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Abstract

Though used frequently in machine learning, boosted decision trees are largely
unused in political science, despite many useful properties. We explain how to use one
variant of boosted decision trees, AdaBoosted decision trees (ADTs), for social science
predictions. We illustrate their use by examining a well-known political prediction
problem, predicting U.S. Supreme Court rulings. We find that our ADT approach
outperforms existing predictive models. We also provide two additional examples of
the approach, one predicting the onset of civil wars and the other predicting county-
level vote shares in U.S. Presidential elections.

Many thanks to Matthew Blackwell, Peter Dilworth, Finale Doshi-Velez, Phillipa Gill, Gary King, Brian
Libgober, Chris Lucas, Luke Miratrix, Kevin Quinn, Jeff Segal, Robert Ward, and participants at the Com-
putational Social Science Institute Seminar at University of Massachusetts, Amherst for helpful conversations
and valuable feedback. We also thank Josh Blackman, Michael Bommarito, and Dan Katz for comments
during early stages of this project.

1Replication materials available at the Political Analysis Dataverse: https://doi.org/10.7910/DVN/

JJCXTH (Kaufman et al., 2018)
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1 Appendix A0: Importance of Supreme Court Pre-

diction

As one of the co-equal branches of the federal government, and as the chief interpreter of the U.S. Consti-

tution, the Supreme Court every year has the opportunity to decide cases pertaining to deep, important

questions on civil rights, First Amendment law, religious liberty, bankruptcy, taxation, elections and redis-

tricting, separation of powers, Presidential powers, national security, criminal defense rights, and the death

penalty. Recent cases have involved the constitutionality of the Affordable Care Act (one of the largest pieces

of legislation in recent years), whether the federal government must recognize the marriages of same-sex cou-

ples, and the scope and legitimacy of the Voting Rights Act. Because of its ability to impact huge swaths

of American policy and politics, the Supreme Court’s proceedings are followed closely by many, including

hundreds of journalists and scholars and thousands of members of the public.

Despite this public interest, the Supreme Court—unlike the legislative and executive branches—conducts

all of its decision making privately. Justices read briefs, deliberate, seek guidance and advice from clerks,

and research issues exclusively in the privacy of their own chambers. Oral arguments, which provide the

only window into the possible leanings of the Justices, are immediately analyzed—but even these are not

open to members of the public nor are they televised. Thus, the public oftentimes has limited information in

trying to suss out the leanings of the Justices on these important issues. Moreover, this period of uncertainty

can last for months. Oral arguments on important cases often take place in October, but decisions are not

handed down until June—often a 10-12 month gap during which people affected by the rulings must proceed

under substantial uncertainty.

To give a concrete example of this uncertainty, and why predicting Court decisions is substantively

important, we consider Windsor v. United States (2013), which concerned the legality of the Defense of

Marriage Act (DOMA), which forbade the federal government (including federal agencies, such as the Internal

Revenue Service) from recognizing state-sanctioned same-sex marriages. The case was argued in October

of 2012, but the Windsor ruling striking down DOMA was not handed down until June of 2013. Tens of

thousands of marriages have been affected by the ruling, including the marriages of couples who married in

the ten-month period between October and June. Indeed, the Supreme Court was actually still privately

deliberating during the 2012 tax season, meaning that married LGBT couples submitted their taxes not

knowing whether they were married or not in the eyes of the federal government. Many couples filed their

taxes separately, expecting the Supreme Court to allow the federal government to continue to refuse to
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recognize their marriages. The example of the same-sex marriage ruling in Windsor illustrates both how the

Court decides cases of intense national and personal interest and how prediction is highly important—not

just to the parties immediately involved but to the public more broadly.

Within the scholarly community, Supreme Court prediction has long been a topic of intense interest,

both scholarly and journalistic, since at least 1948 when judicial politics scholar C. Herman Pritchett showed

that ideology was a useful predictor of the way the Justices voted together (or not) during the era of Franklin

Roosevelt. Since then, numerous theories have proliferated regarding what covariates are most important

for predicting Supreme Court decision making and Justices’ voting and, thus, how the Court will rule on

important cases. Some of the more prominent papers and studies have noted the particularly important role

of ideology in predicting Supreme Court decision making and, thus, aiding scholars in predicting the Court’s

eventual rulings (e.g., Martin and Quinn, 2002). Other scholars propose institutional constraints, while

others rely on personal characteristics of the Justices. Others consider case covariates, while others consider

the predictive and influential power of public opinion. However, all of these papers focus on understanding

Justices’ decision making, insofar as decision making allows us to (1) better understand the Court and its

motivations and (2) allows us to predict rulings.

