69 0.71

[0.61; 0.83] [0.68; 0.82] [0.62; 0.74] [0.67; 0.75]

C Additional Simulation Results & Robustness Tests

Given the space constraints in the article, this section contains a number of additional

simulation results as well as some robustness tests.

C.1 Biased Coefficient & Impact Estimates

C.1.1 Omitted Variables Bias in the Non-Spatial OLS Model

This section demonstrates that spatial dependence in an omitted variable which is cor-

related with an included regressor amplifies the standard omitted variables bias in non-

spatial OLS models (see also Pace and LeSage, 2010). To this end, Figure C.1.1 reports

the bias in the coefficient estimates from an OLS model across different parameter set-

tings outlined in the main article using a sample size of n = 400. The gray areas in each

of the six panels represent the estimates obtained in a scenario without spatial depen-

dence (ρ = 0). This arrangement provides a baseline for the comparison with the omitted

variables bias in scenarios with cross-sectional dependence. In the upper left panel, the

true DGP resembles a SEM process while the other panels show SDM DGPs.

If an omitted variable z is correlated with the included regressor x but does not follow

a spatial process, β̂OLS is biased by γ. In addition to this textbook example of omitted

2



Figure C.1.1: Bias in the Non-Spatial OLS Coefficient Estimate
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variables bias, Figure C.1.1 illustrates the effect of spatial dependence in z on the size of

this bias. The upper left panel shows that non-random spatial clustering in an omitted

regressor that is uncorrelated with x does not cause any bias in β̂OLS. At the same time,

while the point estimate β̂SEM would equal β̂OLS, the estimates derived from a correctly

specified SEM model would be more efficient (e.g., Elhorst, 2010, 14).

However, the situation is different when correlation exists between omitted and the

included regressors. The five remaining panels show that spatial autocorrelation magnifies

the standard omitted variables bias. This effect is most pronounced if there are strong

interdependencies in the data and if the correlation increases. In a scenario without

cross-sectional dependence and where γ = 1, for example, the bias in β̂OLS is 1 with 95%

of the empirical density within [0.91; 1.09]. However, it increases by almost 30% to 1.28

[1.14; 1.43] if the spatial dependence in z is strong (ρ = 0.8). Therefore, while cross-

sectional dependence in an omitted regressor does not cause bias in regression coefficients

by itself, these results show that it amplifies the existing bias stemming from an omitted

variable. For applied research, this implies that the threat arising from an omitted

regressor for the validity of inferences is even more pronounced if there are reasons to

expect that this variable is spatially clustered.

C.1.2 Biased Indirect Impact Estimates

Only looking at coefficient estimates in the context of spatial autocorrelation is insuffi-

cient (e.g., Whitten, Williams and Wimpy, 2019; Elhorst, 2010; LeSage and Pace, 2009).
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Interpreting spatial models in terms of substantive effects requires additional considera-

tions since the overall effect of a change in a regressor not only depends on its associated

coefficient but also on the strength of the cross-sectional dependence and the spatial con-

figuration. In general, it is informative to partition the overall effect into direct, indirect,

and total impacts (e.g., Whitten, Williams and Wimpy, 2019). Direct impacts describe

the change in one unit’s outcome caused by a change in the same unit’s regressor. Indirect

impacts, also called spillover effects, quantify the shift in one unit’s outcome induced by

a change in another unit’s covariate. The sum of these quantities constitutes the total

impact for each unit. By implication and depending on the spatial configuration, the

modification of one covariate in a single observation potentially affects all other units in

the sample to a different degree. As a way to handle this wealth of information provided

by spatial regression models, LeSage and Pace (2009) suggest to compute these impact

estimates for each individual unit in the sample and report their averages as meaningful

summary measures.

