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A Text representations and distance metrics

In Section 3 we describe a framework for text matching involving choosing both a text

representation and a distance metric; we then briefly outline the options for each. Here we

expand that discussion.

A.1 Choosing a representation

To operationalize documents for text matching, we must first represent the corpus in a struc-

tured, quantitative form. There are two important properties to consider when constructing

a representation for text with the goal of matching. First, the chosen representation should

be sufficiently low-dimensional such that it is practical to define and calculate distances

between documents. If a representation contains thousands of covariates, calculating even

a simple measure of distance may be computationally challenging or may suffer from the

curse of dimensionality. Second, the chosen representation should be meaningful; that is,

it should capture sufficient information about the corpus so that matches obtained based

on this representation will be similar in some clear and interpretable way. As discussed

in Section 2, text matching is only a useful tool for comparing groups of text documents

when the representation defines covariates that contain useful information about systematic

differences between the groups.

In this paper, we explore three common types of representations: the term-document

matrix (TDM), which favors retaining more information about the text at the cost of dimen-

sionality, statistical topic models, which favor dimension reduction at the potential cost of

information, and neural network embeddings, which fall somewhere in between. There are

a number of alternative text representations that could also be used to perform matching

within our framework, including other representations based on neural networks (Bengio

et al., 2003) or those constructed using document embeddings (Le and Mikolov, 2014; Dai

et al., 2015), but these are left as a topic for future research.
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A.1.1 Representations based on the term-document matrix

Perhaps the simplest way to represent a text corpus is as a TDM. Under the common “bag-of-

words” assumption, the TDM considers two documents identical if they use the same terms

with the same frequency, regardless of the ordering of the terms (Salton and McGill, 1986).

When matching documents, it is intuitive that documents that use the same set of terms

at similar rates should be considered similar, so the TDM provides a natural construction

for representing text with the goal of matching. However, the dimensionality of a standard

TDM may give rise to computational challenges when calculating pairwise distances between

documents in some corpora. There are many dimension-reduction strategies that can be

applied to help mitigate this issue including techniques based on matrix rescaling using a

scheme such as TF-IDF scoring (Salton, 1991), and techniques for bounding the vocabulary

to eliminate extremely rare and/or extremely common terms. However, it should be noted

that in large corpora, a bounded and rescaled TDM may still have a dimension in the tens

of thousands, setting known to be difficult for matching (Roberts et al., 2019).

A.1.2 Representations based on statistical topic models

An alternative representation for text, popular in the text analysis literature, is based on

statistical topic models (Blei, 2012), e.g., LDA (Blei et al., 2003) and STM (Roberts et al.,

2016a). The main argument for matching using a topic-model-based representation of text

is that document similarity can adequately be determined by comparing targeted aspects

of the text rather than by comparing the use of specific terms. That is, topic-model-based

representations imply that two documents are similar if they cover a fixed number of topics

at the same rates. Topic models provide an efficient strategy for considerably reducing the

dimension of the covariates while retaining all information that is relevant for matching.

In contrast to the tens of thousands of covariates typically defined using a representation

based on the TDM, representations built using topic models typically contain no more than

a few hundred covariates at most. However, consistent estimation of topic proportions is
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notoriously difficult due to issues with multimodality of these models, which gives rise to a

number of issues for applications of matching in practice (Roberts et al., 2016b).

A.1.3 Representations based on neural network embeddings

Mikolov et al. (Mikolov et al., 2013) introduce a neural network architecture to embed words

in an n−dimensional space based on its usage and the words which commonly surround it.

This architecture has proven remarkably powerful with many intriguing properties. For

example, it performs very well in a series of “linguistic algebra” tasks, successfully solving

questions like “Japan” − “sushi” + “Germany” = “bratwurst.”

A.1.4 Propensity scores

When matching in settings with multiple covariates, a common technique is to first perform

dimension reduction to project the multivariate covariates into a univariate space. A popu-

lar tool used for this purpose is the propensity score, defined as the probability of receiving

treatment given the observed covariates (Rosenbaum and Rubin, 1983). Propensity scores

summarize all of the covariates into one scalar, and matching is then performed by iden-

tifying groups of units with similar values of this score. In practice, propensity scores are

generally not known to the researcher and must be estimated using the observed data. When

applied to text, propensity scores can be used to further condense the information within

a chosen higher-dimensional representation into a summary of only the information that is

relevant for determining treatment assignment. Propensity scores representations can be

constructed using a quantitative text representation. For example, using STM-based repre-

sentations or Word2Vec-based representations where dimension of the covariate space is less

than the number of documents, standard techniques such as simple logistic regression can

be used to estimate propensity scores. To construct propensity score representations over

larger a covariate space, such as those typically spanned by a TDM, we use Multinomial

Inverse Regression (MNIR; Taddy, 2013), which provides a novel estimation technique for
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performing logistic regression of phrase counts from the TDM onto the treatment indicator.

After estimating this model, we can calculate a sufficient reduction score that, in principle,

will contain all the information from the TDM that is relevant for predicting treatment

assignment. Performing a forward regression of the treatment indicator on this sufficient

reduction score produces the desired propensity score estimates.