We summarize some of these studies below:

• Pritchett (1948) predicts the rulings of the Roosevelt-era Supreme Court on the basis of ideological

divisions.

• Murphy (1964) more generally incorporates judicial strategy in tandem with ideology/partisanship to

predict the votes of Supreme Court Justices.

• Roeder (2015) is a journalistic writeup of the CourtCast model, describing the substantive importance

of predicting Supreme Court cases.

• Kort (1957) provides of one of the first large-scale quantitative prediction of Supreme Court Justice

behavior.

• Segal (1984) predicts how the Supreme Court rules in search and seizure cases using case covariates.

• Aliotta (1987) shows that, in predicting Supreme Court decisions, it is best to use both case features

and personal features of the Justices.

• Segal and Reedy (1988) note that among sex discrimination cases, the solicitor general’s presence as

a litigator is predictive of court outcomes.
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• Tate and Handberg (1991) argue that Justice attributes are important predictors even in eras of U.S.

history marked by less partisan polarization on the court.

• Spiller and Gely (1992) point out that Congressional policy predicts how the Court will rule on labor

relations decisions.

• Segal et al. (1995) show that the ideological leanings of Supreme Court justices, as measured by the

content of newspaper editorials, strongly predict the Justices’ decisions on economic and civil liberties

cases.

• Kearney and Merrill (2000) show that amicus briefs, especially briefs from well-respected sources, are

predictive of court decisions prior to 2000.

• Epstein et al. (2001) theorize that the preferences of other institutional actors, such as Congress and

the President, may predict the Supreme Court’s judicial behavior.

• Bergara et al. (2003) estimate that from 1947 to 1992, one third of all Supreme Court cases were

constrained by Congressional preferences.

• Ruger et al. (2004) compare the predictive results of a simple statistical model to that of legal experts

during the Court’s 2002 term.

• Martin et al. (2004a) show, following median voter theorem work in Congressional studies, that the

ideological leanings of the median Supreme Court Justice predict how the court as a whole will rule.

• Shullman (2004) qualitatively shows that oral argument proceedings convey important information

about how Justices are likely to rule.

• Cherry and Rogers (2006) use the consensus results from online information markets to predict

Supreme Court outcomes.

• Johnson et al. (2006) rely on Justice Blackmun’s personal accounts of oral argument quality to show

that litigators who perform better during oral arguments are more likely to win a favorable decision.

• Martin and Quinn (2002) develop ideology scores for the Justices using a dynamic Bayesian IRT

model. These Martin-Quinn scores have been widely used in the literature to predict Supreme Court

decision making and to understand the role of ideology in predicting Justices’ decision making.

• Cameron and Park (2009) formulate a new measure of judicial nominee ideology that better predicts

how nominees will rule by incorporating additional pre-nomination characteristics.
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• Epstein et al. (2010) also use data from oral arguments and analyze patterns of speech in predicting

how the Court will rule.

• Casillas et al. (2011) show that public opinion is a predictor of judicial decisions, especially in low

salience cases; Giles et al 2008 argue that the mechanism by which public opinion predicts judicial

decisions is independent of membership change on the court.

• Black et al. (2011) show, using data from 2004 to 2008, that Justices are more likely to use negatively-

charged language directed at the losing litigator.

• Dietrich et al. (2016) use oral argument audio data to predict Justice-level vote outcomes as a function

solely of vocal pitch, finding that vocal inflections (with no additional textual data) accurately predict

how the Court will rule.

Thus, an extremely rich literature has plumbed Justices’ decision making processes, along the way high-

lighting which factors are particularly predictive in predicting how the Justices will vote and, thus, how the

Court will rule.

