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A. Minimization of Relative Entropy

Following Hainmueller (2012), we use the method of Lagrange multipliers to find a set of weights rbwi that

minimize their relative entropy with the base weights qi subject to the balancing constraints. Substituting

δ̂(gj(lit)) for δ(gj(lit)) in equation (14) in the main text, the balancing constraints can be written as

n∑
i=1

rbwiĉir = 0, 1 ≤ r ≤ nc,

where ĉir is the rth element of ĉi = {δ̂(gj(lit))hk(li,t−1, ai); 1 ≤ j ≤ Jt, 1 ≤ k ≤ Kt, 1 ≤ t ≤ T}. In

addition, we impose a normalization constraint
∑

i rbwi = n such that the residual balancing weights sum to

the sample size. Thus, the primal optimization problem is

min
rwi

Lp =

n∑
i=1

rbwi log
rbwi
qi

+

nc∑
r=1

λr

n∑
i=1

rbwicir + λ0(

n∑
i=1

rbwi − n), (1)

where {λ1, . . . , λnc} are the Lagrange multipliers for the balancing constraints and λ0 is the Lagrange multi-

plier for the normalization constraint. Since the loss function Lp is strictly convex, the first order condition of

equation (1) implies that the solution for each weight is

rbw∗i =
nqi exp(−

∑nc
r=1 λrcir)∑N

i=1 qi exp(−
∑nc

r=1 λrcir)
. (2)
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Inserting equation (2) into Lp leads to the dual problem given by

max
λr

Ld = − log
( n∑
i=1

qi exp
(
−

nc∑
r=1

λrcir
))
,

or equivalently,

min
Z

Ld = log
(
Q′ exp

(
CZ
))
,

whereQ = [q1, q2, . . . , qn]
′,C = [c1, c2, . . . , cn]

′, andZ = −[λ1, λ2, . . . , λnc ]
′. Since both the gradient and

the Hessian have closed-form expressions, this problem can be solved using Newton’s method. Inserting the

solutions for λr into equation (2) yields the residual balancing weights.

B. Performance of the Robust (“Sandwich”) Variance Estimator

In most applications of marginal structural models (MSMs), standard errors are computed with the robust

(“sandwich”) variance estimator. In this section, we present a simulation study that evaluates the performance

of the robust variance estimator for MSM coefficients estimated via IPW-GLM, IPW-GLM-Censored, IPW-

CBPS, and residual balancing (under the same setup described in Section 4 of the main text). The results are

shown in Figures S1-S4, where the box plots display the sampling distributions of the robust standard errors

divided by the true standard errors estimated from the 2,500 random samples. Across nearly all scenarios, and

especially when the confounder models are correctly specified, the robust variance estimator is conservative

for residual balancing, that is, it tends to overestimate the true sampling variance. Consequently, as Tables

S1-S2 show, when the confounder models are correctly specified, confidence intervals constructed with these

standard errors typically ensure true coverage rates that are at least equal to, and often exceed, the nominal

coverage rate. By contrast, results from this simulation study suggest that the robust variance estimator may

underestimate the true sampling variance under IPW-GLM in many different situations, even though it is ex-

pected to be conservative in large samples (Robins 1999; Robins, Hernan and Brumback 2000). As a result,

confidence intervals constructed with these standard errors often fall short of the nominal coverage rate, even

when the propensity score models are correctly specified.
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Figure S1: Performance of the robust (“sandwich”) variance estimator for a binary treatmentwith correctmodel
specification. The left and right panels correspond to the settings of “mild confounding” (α = 0.4) and “strong
confounding” (α = 0.8) respectively. Four different methods are compared: IPW based on the standard logistic
regression (IPW-GLM), IPW based on the standard logistic regression with weights censored at the 1st and
99th percentiles (IPW-GLM-Censored), IPW based on the CBPS (IPW-CBPS), and residual balancing. As a
benchmark, results from IPW based on true treatment probabilities (IPW-Truth) are also reported. The box
plots show the sampling distributions (from 2500 random samples) of the robust standard errors divided by
the true standard errors (estimated via the 2500 random samples).

Table S1: Coverage of 95% confidence intervals constructed with robust (“sandwich”) standard errors for a
binary treatment with correct model specification.

Mild Confounding Strong Confounding
β1 β2 β3 β1 β2 β3

IPW-Truth 0.94 0.92 0.93 0.90 0.85 0.88
IPW-GLM 0.95 0.97 0.97 0.92 0.90 0.90

IPW-GLM-Censored 0.94 0.95 0.97 0.93 0.79 0.82
IPW-CBPS 0.90 0.83 0.95 0.87 0.40 0.67

Residual Balancing 0.98 1.00 0.99 0.98 1.00 0.98
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Figure S2: Performance of the robust (“sandwich”) variance estimator for a continuous treatment with correct
model specification. The left and right panels correspond to the settings of “mild confounding” (α = 0.4)
and “strong confounding” (α = 0.8) respectively. Three different methods are compared: IPW based on the
standard logistic regression (IPW-GLM), IPW based on the standard logistic regression with weights censored
at the 1st and 99th percentiles (IPW-GLM-Censored), and residual balancing. As a benchmark, results from
IPW based on true treatment probabilities (IPW-Truth) are also reported. The box plots show the sampling
distributions (from 2500 random samples) of the robust standard errors divided by the true standard errors
(estimated via the 2500 random samples).

Table S2: Coverage of 95% confidence intervals constructed with robust (“sandwich”) standard errors for a
continuous treatment with correct model specification.