A.2 Design choices for representations

Representations of text data typically involve a number of tuning parameters. When us-

ing the bag-of-words representation, researchers often remove very common and very rare

words at arbitrary thresholds, as these add little predictive power, or choose to weight terms

by their inverse document frequency; these pre-processing decisions can be very important

(Denny and Spirling, 2018). Topic models such as the STM are similarly sensitive to these

pre-processing decisions (Fan et al., 2017) and also require specification of the number of

topics and selecting covariates, which are often unstable. Word2vec values depend on the

dimensionality of the word vectors as well as the training data and the architecture of the

neural network. Below, we discuss a number of design choices that are required for the

different representations considered in our study.

TDM-based representations. Each of the TDM-based representations is characterized

by a bounding scheme, which determines the subset of the vocabulary that will be included

in X, and a weighting scheme, which determines the numerical rule for how the values of X

are measured. We consider standard term-frequency (TF) weighting, TF-IDF weighting, and

L2-rescaled TF-IDF weighting. We also consider a number of different screening schemes,

including no screening, schemes that eliminate high and low frequency terms, and schemes

that consider only high and low frequency terms.

STM-based representations. Each STM-based representation is characterized by a fixed

number of topics (K=10, 30, 50, or 100) and takes one of three distinct forms: 1) the vector
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of K estimated topic proportions (“S1”), 2) the vector of K estimated topic proportions and

the SR score (“S2”), or 3) a coarsened version of the vector of K estimated topic proportions

(“S3”). This coarsened representation is constructed using the following procedure. For each

document, we first identify the three topics with the largest estimated topic proportions. We

retain and standardize these three values and set all remaining K−3 topic proportions equal

to 0, so that the resulting vector of coarsened topic proportions, θ̂?i , contains only three non-

zero elements. We then calculate the “focus” of each document, denoted by Fi, a metric we

define as the proportion of topical content that is explained by the three most prominent

topics. Focus scores close to one indicate content that is highly concentrated on a small

number of topics (e.g., a news article covering health care reform may have nearly 100% of

its content focused on the topics of health and policy); conversely, focus scores close to zero

indicate more general content covering a wide range of topics (e.g., a news article entitled

“The ten events that shaped 2017” may have content spread evenly across ten or more

distinct topics). To estimate this score for each document, we take the sum of the raw values

of the three non-zero topic proportions identified as above (i.e., F̂i = θ̂i[1] + θ̂i[2] + θ̂i[3] where

θ̂i[j] is the jth order statistic of the vector θ̂). Appending this estimated focus score to the

coarsened topic proportion vector produces the final (K + 1)-dimensional representation.

TIRM representations. The TIRM procedure of Roberts et al. (2019) uses an STM-

based representation with an additional representation based on document-level propensity

scores estimated using the STM framework. These separate representations are then com-

bined within the TIRM procedure using a CEM distance. Each variant of the TIRM proce-

dure considered in this paper is characterized by a fixed number of topics and a set coarsening

level (2 bins, 3 bins, or 4 bins).

Word Embedding representations. Google and Stanford University have produced a

variety of pre-trained word embedding models. Google’s GoogleNews model, where each

word vector is length 300 using a corpus of 100 billion words, draws from the entire corpus

6



of Google News; this corpus is therefore extremely well-suited to our analysis. As well, we

consider several of Stanford’s GloVe embeddings (Pennington et al., 2014). In particular, we

employ their models with word vectors of length 50, 100, 200, and 300. For each of these

five embeddings, we produce document-level vectors by taking the weighted average of all

word vectors in a document (Kusner et al., 2015).

A.3 Defining a distance metric

After a representation is chosen, applying this representation to the corpus generates a

finite set of numerical covariate values associated with each document (i.e., Xi denotes the

covariates observed for document i for all i = 1, . . . , N). The next step in the matching

procedure concerns how to use these covariate values to quantify the similarity between

two documents. There are two main classes of distance metrics. Exact and coarsened exact

distances regard distances as binary: the distance between two units is either zero or infinity,

and two units are eligible to be matched only if the distance between them is equal to zero.

Alternatively, continuous distance metrics define distance on a continuum, and matching

typically proceeds by identifying pairs of units for whom the calculated distance is within

some allowable threshold (“caliper”).

A.3.1 Exact and coarsened exact distances

The exact distance is defined as:

Dij =


0, if Xi = Xj

∞, otherwise.

Matching over this metric (exact matching) generates pairs of documents between treatment

and control groups that match exactly on every covariate. Although this is the ideal, exact

matching is typically not possible in practice with more than a few covariates. A more
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flexible metric can be defined by first coarsening the covariate values into “substantively

indistinguishable” bins, then using exact distance within these bins (Iacus et al., 2012). For

example, using a topic-model-based representation, one might define a coarsening rule such

that documents will be matched if they share the same primary topic (i.e., if the topic

with the maximum estimated topic proportion among the K topics is the same for both

documents). Roberts et al. (2019) advocates using CEM for matching documents based on

a representation built using an STM, but, in principle, this technique can also be used with

TDM-based representations. For example, one might coarsen the term counts of a TDM into

binary values indicating whether each term in the vocabulary is used within each document.