Figure C.1.2: Comparing the Bias in the Estimated Average Indirect Impact Derived
from the SDM and OLS/SEM Models
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By doing so, Figure C.1.2 reports the average indirect impact (AII) estimates in order

to investigate the substantive effect of omitted spillovers for substantive inferences. Since

both the SEM and the non-spatial OLS model assume no spillover effects, the estimated

coefficient associated with x represent the regressor’s average direct impact (ADI) which

also equals the estimated average total impact (ATI) for these models. Consequently,

Figure C.1.2 does not report confidence intervals for the bias in the AII estimates from
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the OLS/SEM model specification since they are not estimated but assumed to be zero. In

contrast, the SDM model accounts for indirect spillovers and the estimate of a regressor’s

total impact is the sum of its average direct and indirect impact. For the SDM model, the

the following partial derivatives matrix allows researchers to obtain substantive impact

estimates:

(In − ρ̂W )−1(β̂In +W θ̂). (C1)

In Equation (C1), In is the n× n dimensional identity matrix W is the exogenously

given connectivity matrix of the same size and ρ̂, β̂, and θ̂ are the parameter estimates

obtained from the unrestricted SDM model. The ADI can be computed by averaging

over the while diagonal elements of the matrix shown in Equation (C1) the AII is the

average of its cumulative off-diagonal elements (e.g., Lacombe and LeSage, 2015).

Across the different sample sizes and for all levels of spatial autocorrelation, Figure

C.1.2 illustrates that all models – the non-spatial OLS, the SEM, and the SDM spec-

ification – yield unbiased estimates of the AII if the true DGP does not feature any

indirect spillover effects. However, if the omitted variable is correlated with the included

regressor, both models that rule out spillovers by assumption (OLS/SEM models) under-

estimate the regressor’s indirect impact. The results also show that this bias increases

(i) as the correlation between x and z increases and (ii) with the strength of the cross-

sectional interdependence. Whereas moderate levels of correlation do not induce bias if ρ

is small, higher levels of spatial dependence in the omitted variable induce stronger indi-

rect spillover effects in the true DGP which, in turn, biases estimates from the OLS/SEM

models. The size of the sample only affects the estimate’s variability but has no effect on

the bias. In line with the findings presented by LeSage and Pace (2009), the ability to

derive unbiased effect estimates across a range of different spatial regimes is an important

feature of the SDM model that makes it valuable in applied research settings (see also

Mur and Angulo, 2006). At the same time, since the calculation of the impact estimates

for the SDM model involves three estimated parameters (ρ̂, β̂, and θ̂) a major drawback

of the SDM model is its inefficiency of the impact estimates.

C.2 Negative Spatial Autocorrelation

While positive spatial autocorrelation is considered to be more common in applied set-

tings, this section investigates the performance of the four Wald tests in a scenario with

negative autocorrelation. To this end, I rerun the simulation experiment described in the

article for the different values for γ and across the different sample sizes and specify the

true spatial parameter such that ρ = −0.2. This represents a scenario with a moderate

level of negative spatial autocorrelation.

Figure C.2.1 depicts the results of this additional simulation exercise. As the results
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Figure C.2.1: Performance of the Different Wald Tests in a Scenario with Negative Spatial
Autocorrelation
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indicate, there is no difference between positive or negative spatial autocorrelation with

respect to the Wald test’s non-invariance to reparameterizations of the null hypothesis.

Again, while H0(I) and H0(III) perform comparatively well, the power functions of the

other two algebraically equivalent expressions of the common factor hypothesis are unsat-

isfactory. Based on these tests, researchers would frequently conclude that no meaningful

spillovers exist although the true DGP features sizable indirect effects. Moreover, Figure

C.2.1 clearly identifies notable differences between the Wald tests despite the fact that all

tests not only use the same data and parameter estimates to calculate their respective test

statistic. They also work with algebraically identical expressions of the null hypothesis.

C.3 Alternative Connectivity Scheme and Possible Edge Effects

In order to verify that the results presented in the main article are not solely driven by

the queen contiguity scheme used to construct W , Figure C.3.1 presents the results from

the same simulations as conducted in the main part of the article with a rook instead of

a queen connectivity scheme. To further avoid possible edge effects, the grid structure is

mapped onto a torus so that there are no spatial units on the edges.

