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A: Estimation and Inference

For notational simplicity, let us consider a simple random sample with no missing data. In prac-

tice, survey weights and nonresponses can be easily incorporated. In the current implementation,

all item nonresponses are omitted from the level-I likelihood, meaning that they are treated as

missing as random and can be predicted a posteriori.

First, let us define the following shorthands

α = {αjh; 1 ≤ j ≤ J, 0 ≤ h ≤ Hj − 1}, αj = {αjh; 0 ≤ h ≤ Hj − 1},

β = {β jh; 1 ≤ j ≤ J, 0 ≤ h ≤ Hj − 1}, βj = {β jh; 0 ≤ h ≤ Hj − 1},

θ = {θi; 1 ≤ i ≤ N}, x = {xi; 1 ≤ i ≤ N},

y = {yij; 1 ≤ i ≤ N, 1 ≤ j ≤ J}, yi = {yij; 1 ≤ j ≤ J}.

Since the covariates x̃i and z̃i are treated as fixed quantities, I suppress them in most of the follow-

ing derivation. Given equation (1) and the prior distribution (6), we can write the complete data

likelihood as

p(y, θ|α, β, γ, λ) = p(y|θ, α, β) p(θ|γ, λ)

=
N

∏
i=1

{ J

∏
j=1

p(yij|θi, αj, β j)
}

p(θi|γ, λ).

Suppose we now have a set of existing parameter estimates α∗, β∗, γ∗, λ∗. Treating θ as missing

data, the Q-function of the EM algorithm, i.e., the conditional expectation of the log complete data
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likelihood, is

Q(α, β, γ, λ) = E
[
log p(y, θ|α, β, γ, λ)|α∗, β∗, γ∗, λ∗, y

]
=
∫

θ

{ N

∑
i=1

[ J

∑
j=1

log p(yij|θi, αj, β j) + log p(θi|γ, λ)
]}

p(θ|α∗, β∗, γ∗, λ∗, y)dθ

=
N

∑
i=1

∫
θi

[ J

∑
j=1

log p(yij|θi, αj, β j) + log p(θi|γ, λ)
]
p(θi|α∗, β∗, γ∗, λ∗, yi)dθi. (1)

The latter equation holds because the posterior distribution of the ability parameters are indepen-

dent across individuals:

p(θ|α∗, β∗, γ∗, λ∗, y) ∝ p(y|α∗, β∗, θ) p(θ|γ, λ)

=
N

∏
i=1

J

∏
j=1

p(yij|α∗j , β∗j , θi)
N

∏
i=1

p(θi|γ∗, λ∗)

=
N

∏
i=1

{[ J

∏
j=1

p(yij|α∗j , β∗j , θi)
]
p(θi|γ∗, λ∗)

}
∝

N

∏
i=1

p(θi|α∗, β∗, γ∗, λ∗, yi).

The unidimensional integrals in equation (1) can then be evaluated using quadrature methods.

The basic idea is to select a number of nodes, say θk (1 ≤ k ≤ K) that range from −C to C, where

C is a sufficiently large number such that [−C, C] captures almost all of the mass of the posterior

distribution p(θi|α∗, β∗, γ∗, λ∗, yi) for all individuals. In practice, if we impose the scale constraint

∑i λT z̃i = 0 such that the geometric average of estimated error variances σ̂2
i equals one, setting

K = 25 and C = 5 would be sufficient. Given a set of quadrature points θk and quadrature weights

wk, the final weights that enter the numerical evaluation of integral (1) will be

wik =
wk
[

∏J
j=1 p(yij|α∗j , β∗j , θk)

]
p(θk|γ∗, xi, zi)

∑K
k=1 wk

[
∏J

j=1 p(yij|α∗j , β∗j , θk)
]
p(θk|γ∗, xi, zi)

. (2)
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Thus equation (1) can be approximated as

Q(α, β, γ, λ) ≈
N

∑
i=1

K

∑
k=1

wik
[ J

∑
j=1

log p(yij|θk, αj, β j) + log p(θk|γ, λ, xi, zi)
]