Though it is possible in principle, coarsening does not scale well with the dimension of the

covariates and so may not be practical for matching with TDM-based representations. This

type of distance specification may also create sensitivities in the matching procedure, since

even minor changes in the coarsening rules can dramatically impact the resulting matched

samples.

A.3.2 Continuous distances

Various continuous distance metrics can be used for matching, including linear distances

based on the (estimated) propensity score or best linear discriminant (Rosenbaum and Rubin,

1983), multivariate metrics such as the Mahalanobis metric (Rubin, 1973), or combined

metrics, such as methods that match on the Mahalanobis metric within propensity score

calipers (Rosenbaum and Rubin, 1985). When matching on covariates defined by text data,

care must be taken to define a metric that appropriately captures the complexities of text.

For instance, linear distance metrics such as Euclidean distance may often fail to capture

information about the relative importance of different covariates. To make this more clear,

consider two pairs of documents containing the texts: “obama spoke”, “obama wrote” and ‘he

spoke”, “he wrote”. Under a TDM-based representation, the Euclidean distances between

units in each of these pairs are equal; however, the first pair of documents is intuitively
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more similar than the second, since the term “obama” contains more information about the

content of the documents than the term “he”. Similarly, the Euclidean distance between

the pair documents “obama spoke”, “obama obama” is equivalent to the distance between

the pair “obama spoke”, “he wrote”, since by this metric distance increases linearly with

differences in term frequencies. These issues also arise when using linear distance metrics

with topic-model-based representations.

A metric that is less vulnerable to these complications is Mahalanobis distance, which

defines the between documents i and j as Dij = (Xi − Xi)
TΣ−1(Xi − Xj), where Σ is the

variance-covariance matrix of the covariates X. This is essentially a normalized Euclidean

distance, which weights covariates according to their relative influence on the total variation

across all documents in the corpus. Calculating Mahalanobis distance is practical for lower-

dimensional representations, but because the matrix inversion does not scale well with the

dimension of X, it may not be computationally feasible for matching using larger, TDM-

based representations.

An alternative metric, which can be efficiently computed using representations defined

over thousands of covariates, is cosine distance. Cosine distance measures the cosine of the

angle between two documents in a vector space:

Dij = 1−
∑
XiXj√∑

X2
i

√∑
X2

j

.

Cosine distance is commonly used for determining text similarity in fields such as informa-

tional retrieval and is an appealing choice for matching because, irrespective of the dimension

of the representation, it captures interpretable overall differences in covariate values (e.g.,

a cosine distance of one corresponds to a 90 degree angle between documents, suggesting

no similarity and no shared vocabulary). In general, the utility of a particular continuous

distance metric will largely depend on the distribution that is induced on the covariates

through the representation.
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A.3.3 Calipers and combinations of metrics

When pruning treated units is acceptable, exact and coarsened exact matching methods have

the desirable property that the balance that will be achieved between matched samples is

established a-priori. Treated units for whom there is at least one exact or coarsened exact

match in the control group are matched, and all other treated units are dropped. On the

other hand, matching with a continuous distance metric requires tuning after distances have

been calculated in order to bound the balance between matched samples. After the distances

between all possible pairings of treated and control documents have been calculated, one then

chooses a caliper, Dmax, such that any pair of units i and j with distance Dij > Dmax cannot

be matched. Here, when pruning treated units is acceptable, any treated units without at

least one potential match are dropped. Calipers are typically specified according to a “rule

of thumb” that asserts that Dmax be set equal to the value of 0.25 or 0.5 times the standard

deviation of the distribution of distance values over all possible pairs of treated and control

units, but in some special cases, the caliper can be chosen to reflect a more interpretable

restriction. For example, using the cosine distance metric, one might choose a caliper to

bound the maximum allowable angle between matched documents.

A.4 Text as covariates and outcomes

The procedure described in Section 3 is relatively straightforward to apply in studies where

text enters the problem only through the covariates. However, in more complicated set-

tings where both the covariates and one or more outcomes are defined by features of text,

additional steps may be necessary to ensure these components are adequately separated.

In practice it is generally recommended that outcome data be removed from the dataset

before beginning the matching process to preclude even the appearance of “fishing,” whereby

a researcher selects a matching procedure or a particular matched sample that leads to a

desirable result (Rubin, 2007). However, this may not be possible when evaluating a text

corpus, since both the covariates and outcome may often be latent features of the text (Egami
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et al., 2017). For instance, suppose we are interested in comparing the level of positive

sentiment within articles based on the gender of the authors. One can imagine that news

articles that report incidences of crime will typically reflect lower levels of positive sentiment

than articles reporting on holiday activities, regardless of the gender of the reporter. Thus,

we might like to match articles between male and female reporters based on their topical

content and then compare the sentiment expressed within these matched samples. Here,

we must extract both the set of covariates that will be used for matching (i.e., topical

content) and the outcome (level of positive sentiment) from the same observed text. Because

these different components may often be related, measuring both using the same data poses

two important challenges for causal inference: first, it requires that the researcher use the

observed data to posit a model on the “post-treatment” outcome, and, second, measurement

of the covariates creates potential for fishing. In particular, suppose that positive sentiment

is defined for each document as the number of times terms such as “happy” are used within

that document (standardized by each document’s length). Suppose also that we use the

entire vocabulary to measure covariate values for each document (e.g., using a statistical

topic model). In this scenario, matching on topical content is likely to produce matches that

have similar rates of usage of the term “happy” (in addition to having similar rates of usage

of other terms), which may actually diminish our ability to detect differences in sentiment.