From a more pragmatic perspective, predictions of how cases might go could offer guidance to lower

court judges and lawyers. For example, lower-court judges tend to dislike being overturned by higher courts,

and they routinely weigh the probability that the Court will rule a certain way versus another. This could

be a particular concern if a lower-court is adjudicating an issue currently being considered by the Supreme

Court (in which case a lower-court judge might simply withhold judgement until the Supreme Court reaches

its decision). Lawyers, as well, may benefit since a good prediction of how the Court is likely to rule may

influence their willingness to settle. Finally, other members of the interested public—including other political

actors, investors, and financial markets may benefit from being able to better predict Supreme Court rulings.

For investors, Supreme Court decisions (for example, those involving corporate law and transactions) can

cause notable financial uncertainty and therefore market volatility; good predictive models may smooth out

this volatility and help financial and other industries plan for the future. For political actors, understanding

which way the Court is likely to go allows them to respond with legislation or with appeals to the public—

both of which have been on display in recent cases such as those involving the Affordable Care Act (National

Federation of Independent Businesses v. Sebelius) and the Voting Rights Act (Shelby County v. Holder).

We also note an inherent tradeoff between predicting a case early and predicting it better. Earlier

predictions allow more time to prepare for policy changes, but less data may be available for making those

predictions. Our analysis shows that it is possible to predict a case with 71.3% accuracy given only the case
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covariates, which are known as soon as the Supreme Court grants agrees to hear a case via the granting of

certiorari. However, we can predict a case with 74% accuracy after the Court has heard oral arguments. This

time period may be as short as a month or as long as 10 months, during which there could be substantial

policy uncertainty.

2 Appendix A1: Petitioner-Wins Baseline Accuracy
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Figure 1: Percentage of Supreme Court cases won by the petitioner. This has averaged 64%

since 1960 (gray dashed line) and 68% since 2000 (red dashed line).
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3 Appendix A2: Accuracy over time

Figure 2: The percentage accuracy of the most accurate Supreme Court prediction model

for each year from 2013 to the present.

4 Appendix B: Additional Decision Trees

Below is one decision tree drawn from our KKS AdaBoosted Decision Trees model. Each box represents

a feature split, indicated by the first text row in each box. This tree begins with the “lawyers” feature,

indicating the relative number of lawyers arguing for the plaintiff and the respondent, split on the value

−0.5. The box is very blue, indicating that when that condition holds, it is highly probable that the

respondent wins the case. The second row of text, Gini impurity, indicates the probability of incorrect

classification based on that node. For the “lawyers” box, this means that classifying court decisions solely

on whether “lawyers” ≥ −0.5 would incorrectly classify cases 45.4% of the time. The second row of boxes

is the next layer of feature splits. If the condition in the “lawyers” box holds, the tree moves to the left

node; otherwise, it moves to the right node. These trees are all three layers deep, though it is possible to
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construct decision trees with more or fewer layers. The end points of each decision tree are indicated in

the bottom rows. For example, in the first tree, if for a certain case the conditions in the “lawyers” box,

“KENNEDY pet questions” box, and “SCALIA cc ratio res” box are all true, then the prediction for that

case is that the Respondent will win, and empirically, the Respondent wins more than 65% of those cases,

as indicated by the Gini impurity value.

Figure 3: An example decision tree.
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5 Appendix C: Variable Selection & Feature List

For each Justice, we compute the following features: questions asked to the petitioner/respondent, words

spoken to the petitioner/respondent, interruptions of the petitioner/respondent.2 We transform these in

two ways. First, we create dichotomous indicators for each Justice indicating if that Justice asked more

questions, spoke more words, or interrupted more frequently the petitioner or the respondent attorney (27

total variables). Second, we calculate for each Justice the appropriate ratios of speech targeted toward each

attorney for words spoken, questions asked, and interruptions.3 We find that, generally, the most predictive

oral argument-derived features are ratios.

Since ADTs are largely black boxes where features enter and predictions are returned, determining which

covariates contribute most to the model’s success can be difficult. One commonly used method to extract

feature importances from tree-based models involves “feature depth” (Archer and Kimes, 2008), which is

natively implemented in python’s scikit-learn module. Since ADTs consist of decision trees that are ordered

variable splits, features that systematically appear earlier in the decision tree are more important to the

model. A covariate’s feature importance, then, is proportional to the average number of times that feature

appears in the decision tree, weighted by how early in the tree it appears; more simply, higher values indicate

more strongly predictive features.