Mild Confounding Strong Confounding
β1 β2 β3 β1 β2 β3

IPW-Truth 0.72 0.63 0.56 0.68 0.39 0.34
IPW-GLM 0.91 0.85 0.88 0.8 0.58 0.66

IPW-GLM-Censored 0.91 0.72 0.77 0.83 0.27 0.40
Residual Balancing 0.98 0.99 1.00 0.97 0.99 0.99
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Figure S3: Performance of the robust (“sandwich”) variance estimator for a binary treatment with incorrect
model specification. The left and right panels correspond to the settings of “mild confounding” (α = 0.4) and
“strong confounding” (α = 0.8) respectively. Four differentmethods are compared: IPW based on the standard
logistic regression (IPW-GLM), IPW based on the standard logistic regression with weights censored at the 1st
and 99th percentiles (IPW-GLM-Censored), IPW based on the CBPS (IPW-CBPS), and residual balancing. As
a benchmark, results from IPW based on true treatment probabilities (IPW-Truth) are also reported. The box
plots show the sampling distributions (from 2500 random samples) of the robust standard errors divided by
the true standard errors (estimated via the 2500 random samples).

Table S3: Coverage of 95% confidence intervals constructed with robust (“sandwich”) standard errors for a
binary treatment with incorrect model specification.

Mild Confounding Strong Confounding
β1 β2 β3 β1 β2 β3

IPW-Truth 0.94 0.92 0.93 0.90 0.85 0.88
IPW-GLM 0.64 0.69 0.69 0.44 0.49 0.44

IPW-GLM-Censored 0.84 0.39 0.57 0.88 0.60 0.74
IPW-CBPS 0.69 0.03 0.13 0.47 0.00 0.01

Residual Balancing 0.94 0.80 0.82 0.90 0.75 0.76
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Figure S4: Performance of the robust (“sandwich”) variance estimator for a continuous treatmentwith incorrect
model specification. The left and right panels correspond to the settings of “mild confounding” (α = 0.4)
and “strong confounding” (α = 0.8) respectively. Three different methods are compared: IPW based on the
standard logistic regression (IPW-GLM), IPW based on the standard logistic regression with weights censored
at the 1st and 99th percentiles (IPW-GLM-Censored), and residual balancing. As a benchmark, results from
IPW based on true treatment probabilities (IPW-Truth) are also reported. The box plots show the sampling
distributions (from 2500 random samples) of the robust standard errors divided by the true standard errors
(estimated via the 2500 random samples).

Table S4: Coverage of 95% confidence intervals constructed with robust (“sandwich”) standard errors for a
continuous treatment with incorrect model specification.

Mild Confounding Strong Confounding
β1 β2 β3 β1 β2 β3

IPW-Truth 0.72 0.63 0.56 0.68 0.39 0.34
IPW-GLM 0.48 0.11 0.06 0.29 0.02 0.02

IPW-GLM-Censored 0.33 0.00 0.00 0.10 0.00 0.00
Residual Balancing 0.89 0.69 0.72 0.87 0.64 0.66
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C. Illustrative R Code

In this appendix, we illustrate the implementation of residual balancing using the R package rbw for the two

empirical examples.

devtools::install_github("xiangzhou09/rbw")

library(rbw); library(survey)

## Example 1: The Cumulative Effect of Negative Advertising on Candidate's Voteshare ##

# models for time-varying confounders

m1 <- lm(dem.polls ~ (d.gone.neg.l1 + dem.polls.l1 + undother.l1) * factor(week),

data = campaign_long)

m2 <- lm(undother ~ (d.gone.neg.l1 + dem.polls.l1 + undother.l1) * factor(week),

data = campaign_long)

xmodels <- list(m1, m2)

# residual balancing weights

fit <- rbwPanel(exposure = d.gone.neg, xmodels = xmodels, id = id, time = week,

data = campaign_long)

campaign_wide <- merge(campaign_wide, fit$weights, by = "id")

# fitting a marginal structural model

rbw_design <- svydesign(ids = ~ 1, weights = ~ rbw, data = campaign_wide)

msm_rbw <- svyglm(demprcnt ~ cum_neg * deminc + camp.length + factor(year) + office,

design = rbw_design)

## Example 2: The Controlled Direct Effect of Shared Democracy on Public Support for War ##

haven::read_dta("peace.dta")

# models for post-treatment confounders

m1 <- lm(threatc ~ ally + trade + h1 + i1 + p1 + e1 + r1 + male + white + age + ed4 + democ,

data = peace)

m2 <- lm(cost ~ ally + trade + h1 + i1 + p1 + e1 + r1 + male + white + age + ed4 + democ,

data = peace)

m3 <- lm(successc ~ ally + trade + h1 + i1 + p1 + e1 + r1 + male + white + age + ed4 + democ,

data = peace)

# residual balancing weights

fit <- rbwMed(treatment = democ, mediator = immoral, zmodels = list(m1, m2, m3),

data = peace)

peace$rbw <- fit$weights

# fitting a marginal structural model

rbw_design <- svydesign(ids = ~ 1, weights = ~ rbw, data = peace)

msm_rbw <- svyglm(strike ~ ally + trade + h1 + i1 + p1 + e1 + r1 + male + white +

age + ed4 + democ + democ * immoral, design = rbw_design)

7



References

Hainmueller, Jens. 2012. “EntropyBalancing forCausal Effects: AMultivariate ReweightingMethod to Produce

Balanced Samples in Observational Studies.” Political Analysis 20(1):25–46.

Robins, James M. 1999. “Marginal Structural Models versus Structural Nested Models as Tools for Causal

Inference.” Statistical Models in Epidemiology: The Environment and Clinical Trials .

Robins, JamesM,Miguel Angel Hernan and Babette Brumback. 2000. “Marginal Structural Models and Causal

Inference in Epidemiology.” Epidemiology 11(5):550–560.

8