To address this issue, we recommend that researchers interested in inference in these

settings define the covariates and outcome over a particular representation, or set of distinct

representations, such that measurement of the outcome can be performed independently

of the measurement of covariates. For example, one might measure the covariates using a

representation of text defined over only nouns, and separately, measure outcome values using

a representation defined over only adjectives. Or, continuing the previous example, one might

divide the vocabulary into distinct subsets of terms, where one subset is used to measure

topical content and the other is used to measure positive sentiment. In settings where the

chosen representation of the text must be inferred from the observed data (e.g., topic-model-
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based representations), cross-validation techniques can also be employed, as described in

Egami et al. (2017). For instance, one might randomly divide the corpus into training set

and test set, where the training set is used to build a model for the representation, and

this model is then applied to the test set to obtain covariate values that will be used in the

matching procedure.
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B Index of representations evaluated

Table 1: Specification of the 26 representations considered

Type Name Description Dimension

TDM

T1 TF Bounded from 4-1000 10726
T2 TF-IDF Bounded from 4-1000 10726
T3 TF-IDF Bounded from 4-100 9413
T4 TF-IDF Bounded from 4-10 4879
T5 TF-IDF Bounded from 10-500 6000
T6 TF-IDF Bounded from 500-1000 154
T7 L2 Rescaled TF-IDF Bounded from 4-1000 10726
T8 TF on unbounded TDM 34397
T9 TF-IDF on unbounded TDM 34397

STM

S1-10 STM on 10 Topics 10
S2-10 10 Topics + estimated sufficient reduction 11
S3-10 10 Topics, top 3 topics + focus 11
S1-30 30 Topics 30
S2-30 30 Topics + estimated sufficient reduction 31
S3-30 30 Topics, top 3 topics + focus 31
S1-50 50 Topics 50
S2-50 50 Topics + estimated sufficient reduction 51
S3-50 50 Topics, top 3 topics + focus 51
S1-100 100 Topics 100
S2-100 100 Topics + estimated sufficient reduction 101
S3-100 100 Topics, top 3 topics + focus 101

Word2Vec

W1 Word embedding of dimension 50 (Google) 50
W2 Word embedding of dimension 100 (Google) 100
W3 Word embedding of dimension 200 (Google) 200
W4 Word embedding of dimension 300 (Google) 300
W5 Word embedding of dimension 300 300
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C Survey used in human evaluation experiment

The figures below show snapshots of different components of the survey as they were pre-

sented to participants in each of our human evaluation experiments. In particular, Figure 1

shows the survey landing page, where participants were informed about the nature of the

task. Participants were then presented with the scoring rubric shown in Figure 2 and were

informed to use this rubric as “a guide to help [them] determine the similarity of a pair

of articles.” In the final component of training, participants completed a series of three

training tasks, as depicted in Figure 3, where each task required them to read and score one

pre-selected pairs of articles. The articles presented in each task were chosen to represent

pairings that we believe have match quality scores of zero, five, and ten, respectively. After

scoring each training pair, participants were informed about the anticipated score for that

pair and provided with an explanation for how that determination was made.

Figure 1: The survey landing page informed participants about the nature of the task.
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Figure 2: After enrolling in the experiment, participants were presented with a scoring rubric
to use as a guide for determining the similarity of a pair of documents.
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Figure 3: In the first training task of the survey, participants were ask to read and score
a pair of articles and were then informed that the anticipated score for this pair was zero.
Specifically, they were told “We think these articles’ similarity is 0 out of 10. The first article
is related to macaroni and cheese, while the second article is about a murder trial.”
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D Supplemental results from the human evaluation ex-

periment

D.1 Sensitivity of match quality scores to the population of re-

spondents

To determine the generalizability of the match quality ratings obtained from our survey

experiment, we compare two identical pilot surveys using respondents from two distinct

populations. The first pilot survey was administered through Mechanical Turk, and the

second pilot was administered through the Digital Laboratory for the Social Sciences (Enos

et al., 2016). For each survey, respondents were asked to read and evaluate ten paired articles,

including one attention check and one anchoring question. Each respondent was randomly

assigned to evaluate eight matched pairs from a sample of 200, where this pilot sample was

generated using the same weighted sampling scheme described above. Figure 4 shows the

average match quality scores for each of the 200 matched pairs evaluated based on sample

of 337 respondents from Mechanical Turk and 226 respondents from DLABSS. The large

correlation between average matched quality scores across samples (ρ=0.88) suggests that

our survey is a useful instrument for generating consistent average ratings of match quality

across diverse populations of respondents. In particular, even though individual conceptions

of match quality may differ across respondents, the average of these conceptions both appears

to meaningfully separate the pairs of documents and to be stable across at least two different

populations.