We calculate feature importance for our ADT model and present the results below. We find that the

most important features derive in equal parts from case-level covariates from the Supreme Court Database

and the oral argument transcripts. In order of importance, the features 2, 5, and 9 come from the former,

and features 1, 3, 4, 6, 7, 8, and 10 come from the latter. These ten variables together account for more

than 30% of the value of the model, strongly suggesting the mutual beneficiality of both data sets.

In Table 1, we indicate the name of the top 20 features by importance. Then, in Table 2, we list all 55

features in alphabetical order. Full descriptions of those features are in footnotes. In Table 1, we bold the

importance of features which are also identified as statistically significant in a naive OLS model rather than

our ADT model. While the OLS model does identify 4 of the top 5 features, it only indicates as significant

9 of the ADT model’s top 20 most important features.

2For consistency in comparisons, we compute these measures identically to the CourtCast model.
3For example, for interruptions, we calculate for each Justice the ratio of times the Justice interrupted

the liberal litigator versus the conservative litigator. If Scalia interrupted the liberal litigator six times but
only interrupted the conservative litigator two times, this value would be (6/8)/(2/8) = 3.
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Feature Importance
1 Relative Number of Lawyers4 0.060
2 Issue Area5 0.031
3 Kennedy-Petitioner Questions6 0.030
4 Scalia-Respondent Questions 0.029
5 Case Origin: Circuit 0.028
6 Ginsburg-Petitioner Questions 0.027
7 Kennedy QC Ratio7 0.027
8 Roberts-Petitioner Questions 0.027
9 Reason for Cert 0.026

10 Interruptions 0.024
11 Ginsburg WC Ratio8 0.024
12 Scalia WC Ratio 0.024
13 Ginsburg Question Difference 0.023
14 Ginsburg Questions to the Respondent 0.020
15 Kennedy Cutoff Ratio9 0.020
16 Kennedy Question Target10 0.020
17 Lower Court Disposition Direction11 0.019
18 Scalia-Petitioner Questions 0.019
19 Breyer Cutoff Ratio 0.019
20 Lower Court Disposition 0.019

Table 1: The 20 features which contribute most to the model’s accuracy. Across all features,
importances sum to 1. Bolded features are those whose coefficients are statistically significant
in a naive OLS model.

Feature Importance

1 Administrative Action 0.011

2 Breyer: Comments to the petitioner divided by total comments 0.015

4This measure indicates which side had more lawyers present during oral argument proceedings.
5This is the issue area of the case, as coded by the Supreme Court Database. Note that while this variable

is literally coded after the fact of the case being argued, and thus may be considered post-hoc, we argue that
the coding is sufficiently objective to be robust to the outcome of the case.

6This is a count of questions asked of the petitioner by Justice Kennedy.
7This measure is the difference of ratios of petitioner and respondent questions to total questions. If the

petitioner was asked 3 questions and the respondent was asked seven, this ratio is 7/10− 3/10 = 4/10.
8This measure is the difference of ratios of words spoken to the petitioner and respondent, to total words

spoken: If Ginsburg spoke 100 words to the petitioner and 50 to the respondent, this ratio is 100/150 −
50/150 = 50/150.

9This measure is the difference of ratios of the times Kennedy interrupted the petitioner and the times
Kennedy interrupted the respondent.

10This measure indicates whether Kennedy asked more questions to the petitioner or the respondent.
11This measure is whether the lower court ruled in favor of the liberal or conservative side, as determined

by the Supreme Court Database.
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3 Breyer: Comments to the respondent divided by total comments 0.015