The results are in line with the ones already reported in the article. The different

variants of the Wald test frequently come to conflicting conclusions regarding the null
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Figure C.3.1: Share of Null Hypothesis Rejections (Rook Connectivity Mapped Onto a
Torus)
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hypothesis of common factors. This finding is also in line with the simulation results

reported by Mur and Angulo (2006) who demonstrate that the connectivity scheme has

a minor impact on the behavior of the LM, LR, and Wald test. Therefore, the results

hold when controlling for possible edge effects and alternative connectivity structures.

C.4 Alternative Values for β

As the analytical results presented in the article suggest, the accuracy of the Taylor series

approximation not only depends on ρ and γ but also on β. Consequently, this parameter

also affects the performance of the different variants of the Wald test of common factors

(see also Gregory and Veall, 1986). Against this background, this section contains ad-
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ditional simulation experiments in which the relevant parameters – ρ, γ, and β – vary

while the sample size is fixed to n = 100.

Figure C.4.1: Share of Null Hypothesis Rejections Across Different Values of β
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Figure C.4.1 displays the rejection rates of the null hypothesis of common factors for

the different Wald tests based on asymptotic critical values across the specified parameter

settings. The right column depicts the scenario considered in the main article where

β = 2. Again, H0(I) and H0(III) perform equally well compared to H0(II) and especially

H0(IV ). H0(II) has almost no power unless there is a considerable level of spatial

dependence in the DGP. As outlined in the article, this is because parameter values for ρ

close to zero constitute an approximate violation of the assumed continuity of derivatives.

More strikingly, as Figure C.4.1 clearly shows, while the other three expressions of

the null hypothesis remain relatively unaffected by the value of β in the true DGP, this
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parameter has serious consequences for the empirical size of H0(IV ). Especially when

there is only a trace of spatial autocorrelation in the DGP and β takes on smaller values,

H0(IV ) dramatically over-rejects the true null hypothesis of common factors.

C.5 Share of Conflicting Inferences from the Wald Test

As stated in the article, Wald tests based on different functional expressions of the com-

mon factor restriction can come to substantively different conclusions regarding the true

DGP despite the fact that they use the same data and model estimates. To further

investigate the severity of these conflicts, Figure C.5.1 reports the share of simulation

iterations where at least one pair of tests suggests opposing conclusions regarding the

existence of common factors using asymptotic critical values at the conventional α-level

of 0.05. It identifies the regions of the parameter space where the tests diverge most

frequently. In the four panels, the radius and the color of each circle signifies the share

of inconsistent conclusions, where larger and darker circles indicate a higher share.

Figure C.5.1: Share of Inconsistent Inferences Across the 1, 000 Simulation Trials
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The area with the highest share of contradictory inferences is located at the lower-right

part of the panels. Strong cross-sectional dependence in conjunction with high correlation
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between the regressor and the omitted variable constitutes a problem for the Wald tests

as they regularly come to contradictory conclusions. While a larger sample size reduces

the inconsistencies in a scenario where the spatial dependence in the omitted variable is

strong, the Wald tests still contradict each other most of the time if the cross-sectional

dependence in z is moderate. This illustrates the great potential for incorrect inferences

caused by the Wald test’s sensitivity to alternative expressions of the null hypothesis even

in modestly sized samples.
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C.6 Bootstrap Critical Values for the Wald Tests of Common

Factors

While the main article already discusses the improvement of the Wald test’s size properties

when bootstrap critical values are used instead of the asymptotic critical value, this

section evaluates the power of the modified Wald test. Figure C.6.1 compares the power

functions of the four variants of the Wald test based on their estimated critical values

across the different parameter settings specified in the article.