D.2 Performance of the predictive model

Figure 5 shows the out-of-sample predictive performance of the model for a distinct sample

of 472 pairs of documents evaluated in a separate survey experiment. The correlation of pre-

dictions to measured quality for this sample was approximately 94%. In sample correlation
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Figure 4: The strong linear relationship between the average match quality scores for 200
pairs of articles evaluated in two separate pilot studies (solid line) compared to a perfect
fit (dotted line) suggests that the survey produces consistent results across samples, when
averaged across multiple respondents.

was 88% (the stronger out-of-sample correlation is likely driven by a different distribution

of matched pairs evaluated).To evaluate the sensitivity of this model to the chosen regu-

larization scheme, we performed a similar analysis using ridge regression and found only a

negligible difference in predictive performance.
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Figure 5: Predictive model for match quality trained on human evaluations has a correlation
of 0.944 with observed quality scores obtained in a separate human evaluation experiment
on a different set of pairs, indicating high out-of-sample predictive accuracy.
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E Technical details of the evaluation of match quality

of pairs of news articles

In this section we more fully describe the design and analysis of the human evaluation

experiment for the newspaper matching example. We start by discussing how we generated

our sampling strategy and weights, and then discuss how we used model-assisted survey

sampling to estimate average match quality for the different methods along with associated

uncertainty.

E.1 Details of the sampling design

The study presented in this paper is in fact a replication study as our initial study did

not directly assess all procedures considered (in particular, we did not initially evaluate the

Word2Vec procedures). We therefore designed our second study to both directly extend our

findings, verify the prior results, and further investigate the predictive accuracy of our models

to out-of-sample pairs. In order to achieve this, we designed a sampling scheme that has

three components: (1) we sampled 4 pairs from each procedure considered, (2) we directly

sampled pairs that were previously evaluated to assess the stability of the evaluation process,

and (3) we sampled pairs not selected by any method to examine differences between selected

and non-selected pairs. The first stage sampled pairs with weights based on the predicted

quality of the pairs in order to sample predicted high-quality pairs more heavily. We used

the prior study’s fit predictive model to generate these predictions. The second and third

stage sampled a fixed number of pairs within each tier of quality (from 0 to 8+) to see the

full range of pair qualities in our sample (simple random sampling would not work since

the vast majority of pairs are scored as quality 1 or lower). This overall process resulted in

a sample of 505 pairs that fully represents all possible pairs (selected and not). For each

pair we have an initial predicted quality score, a sampling probability πi, and an associated

sampling weight wi ∝ 1/πi.
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Because many of the procedures generally select the same high-quality pairs, the sequen-

tial sampling of 4 pairs for each procedure tends to give many of the same pairs back. This

is by design, and means that our sample primarily consists of pairs shared by multiple pro-

cedures which gives greater precision in estimating these procedures’ average quality. We

simply take the unique set of pairs sampled as our final evaluation sample.

We calculate the actual sampling weights of each pair for this scheme using simulation.

In particular, we conduct our sampling scheme 100,000 times and calculate how often each

pair is selected into the sample. These provide (up to monte carlo error) the true selection

probabilities πi; inverting them provides the true sampling weights wi. For the out-of-

matched pairs sampling stage (3), we averaged these final weights across groups of pairs that

all have the same probability of selection to increase precision.

The stage (1) sampling scheme intentionally induces selection bias into the sample by

discouraging rare pairs, especially singleton pairs, which are expected to be low quality

with little variability, in favor of pairs that are identified by multiple matching procedures.

Regardless, because the sampling probabilities are fixed a-priori, weighted averages of the

pairs’ match quality gives good estimates of the average quality of the pairs selected by each

procedures; this approach is simply classic survey sampling as described in, e.g.,Sarndal et al.

(2003). All this complexity in the sampling design is to ensure that the sample evaluated

is targeted to give information on as many procedures as possible, a difficult task when

evaluating 130 procedures with a sample size of about 500.

E.2 Estimating pair and procedure quality.

Let ut,c denote a potential pairing of treatment and control documents, where t is the index of

the treated unit and c is the index of the control unit. In our evaluation study, t = 1, . . . , 1565

and c = 1, . . . , 1796. For matching procedure j, let Rj denote the set of nj matched pairs

of articles identified using procedure j. The set of all unique pairs selected by any of the J

procedures considered in the evaluation experiment, denoted R, is defined by the union of
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these subsets:

R = ∪Jj=1Rj.

We index the pairs with i = 1, . . . , N .

The frequency of how often each pair ui in R was selected by a procedure is:

Fi =
J∑

j=1

1{ui ∈ Rj},

where 1{i ∈ Rj} is an indicator variable taking value 1 if pair ui is identified using matching

procedure j and 0 otherwise.

From the human evaluation, we, for each element i of S, where S is the set of all sampled

pairs, observe mi similarity ratings, qobsi,1 , . . . , q
obs
i,mi

where qobsi,· ∈ [0, 10]. We estimate the match

quality for each evaluated pair i using the average of observed ratings for that pair, q̄obsi .1

We wish to estimate, for each procedure, the finite-population quantities of the average

true quality of the pairs selected. In particular, if we let qi be the average quality score score

we would see if we had an arbitrarily large number of human respondents evaluate that pair,

our targets of inference are, for each procedure j,

Qj =
1

Nj

∑
ui∈Rj

qi.