4 Breyer: Respondent comment ratio minus petitioner comment ratio 0.012

5 Case originated in a Circuit Court 0.028

6 Ginsburg: Comments to the petitioner divided by total comments 0.013

7 Ginsburg: Comments to the respondent divided by total comments 0.013

8 Ginsburg: Respondent comment ratio minus petitioner comment ratio 0.016

9 How many questions did Breyer ask the petitioner 0.015

10 How many questions did Breyer ask the respondent 0.017

11 How many questions did Ginsburg ask the petitioner 0.027

12 How many questions did Ginsburg ask the respondent 0.020

13 How many questions did Kennedy ask the petitioner 0.030

14 How many questions did Kennedy ask the respondent 0.015

15 How many questions did Roberts ask the petitioner 0.027

16 How many questions did Roberts ask the respondent 0.014

17 How many questions did Scalia ask the petitioner 0.019

18 How many questions did Scalia ask the respondent 0.029

19 Issue Area 0.031

20 Kenned: Respondent comment ratio minus petitioner comment ratio 0.011

21 Kennedy: Comments to the petitioner divided by total comments 0.014

22 Kennedy: Comments to the respondent divided by total comments 0.014

23 Lower Court Disposition 0.019

24 Lower Court Disposition Directon 0.019

25 Manner in which the court takes jurisdiction 0.002

26 Number of Lawyers: Ratio 0.060

27 Reason for Cert 0.026

28 Roberts: Comments to the petitioner divided by total comments 0.018

29 Roberts: Comments to the respondent divided by total comments 0.018

30 Roberts: Respondent comment ratio minus petitioner comment ratio 0.011

31 Scalia: Comments to the petitioner divided by total comments 0.016

32 Scalia: Comments to the respondent divided by total comments 0.016

33 Scalia: Respondent comment ratio minus petitioner comment ratio 0.011
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34 State of Administrative Action 0.006

35 To which litigator did Breyer ask a higher ratio of questions to comments 0.015

36 To which litigator did Ginsburg ask a higher ratio of questions to comments 0.023

37 To which litigator did Kennedy ask a higher ratio of questions to comments 0.020

38 To which litigator did Roberts ask a higher ratio of questions to comments 0.015

39 To which litigator did Scalia ask a higher ratio of questions to comments 0.015

40 Which litigator did Breyer question more 0.012

41 Which litigator did Breyer speak more to 0.017

42 Which litigator did Ginsburg question more 0.015

43 Which litigator did Ginsburg speak more to 0.024

44 Which litigator did Kennedy question more 0.027

45 Which litigator did Kennedy speak more to 0.016

46 Which litigator did Roberts question more 0.008

47 Which litigator did Roberts speak more to 0.013

48 Which litigator did Scalia question more 0.012

49 Which litigator did Scalia speak more to 0.024

50 Which litigator was interrupted more 0.024

51 Which litigator was interrupted more by Breyer 0.019

52 Which litigator was interrupted more by Ginsburg 0.019

53 Which litigator was interrupted more by Kennedy 0.020

54 Which litigator was interrupted more by Roberts 0.011

55 Which litigator was interrupted more by Scalia 0.017

Table 2: All 55 features in our ADT model in alphabetical order.

Note that there are many potential covariates that we exclude from this model. Time-based covariates—

for example, the year or month in which the case was heard, or the Court’s median ideal point during the

case—we found to harm our model’s predictive accuracy. We also experimented with including a variable

indicating whether the Solicitor General was a litigator in the case, but found it to be similarly unpredictive.

As well, there are covariates which we would like to include in our model but cannot. The number and text

of amicus curiae briefs filed, for example, contain a wealth of information about the case related to public

and elite opinion. While several data sets of amicus curiae exist, none include cases during the period in
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which we conduct our analysis.

Substantively, this feature importance table does illustrate one point of difference between this approach

and, for example, an approach reliant on interpretation of a regression table. We tend to view regression

analyses as particularly well suited to causal evaluations and to understanding the causal effects of interven-

tions. By contrast, our analyses are better for identifying variables that are important for prediction—which

could include variables that are not particularly causal in nature but are nonetheless quite predictive. This

would be less helpful for the parties’ litigation strategy, but more of meaningful for risk calculation. (Our

analyses also does not attempt to satisfy the assumptions necessarily to isolate a causal effect.) For exam-

ple, a key feature that has high predictive value is Justice Kennedy’s questioning. Although not a causal

variable, this fact very interestingly speaks to (1) the influential position occupied by Kennedy as the “me-

dian” Justice and (2) the nature the information revealed at oral argument. Indeed, although beyond the

scope of this paper, this actually seems to suggest that Kennedy might have an inkling of his intended vote

before or during oral arguments and these leanings translate into more (or fewer) questions of one side or

another. These are not causal inquiries per se, but they do nonetheless provide important information that

is of significant interest to Court observers, judicial politics scholars, and people likely to be impacted by

the Court’s rulings. Indeed, dozens of newspaper articles pop up after each oral argument seeking to predict

how individual Justices will vote based on the nature of the questions asked at oral argument. We also note

that this would be a variable that could be “significant” in a regression analysis, but (unless the scholar was

specifically studying questions asked in oral arguments) it would be surprising for a researcher to include it

in a regression analysis; our machine learning approach, however, automatically picks it up as highly salient

in contributing to the model’s accuracy.