=
N

∑
i=1

K

∑
k=1

J

∑
j=1

Hj−1

∑
h=0

wik1(yij = h)log Pjh(θ
k) +

N

∑
i=1

K

∑
k=1

wiklog p(θk|γ, λ, xi, zi)

=
J

∑
j=1

[ K

∑
k=1

Hj−1

∑
h=0

f jh
k log Pjh(θ

k)
]
+

N

∑
i=1

K

∑
k=1

wiklog p(θk|γ, λ, xi, zi),

where f jh
k = ∑N

i=1 wik1(yij = h) can be interpreted as the number of individuals around the pref-

erence level θk who choose category h for item j (given α∗j and β∗j ). As a result, the M-step of the

EM algorithm boils down to

argmaxαj,β j

K

∑
k=1

Hj−1

∑
h=0

f jh
k log Pjh(θ

k) for all j, and argmaxγ,λ

N

∑
i=1

K

∑
k=1

wiklog p(θk|γ, λ, xi, zi).

It is not hard to show that the first optimization problem is equivalent to fitting J separate

generalized linear models—one for each item—to the “pseudo data” f jh
k . Specifically, binary logit

(or probit) models are fitted for items with dichotomous responses, proportional odds models (or

adjacent category logit models) for items with ordinal responses, and multinomial logit models

for items with nominal responses. The second optimization problem is akin to the heteroscedastic

regression model developed in Cook and Weisberg (1983), Aitkin (1987), and Verbyla (1993), ex-

cept for the weights wik attached to the log likelihood log p(θk|γ, λ, xi, zi). To solve for γ and λ,

we can employ the conditional maximization procedures outlined in Aitkin (1987) with a slight

modification. The algorithm is detailed in Appendix B. Although both components of the M-step

involve iterative procedures, they prove to be very fast in practice. For the first optimization, the

generalized linear models are fitted to grouped data, where the number of observations equals the

number of quadrature points (K) times the number of response categories (Hj) for the correspond-

ing item. For the second optimization, the procedures described in Appendix B typically take few

steps to converge. As a result, the runtime of the entire EM algorithm on a personal computer

rarely exceeds a minute even for fairly large data sets (N=20,000-40,000; J=10-40).

Upon convergence of the EM algorithm, we obtain our final estimates α̂, β̂, γ̂ and λ̂. We can

then treat them as true parameters and conduct empirical Bayes inference of the latent preferences

θi. For example, we can directly use the final posterior means, giving the expected a posterior
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(EAP) estimates

θ̂i = E(θi|α̂, β̂, γ̂, λ̂, y) =
K

∑
k=1

wikθk. (3)

Finally, to conduct inference for the key parameters α, β, γ and λ, we can calculate the asymptotic

variance-covariance matrix Î(α, β, γ, λ) using either the Hessian matrix or the outer product of

gradients of the log marginal likelihood. The latter approach is illustrated in Appendix C.

B: The M-step for Updating γ and λ

To update γ and λ, we first note that the objective function can be written as

f (γ, λ) =
N

∑
i=1

K

∑
k=1

wiklog p(θk|γ, λ, xi, zi)

= −1
2

N

∑
i=1

K

∑
k=1

[wik log 2π + wikλT z̃i +
wik(θk − γT x̃i)

2

exp(λT z̃i)
]

= −1
2

N

∑
i=1

[log 2π + λT z̃i +
(θ̃i − γTxi)

2 + σ̃2
θi

exp(λT z̃i)
],

where θ̃i = ∑K
k=1 wikθk is the working posterior mean of θi and σ̃2

θi
= ∑K

k=1 wik(θ
k)2 − θ̃2

i is the

working posterior variance of θi (given α∗, β∗, γ∗, λ∗). Thus we can maximize f (γ, λ) iteratively:

1. Fit a simple least squares of θ̃i on xi, saving the residuals ri,

2. Fit a gamma regression with a log link of r2
i + σ̃2

θi
on zi, saving the fitted values s2

i = exp(λ̂T z̃i),

3. Fit a weighted least squares of θ̃i on xi with weights 1/s2
i , updating the the residuals ri,

4. Iterate steps 2 and 3 until convergence, updating γ∗ and λ∗.

C: Asymptotic Inference for Hierarchical IRT Models

To construct the observed information matrix, we use the outer product of gradients of the log

marginal likelihood. For individual i, the log marginal likelihood can be numerically evaluated as

log Li ≈ log
K

∑
k=1

Lik pikwk,
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where

Lik =
J

∏
j=1

p(yij|θk, αj, β j)

pik = [2π exp(λTzi)]
− 1

2 exp[− (θk − γTxi)
2

2 exp(λTzi)
],

and wk are quadrature weights associated with θk. Given the above expression, we can derive the

score function for each of the level I models presented in the paper. For instance, for the graded

response model (3), we can show that

∂ log Li

∂αjh
=

∑K
k=1 wk pikL−j

ik
Li



exp(αjh+β jθ
k)

[1+exp(αjh+β jθk)]2
, if h = yij ≥ 1

− exp(αjh+β jθ
k)

[1+exp(αjh+β jθk)]2
, if h = yij + 1 ≤ Hj − 1

0, otherwise

where L−j
ik = ∏J

l 6=j p(yij|θk, αj, β j). Similarly, by taking the partial derivatives with respect to β j,

γp, λq, we obtain

∂ log Li

∂β j
=

1
Li

K

∑
k=1

wk pikL−j
ik θk{ exp(αjyij + β jθ

k)

[1 + exp(αjyij + β jθk)]2
−

exp(αj yij+1 + β jθ
k)

[1 + exp(αj yij+1 + β jθk)]2
}

∂ log Li

∂γp
=

1
Li

K

∑
k=1

wk pikLik exp(−λTzi)(θk − γTxi)xip

∂ log Li

∂λq
=

1
2Li

K

∑
k=1

wk pikLik[exp(−λTzi)(θk − γTxi)
2 − 1]ziq.

We then concatenate all these terms to form the score vector∇ log Li and construct the asymptotic

variance-covariance matrix of parameter estimates as

V̂(α̂, β̂, γ̂, λ̂) = Î(α̂, β̂, γ̂, λ̂)−1

= [
N

∑
i=1
∇ log Li(∇ log Li)

T]−1.

Note that in constructing the score vector, we must discard one component of γ and one compo-

nent of λ to avoid a singular information matrix (due to the identification constraints). In practice,

we can discard ∂ log Li
∂γ0

and ∂ log Li
∂λ0

as the intercepts are usually the least substantively interesting

parameters.
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D: EM Algorithm versus MCMC Simulation in Computation Time

This appendix provides a brief yet systematic comparison in computation time between the EM

algorithm and a full Bayesian approach for fitting hierarchical IRT models. The latter has been

implemented in the R function MCMCpack::MCMCirtHier1d for the simplest case—binary response

data with homoscedastic preferences (Martin, Quinn and Park 2011). I use the same data gen-

erating process as in my Monte Carlo study. When applying MCMCpack::MCMCirtHier1d, I di-

chotomize the response data using their sample means as cutoff points. To facilitate comparison, I

run the EM algorithm both for the dichotomized data and for the ordinal data, using hIRT::hltm

and hIRT::hgrm respectively. To illustrate the scalability of different methods, I vary the number

of respondents N from 500 to 10,000 and the number of items from 5 to 40. The results are shown

in Figure A1, where the horizontal axis denotes sample size N, the vertical axis denotes compu-

tation time (in minutes), and different algorithms are represented by different point shapes and

line types. It is easy to see that the EM algorithm is extremely fast for all combinations of N and J,

whereas the full Bayesian implementation is not only much slower but also much less scalable as

the number of respondents grows.

E: Estimates of Item Discrimination Parameters

Figure A2 shows the estimates of the item discrimination parameters, along with their 95% asymp-

totic confidence intervals, for the party polarization example. We can see that the discrimination

parameter estimates vary greatly across items, although all of them are statistically significantly

different from zero.
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Figure S1: EM Algorithm versus MCMC Simulation in Computation Time.

Note: MCMC = Markov Chain Monte Carlo; MMLE = Marginal Maximum Likelihood Estimation;
EM = Expectation-Maximization.
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Figure S2: Estimates of Item Discrimination Parameters for the Party Polarization Example.

Note: Error bars represent 95% asymptotic confidence intervals.
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