The Qj are population quantities of how the matching procedure did in the specific context

considered. This estimand does not necessarily take into account how the methods would

perform on other corpora, even ones similar to this one.

To estimate Qj for any matching procedure j in our evaluation we use a weighted average

of the match quality estimates across the pairs contained in Rj ∩ S, where weights for each

1We also explored modeling these ratings to account for rater effects and variable number of ratings per
question, but as the results were essentially unchanged, elected to use the simple averages.
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pair are equal to the inverse probability of being sampled:

Q̂samp,j =
1

Zj

∑
ui∈Rj

1

πi
Siq̄

obs
i with Zj =

∑
ui∈Rj

1

πi
Si. (1)

with Si an indicator of whether pair i was sampled for evaluation, with sampling probability

πi, and Zj a normalizing constant. This is a simple Hájek estimator and is known to have

good properties.

Unfortunately, despite the sampling scheme, some of our methods only had a small

number of pairs sampled for evaluation. Estimating the average match quality for such

procedures could therefore be fairly imprecise. We address this by using our model for

predicting the match quality of a pair of documents based on different machine measures

of similarity to construct model-assisted survey sampling estimators that use the predicted

qualities to adjust these estimated average quality scores. We describe this analysis approach

next.

E.3 Improving the estimates of procedure quality.

To enhance our predictions of match quality for our procedures, we use a model trained on

the pairs in Spre, the sample collected in our initial study, to calculate the predicted match

quality, q̂i for all pairs i = 1, . . . , N . These q̂i are fixed, and do not depend on the analyzed

(i.e., second) random sample. We can use these predictions to adjust our estimates of the

average quality of all pairs for each procedure using survey sampling methods.

In particular, our model adjusted quality for procedure j is

Q̂adj,j =
1

nj

∑
ui∈Rj

q̂i +
1

Zj

∑
ui∈Rj

Si

1

πi

(
q̄obsi − q̂i

)

Here q̂i is the predicted quality based on the initial sample. Note the first term in the above

is a fixed constant, not dependent on the sample. The second term is random, depending on

23



the sample, and, ignoring the small bias induced by Zj being random, we see the expected

value is

E
[
Q̂adj,j

]
≈ 1

nj

∑
ui∈Rj

q̂i +
1

E
[
Zj

] ∑
ui∈Rj

E
[
Si

1

πi

(
q̄obsi − q̂i

)]

=
1

nj

∑
ui∈Rj

q̂i +
1

E
[
Zj

] ∑
ui∈Rj

E [Si]
1

πi

(
E
[
q̄obsi

]
− q̂i

)
=

1

nj

∑
ui∈Rj

qi = Qj.

This is a model-adjusted estimate; the first summation gives the predicted average quality

of the method. The second summation adds an adjustment based on the residuals for the

actually sampled and evaluated pairs; this adjustment makes the overall estimate effectively

unbiased2 regardless of whether the predictive model is useful, predictive, or even correct.

The more the predictive model aligns with the actual measured values, however, the more

precise our estimates will be (as the residuals and adjustment part will get smaller and

smaller as predictive accuracy grows).

E.4 Uncertainty estimation

Classic survey sampling results allowed us to estimate each procedure’s average quality with

the estimated qualities of our sampled pairs. We can also increase the precision of these

estimates using model adjustment, using the predicted quality scores to adjust the same by

population averaged characteristics. In both cases, the next step is to obtain appropriate

uncertainty estimates (standard errors) for these point estimates. Unfortunately, the task

of appropriately calculating uncertainty in this context for both the raw estimates and the

model-adjusted estimates is a surprisingly difficult and subtle problem. In particular, while

there are classic survey sampling formula that can be used to calculate uncertainty, they

2The bias is purely from using a Hájek rather than Horvitz-Thompson estimator, and comes from the
normalizing Zj being a random quantity. It is not a function of model misfit or misspecification.
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are asymptotic and are sensitive to extreme weights (which we have). This creates some

perverse results (i.e. near zero standard errors) for some of the procedures that only had

a few pairs sampled. To avoid this we, by instituting a homoscedastic assumption for the

error terms, did a parametric simulation to calculate uncertainty in order to work around

this problem. This procedure captures the variability induced by the varying sample weights

and the measurement error due to the human evaluation. We describe this next.

Uncertainty estimates for the raw quality estimates. For the unadjusted quality

measures, we estimate uncertainty using the principles of a case-wise bootstrap with some

modifications. In particular, especially for those methods with very few (e.g. 4) sampled

pairs, estimating the variability of quality of the pairs via case-wise bootstrap is unreliable

unless we pool or partially pool estimates of variability across the different methods.

To see this consider a hypothetical method with 4 of its pairs sampled, 1 with very high

weight due to being a rare pair and 3 with a low weight due to being selected by most

methods. Any bootstrap sample that includes the high weight unit will essentially give an

average quality score close to that of the high weight unit. Even bootstrap samples with

multiple draws of the high weight unit will still get nearly that same average quality score

since the values of these large elements will all be the same. Across bootstrap samples, this

will give low variability, i.e., seemingly high precision. It does not take into account the

variability of scores we might have actually seen across other units of similar weight. We

address this with the a parametric approach that we describe next.