6 Appendix D: Additional Discussion of K-Fold Cross-

Validation

For a data set with n observations, we first partition the data into 10 subsets of size n
10 . This algorithm

first trains a model on partitions 2 through 10, then predicts the outcome measure for the first subset and

records the number of correct predictions. Next, a model is trained on subsets 3 through 10 and 1, and then

a prediction is generated for subset 2, recording its accuracy. This is repeated for all 10 subsets. The total

percentage of correct predictions is treated as the model’s out-of-sample predictive accuracy.
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K-fold cross-validation is a commonly-accepted metric for model accuracy in computer science and

statistics. When performing a single train set and test set split, a data set is randomly partitioned in two, a

model is trained on one of the partitions, then used to predict the outcomes for the second partition. Note

that a single train set and test set partition is equivalent to a 2-fold cross-validation procedure. This induces

a trade-off between model power and accuracy precision: the more observations are reserved for the test set,

the fewer may be used to train the model; the fewer observations reserved for the test set, the noisier the

measure of out-of-sample predictive accuracy. Ten-fold cross-validation circumvents this trade-off altogether,

using 90% of the available data to train the model each iteration, and averaging predictive accuracy across

ten folds to increase precision. As K increases to equal N, both model accuracy and accuracy-measurement

precision improve. However, computation time increases as well, so in practice, K = 10 is common.

7 Appendix E: Thoughts on the Use of Machine Learn-

ing in Political Science

We have two primary answers to the question of why political science has been slow to adopt machine

learning methods: one is a practical reason, and one is a path-dependent reason. The practical reason is

that machine learning works best when there is no measurement error in the outcome variable. Questions

like “Is there a cat in this photograph?” are excellent for machine learning for the same reason that “Who

will win this Supreme Court case?” is: either there is or is not a cat in a photograph, and either the

respondent or the petitioner will win a Supreme Court case. On the other hand, questions like “What

is the ideology of this document?” are much harder, because measuring ideology is a nuanced and error-

prone endeavor. In short, most of the important dependent variables we care about in political science are

noisy and difficult to measure with precision. The path-dependent reason is that political science is often

focused on substantive interpretation of covariates, and often with causal implications. Machine learning

is ill-suited to this approach, as the functional forms it induces around the data are not amenable to easy

linear interpretation. For this reason, we believe that decision trees hold much promise: it is relatively

straightforward to examine a decision tree and interpret it.
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8 Appendix G: Technical Overview of AdaBoosted De-

cision Trees

AdaBoosted decision trees combine three powerful machine learning concepts: decision trees, ensembling,

and the AdaBoost algorithm. We will discuss each in turn.

8.1 Decision Trees

Decision trees are a flexible non-parametric machine learning method for classification (categorical outcomes)

or regression (continuous outcomes). The decision tree grows by optimizing “Gini impurity,” measuring how

mixed are classes separated by that a given split. A Gini impurity index of 0 indicates that a split perfectly

separates classes, while 1 indicates that each branch of a split is evenly divided among classes.

A simple decision tree consisting of one node finds the optimal split as measured by Gini impurity,

producing two branches. A decision tree with two layers then performs the same optimal splitting proce-

dure with each branch, resulting in four categories. A decision tree may have arbitrarily many layers, but

additional layers increase the risk of overfitting.

Result: Decision Tree with n layers

initialization;

for i ∈ n do

for l ∈ 2i−1 do

Find optimal split in leaf l in layer i by minimizing Gini impurity;

end

end

8.2 Ensembling

A concern with single-tree models is that they tend to overfit: outliers and dropped or missing values can have

an outsized effect on their predictions. Larger trees with many nodes may reduce outlier sensitivity, but are

more prone to overfitting. For this reason, ensemble learning methods, which combine many trees in different

ways, are popular in practice. The two most common ways to ensemble decision trees are bootstrapping

and boosting. Bootstrapping many decision trees leads to a random forest model, while boosting leads to
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a boosted decision tree model. The random forest is among the most commonly used machine learning

methods, so we briefly outline it below.