Figure C.6.1: Power of the Wald Test Based on Bootstrap Critical Values

ρ
=

0.
2

n = 49
H0(I) : ρ̂β̂ + θ̂ = 0
H0(II) : β̂ + θ̂/ρ̂ = 0
H0(III) : ρ̂+ β̂/θ̂ = 0
H0(IV ) : ρ̂β̂/θ̂ + 1 = 0

n = 100 n = 225

0.0

0.2

0.4

0.6

0.8

1.0
n = 400

ρ
=

0.
4

0.0

0.2

0.4

0.6

0.8

1.0

ρ
=

0.
6

0.0

0.2

0.4

0.6

0.8

1.0

ρ
=

0.
8

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
γ

H
0

R
ejection

R
ate

The results illustrate that, although the bootstrap approach does not improve the

performance of the Wald test based on H0(IV ), it reduces the discrepancies in the power

functions of the remaining three formulations of the common factor restriction. This is
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primarily a result of the improved power of H0(II). In contrast to the test’s poor perfor-

mance reported in the main article, basing inferences on the simulated null distribution

as the reference distribution noticeably boosts its performance. At the same time, the

problem with small values of ρ already discussed in the article still remains. Notwith-

standing this, using bootstrap critical values reduces the conflict between the alternative

expressions of the common factor restriction and better aligns the tests based on the four

alternative variants of the common factor hypothesis. Therefore, this modification of the

Wald test constitutes a superior assessment of the common factor restriction and should

be used in empirical model search strategies as an alternative to the original Wald test

that relies on the asymptotic χ2 distribution.
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C.7 Performance of the Likelihood Ratio Test

The LR test constitutes an alternative procedure to assess the common factor restriction

in an unrestricted SDM model. In contrast to the Wald test, this statistic has the

advantage that it is invariant to reparameterizations of the null hypothesis. Moreover, as

Angulo and Mur (2011) show, the LR test of common factors performs well even under

non-ideal conditions such as heteroscedasticity and non-linearity. However, it requires the

estimation of both the unrestricted SDM and the restricted SEM model (e.g., Elhorst,

2014; Burridge, 1981). To investigate the performance of this alternative test, Figure

C.7.1 compares the power functions of the LR test and the original Wald test based on

asymptotic critical values. To this end, the figure shows the Wald specification with the

restriction H0(I): ρ̂β̂ + θ̂ = 0 which was identified to be the best performing variant of

the original Wald test in this simulation.

In contrast to the Wald test, the empirical size of the LR test does not notably differ

across the sample sizes and the different values of ρ. In all scenarios, the share of simu-

lation trials in which the test falsely rejects the null hypothesis is close to the specified

α-level of 0.05. In line with previous research (e.g., Angulo and Mur, 2011; Mur and

Angulo, 2009), the simulation experiment indicates that the LR test performs compara-

tively well across a wide range of parameter settings. As expected, all H0 rejection rates

increase in the sample size and as the strength of the spatial dependence increases.

Interestingly, the comparison shows that the original Wald test based on H0(I) per-

forms equally well in these simulations. While this is an encouraging finding, it should

be noted that no single formulation of the null hypothesis exists that outperforms the

alternatives in all regions of the parameter space (e.g., Phillips and Park, 1988; Gregory

and Veall, 1986). Consequently, despite the good performance of H0(I) in these simula-

tions, there is no guarantee that the Wald test based on this particular parameterization

always outperforms alternative formulations of the null hypothesis.

Taken together, this comparison suggest that, in small to medium sized samples,

the LR test constitutes a powerful alternative to the Wald test in order to scrutinize

the common factor restriction. The small disadvantage that the LR test requires more

models to be estimated is negligible as compared to the considerable benefit that the

test is not sensitive to arbitrary reparameterizations of the null hypothesis. In addition,

the rapid increase in computational power steadily diminish concerns about the higher

computational demand of the LR test in relation to the Wald test (see also Gibbons and

Overman, 2012).
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Figure C.7.1: Comparison of the LR Test and the Original Wald Test Based on H0(I)
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