We first assess the typical variability of the quality scores of pairs within the procedures.

For the unadjusted quality scores of the individual pairs we first calculated an estimate of

the standard deviation of scores within a given match method (we did this by calculating

the weighted standard deviation of scores). We then took the median of these values as our

measure of within-method variation of pair quality. We use the median to avoid the impact

of the extreme standard deviations due to the methods with small samples of pairs.3

3We actually calculated this (pooled) standard deviation a variety of ways and took the largest to be
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To calculate standard errors for our methods, we then simulated the pair sampling step

followed by the scoring of sampled pairs step by first selecting pairs using the original sam-

pling strategy, and then generating pseudo-quality scores with the same variance as we

generally saw for pairs selected by a method. We then calculated the overall pseudo-quality

for each of our methods based on these scores and associated sample weights. Our standard

errors are then the standard deviation of these generated overall pseduo-quality scores.

To compare, we also conducted a simple case-wise bootstrap. Here we sampled the evalu-

ated pairs with replacement and calculated each methods’ quality score using the bootstrap

sample, finally obtaining standard errors using the standard deviation of the resulting val-

ues. This approach works well for those methods with 10 or more sampled pairs. Overall,

our parametric approach generally produced larger standard errors, which is a mixture of

the overall conservatism of our approach and of the aforementioned issue of the náıve ap-

proach giving small standard errors those methods with few pairs and a few high-weight pairs

that dominate the overall quality measure. We thus report our parametric simulation-based

standard errors.

Uncertainty for the model-adjusted approach. For the model-adjusted case, we again

worried about those methods with few samples having less variability due to small numbers

of high weight units giving nearly the same model adjustment with each step. We therefore

follow the above process, but instead of generating synthetic outcomes we generated synthetic

residuals by generating normally distributed noise with variance equal to the variance of the

original residuals from our predictive model. These simulated residual-based standard errors

were again conservative when compared to the näıve case-wise approach for those procedures

with enough selected pairs to make this comparison.

Remarks. All our uncertainty estimation methods capture the uncertainty in the pair

quality evaluation process as the variability of the pairs’ quality scores captures both the

maximally conservative.
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measurement error and the structural variation of the pairs themselves. In our plots, we

report the simulation-based standard errors for the model adjusted estimates. As noted in

the text, the model-adjusted quality scores themselves were generally similar to unadjusted

(for the directly evaluated methods where we had both scores), and the differences between

the two had no impact on our overall findings.

For methods that we did not initially identify for our human evaluation, we could calculate

a predicted quality based on our model of

Q̂pred,j =
1

nj

∑
ui∈Rj

q̂i.

This is extrapolation, however. If the new procedure was selecting pairs that systematically

were better than predicted, for example, this extrapolation would be biased. Even if such

a new method happened to use some pairs randomly selected for evaluation, we cannot use

the survey adjusted Q̂adj,j or raw estimate Q̂samp,j since the pairs not in the sampling frame

had no chance of selection. One could create a hybrid estimator by splitting the sample into

potentially sampled, but we do not explore that further here.

E.5 Prior evaluation study details

As mentioned above, we performed an initial full study on an initial subset of the matching

procedures considered (in particular, we did not initially evaluate the Word2Vec procedures).

Overall, this study produced the same results as our final study.

We sampled pairs differently for our initial study. In particular, we did not have baseline

predicted quality scores to calculate sampling weights from. We therefore, to produce a

representative sample of matched articles for evaluation, did not take a sample from each

procedure’s pair list but instead took a weighted random sample of 500 pairs from the union

of these lists, R, with sampling weights roughly proportional to Fi, where Fi is the number

of times pair i was selected by a procedure. Because singleton pairs comprised over 75% of
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the pairs in R, we further downweighted pairs with Fi = 1 by a factor of 5. Our overall

sampling probabilities for pair i were then

wi ∝

 0.20 if Fi = 1,

Fi otherwise.

We then calculated true sampling probabilities and weights via simulation as described above

(due to high weights for some pairs and the sampling without replacement these initially

weights are not truly proportional to inverse probability of selection).
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F Notes on the sample and unadjusted human exper-

iment results

The final evaluation sample consisted of 33 pairs that were originally evaluated in the initial

evaluation, 50 pairs that were not identified by any matching method considered, and 422

pairs that were used by at least one matching method evaluated. The sampling weights

for those pairs that were selected by at least one method ranged from 0.02 to 10.7, with a

median of 0.23. This corresponded to selection probabilities ranging from 1 in 1000 to 77%.

25% of the pairs had less than a 1% chance of being selected. The very rare pairs tend to

come from the propensity score methods that had a large number of low-quality matches.

Across procedures, some had only 4 pairs sampled, and some had up to 100. The average

was 28 pairs.

The standard deviation of quality scores did depend on the sampling weight, with a

standard deviation of around 2.5 for low pii and 1 for the highest pii. On the other hand,

the standard deviation of scores for very low and very high predicted qualities was less than

0.5, rising to around 1.6 for pairs predicted to have a quality of 5. Within a given procedure,

scores tended to have a standard deviation of around 2.37, for those procedures with 10 or

more pairs sampled. If we look across all procedures the median decreases markedly due to

poor estimates for small sample sizes. We used 2.37 in our simulation.