In random forests, (1) many trees are constructed simultaneously using bootstrapped samples of the

data, (2) each tree’s decision rules are generated using random subsets of the covariates, and then (3) the

trees’ predictions are averaged together (Liaw and Wiener, 2002). The bootstrapping procedure serves to

reduce overfitting, while the random covariate selection eliminates systematic correlations between the trees,

thereby improving predictive power12 (Ho, 2002). Random forests are also, by comparison to other ensemble

methods, easy to use, with efficient implementations in R (Liaw and Wiener, 2002) and STATA.

8.3 AdaBoost

AdaBoosting is an ensembling method for combining multiple models in sequence. It is initialized by training

a base model, often called a “weak learner,” on the full data set. This weak learner may be any model, often

a linear or logistic regression, but in this case we use decision trees as the base learner. After the model

is trained, residuals are calculated as the difference between predictions and the truth. In the case of a

classification problem, these residuals are binary, whereas in regression problems they may be continuous.

In the second iteration, all observations in the data set are re-weighted proportional to the size of their

residuals, a new model is run, new predictions, residuals, and weights are calculated, and then the third

iteration begins. The number of iterations is at the researcher’s discretion, and more is better than fewer; we

perform 10,000 boosting iterations in our applications. After T iterations, the result is a series of Mt∀t ∈ T

models, each of which has a prediction Pi,t for each observation in the data set. The final prediction for

observation i is the average of all predictions for that observation: 1
T

∑
t Pi,t.

12In most machine learning ensemble methods, many weakly predictive models are aggregated together.
If the “weak leaners” are weakly correlated at most, then each model picks up a different piece of the model
variance, and the overall model will have more predictive power. If, however, the models are all highly
correlated, then the ensembling procedure will add very little, and it is sufficient to take any single model
by itself.
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Data: Covariates xi, and outcome yi for i ∈ 1, N ; weights wi,t

Result: AdaBoosted Predictions after T iterations

initialization;

Initialize wi,t = 1∀i;

for t ∈ T do

Create a model Mt to predict yi from xiwi,t ;

Generate predictions P (Mt);

Calculate residuals r = P (Mt)− y;

Calculate wt+1 ∝ r;

end

Calculate final predictions: 1
T

∑T
t=1 P (Mt);

This algorithm makes clear that ADTs scale linearly in the number of boosting iterations, but polyno-

mially in the number of covariates and exponentially in the interaction depth of features.

8.4 Alternative Boosting Algorithms

An important feature of AdaBoost is that it can be reformulated as gradient descent, a standard nonconvex

optimization procedure, with an exponential loss function. Modifying that loss function results in a number

of alternative boosting algorithms. For example, replacing the exponential loss function with a logistic

regression loss function results in an algorithm called LogitBoost. Using a max-margin loss function, similar

to support vector machines, results in LPBoost, while adding in a majority-voting rule results in BrownBoost

(Mason et al., 2000).

While there is no consensus about which boosting methods perform best, Wu et al., 2010 find that

LPBoost outperforms other algorithms in a study of disease mutations. Despite this, we choose to focus on

AdaBoost. The more elaborate boosting algorithms are designed to solve problems associated with particular

data issues, such as noisy or mislabeled outcome data, or skewed continuous outcomes. Since we are not

concerned about noisy or mislabeled Supreme Court outcomes, and our outcomes are strictly binary, we

need not turn to more elaborate models. We prefer AdaBoost for its computational simplicity, its intuitive

construction, and its ease of implementation: AdaBoost and LogitBoost are the only boosting algorithms

readily implemented in scikit-learn, and there is no clear reason to prefer LogitBoost’s logistic loss function

to AdaBoost’s more straightforward exponential loss. As well, many common boosting algorithms are not
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amenable to binary classification problems.

8.5 Tuning Parameter Optimization

All machine learning models involve “tuning parameters” that control the behavior of the model. ADTs

have two categories of tuning parameters: parameters related to the decisions trees and parameters related

to AdaBoost.