For the residual scores, residuals had a lower standard deviation near the endpoints (due

to truncation) and peaked at around 1.6 for the middle scores. We therefore use a residual

standard deviation of 1.6 in our simulations to calculate our standard errors, which will be

generally conservative. Even with this conservative approximation, we are explaining 55%

of our variation with our predictive score.

Figure 6 shows the simple weighted average match quality of the directly evaluated pairs

sampled for each of the 130 procedures considered in the evaluation experiment. The nominal

95% confidence intervals are from standard errors calculated from the parametric bootstrap
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described above.

The standard errors seem small, but some mild calculations suggest they are reasonable.

In particular, with 28 pairs, if the pairs have a standard deviation of about 2, we would

expect, roughly a standard error of 2/
√

28 = 0.38, which is what we tended to see. We also

point out that we are considering the population of pairs selected by a method as fixed: this

is a finite sample inference problem.

Figure 6: Number of matches found versus estimated (unadjusted) average match quality
scores for each combination of matching methods. Grey points indicate procedures with
extreme reduction in information (e.g., procedures that match on only stop words). Blue
circles highlight procedures that use existing state-of-the-art methods for text matching.
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G Template matching and sensitivity analyses for the

media bias application

To evaluate the robustness of our findings, we performed a series of sensitivity checks to

assess how our results and subsequent conclusions change when using different specifications

of the matching procedure. Figure 7 shows the results produced by three alternative text

matching methods. These robustness checks highlight the importance of the specification of

the matching procedure: weaker methods (i.e., methods that produce low quality matches)

typically lead to weaker inferences. For example, the results produced from template match-

ing using the Mahalanobis distance metric on a vector of 100 topic proportions show generally

smaller changes in average favorability within each source before and after matching than

the results shown in Figure 3 in the main text. The null results in this case provide further

evidence in support of the claim that text matching is an effective strategy for reducing

differences in the observed biases across news sources that are due to topic selection.

As a final robustness check of the results based on our template-matched sample, we

performed the following consistency test. First, we randomly generated 10,000 pairs of

documents containing 150 randomly selected articles from each news source. In each iteration

of random sampling and for each news source, we then calculated the average favorability

scores towards Democrats and Republicans within the matched sample. Figure 8 shows

the distributions of these favorability scores for each news source after 100 iterations of

random matching. Finally, we calculated the total change in favorability observed after

matching in each iteration, averaged across all 13 sources. More formally, for each iteration

i = 1, . . . , 10000 we calculated the test statistic:

Ti =
1

13

13∑
j=1

(
|Ŷ dem

j − Ŷ dem
j,Mi
|+ |Ŷ rep

j − Ŷ rep
j,Mi
|
)
,

where Ŷ dem
j and Ŷ rep

j denote the average favorability scores toward democrats and repub-
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licans, respectively, for all articles corresponding to source j in the original, unmatched

sample. Quantities Ŷ dem
j,Mi

and Ŷ rep
j,Mi

denote the partisan favorability scores averaged across

the set of 150 articles from source j that were selected by random matching in iteration

i. The sampling distribution of this test statistic provides a reference for values of the test

statistic that may occur when comparing randomly selected sets of 150 articles across these

13 sources. Therefore, by comparing the value of our observed test statistic based on the

results of our template-matching procedure described in Section 5 to the randomization dis-

tribution defined by T , we can estimate the probability that our template-matched results

are due to random chance. Our results from this randomization test indicated that tem-

plate matching on text removes a significant amount of the bias observed across sources that

remains after adjusting for differences in topic selection (p=0.004).

H Results of the systematic evaluation applied to the

medical data

Figure 9 shows the average pairwise Jaccard similarity achieved after matching (within

propensity score calipers based on the numerical covariates) using each of the 130 text

matching specifications described in Section 3. The best identified specification for maxi-

mizing the average Jaccard similarity achieved between matched pairs of medical documents,

a metric believed to mimic manual evaluation by medical experts, uses a bounded TDM to-

gether with the cosine distance metric. Specifically, the best-performing representation is

a TDM that is bounded to exclude extremely rare and extremely frequent terms, defined

operationally as terms that appear in less than four or more than 1000 documents within

this corpus,
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Figure 7: Estimates of average favorability toward Democrats (blue) and Republicans (red)
for each source both before and after matching using Mahalanobis matching on an STM
with 100 topics (top), propensity score matching on an STM with 100 topics (center) and
propensity score matching on a TDM (bottom).
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Figure 8: Estimates of average favorability toward Democrats (blue) and Republicans (red)
for each source for 100 iterations of random matching. Blue and red lines represent the
average favorability scores before matching for Democrats and Republicans, respectively.
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Figure 9: Number of matches found versus average pairwise Jaccard similarity for each
combination of matching methods. Grey points indicate procedures with extreme reduction
in information (e.g., procedures that match on only stop words). Blue circles highlight
procedures that use existing state-of-the-art methods for text matching.
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