The first set of parameters include the minimum number of observations allowed at a “leaf” of the tree,

the minimum maximum depth of the tree, the minimum and maximum number of allowed features, the

minimum number of observations required to split a node, the criterion by which to measure the quality of a

node, whether to bootstrap samples in creating trees, the minimum node impurity required to split a node,

and several others.

The second set of parameters are only the learning rate and the number of boosting iterations. The

learning rate parameter controls the amount of predictive “weight” each new iteration may add to the final

model. The default value is 1; values closer to 0 may improve predictive accuracy, but in turn require more

boosting iterations. In our ADT model, we perform 10,000 iterations.

We follow best practices by optimizing both sets of parameters using a grid search (Bergstra et al.,

2011). Grid search involves training the same model across many different combinations of parameters and

selecting the parameter set that maximizes predictive accuracy. We implement this algorithm using the

GridSearchCV module of python’s scikit-learn library.

8.6 General Best Practices for using ADTs in Political Science

To summarize, we offer a series of guidelines for applied researchers in how to implemented boosted decision

trees in a social science framework. These recommendations are oriented toward minimizing overfitting and

maximizing predictive accuracy.

• Have a sufficient sample size. OLS requires only as many observations as variables, but ADTs work

best with no fewer than 100 observations. As always, more observations are better than fewer.

• Allow the algorithm to perform variable selection; do not exclude variables that might be useful.

• Select a robust boosting algorithm like capable of generating predictions in the domain of interest. If

the prediction problem is a binary classification, AdaBoost and LogitBoost are good choices. If the

problem is a continuous regression problem, LPBoost may be more applicable.
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• Allow the boosting algorithm to run for as many iterations as you have time for, and reduce the

learning rate appropriately to avoid overfitting.

• Perform a grid search (or other search algorithm) to optimize tuning parameters.

• Measure performance against relevant benchmarks. This includes structural benchmarks like the

predictive accuracy for always guessing the modal outcome, and benchmarks from the literature.

• If possible, reserve a portion of the data as a final evaluation set. Without very large data sets, it is

possible to overfit parameters to a subsample, thereby sacrificing true predictive capacity for supposed

out-of-sample accuracy.

• Finally, consider other models! Unless there is a theoretical reason to prefer ADTs, it is always

possible that another model may be superior in any single context. Random forests, support vector

machines, and neural networks are generally worth trying for any particular application.

9 Appendix H: Previous Supreme Court Prediction

Models

Statistical models occasionally surpass the “petitioner wins” baseline. For example, Martin et al. compared

expert predictions to a classification tree using six case-level covariates.13 That model correctly predicted

75% out of 68 cases. Although the statistical model does beat the “petitioner wins” baseline, its findings are

limited by the the small sample size of the study (Martin et al., 2004b, p. 765) and that it examined only

one natural Court with highly Justice-specific covariates (Katz et al., 2014).

Following in the steps of Martin et al., recent attempts have shown reliable improvements over the

“petitioner wins” baseline. {Marshall}+, which incorporates 95 case-level covariates into a predictive model

(Katz et al., 2014), reports a predictive accuracy of 69.7% using a random forest variant called Extremely

Random Trees. These split candidate features randomly instead of along optimal thresholds, enjoying a

decreased variance in estimates at the cost of increased bias. The second attempt is CourtCast (Roeder,

2015), which uses three features derived from oral arguments transcripts: (1) the number of words uttered

by each Justice when talking to the parties, (2) the sentiment of the words used, and (3) the number of

13These were circuit of origin, the issue area, the type of petitioner, the type of respondent, the ideological
direction of the lower-court ruling, and whether the case raised a constitutional issue. Experts were free to
consider any information they wished (Martin et al., 2004b, p. 762).

19



times each Justice interrupts. CourtCast reports a predictive accuracy of 70%. The CourtCast model is an

unweighted ensemble classifier consisting of random forests, support vector machines, and logistic regression.

Ensemble methods, which synthesize the results from multiple uncorrelated classifiers into one prediction,

mitigate the costs of their constituent methods but often reduce the benefits. Finally, a random forest

model by Katz et al. 2017 allows for dynamic, time-varying predictions and reports an accuracy of 70.2%.

Despite relatively modest gains in predictive accuracy, they boast the flexibility to predict any case for which

covariates exist regardless of court composition or year.14

14As of writing, we have not had access to the data or replication code.
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