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1 Meta Analysis
In the main text we summarize results of a meta analysis of methodological journal articles

that employ replication analyses as part of their justification for a new method’s value. We provide

additional details on that meta analysis here. We collected articles published between January

2008 and June 2018 in all regular issues of American Political Science Review, American Journal

of Political Science, and Political Analysis. Using the journals’ respective websites, we first read

the abstract and text of the article to determine whether it introduced a new method and employed

a replication analysis. This process produced a total of 78 articles: 5 from American Political

Science Review, 24 from American Journal of Political Science, and 49 from Political Analysis.

1.1 Coding

After identifying this sample of articles, we next moved to the coding process.1 We first coded

the number of replications performed in each article (or its appendix). Next, we coded whether

the article included justification of the sample of replication studies in any capacity. Articles that

included any discussion of case selection, however brief, were coded as having justified their se-

lections. Next we moved to coding at the replication study level. Specifically, we coded the results

of each replication study within each article using the following categories. Note that the first

four categories are mutually exclusive, while the category “reversal” is a subset of “weaker” and

“mixed.”

• Weaker (65 replication studies). This category included any replication study in which all of

the hypotheses received weaker support with the new method.

• Stronger (22 replication studies). This category included any replication study in which all

of the hypotheses received stronger support with the new method.

• Mixed (39 replication studies). This category included any replication study in which some

of the hypotheses received weaker support, some received stronger support, and/or some

1Coding instructions and a spreadsheet with our coding results is included in the replication

materials for this letter.
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received no change in support with the new method.

• Same (43 replication studies). This category included any replication study in which all of

the hypotheses received no change in support with the new method.

• Reversal (23 replication studies). This category included any replication study in which one

or more findings were fully reversed with the new method.

1.2 Results

As we note in the main text, the results of our meta analysis suggest that some of the problems

with methodological replication analyses that we discuss are quite common. Consider selection

bias, for example. Although methodologists may use replications to justify new methods in a va-

riety of contexts, this meta analysis shows that they do so most often when the proposed method

produces different results than those reported in the initial research.2 Indeed, the vast majority of

replications in our sample show some degree of divergence from the originally published results.

Moreover, these articles seldom justify the cases selected for replication, even despite our gener-

ous coding standard in this regard. We are unable to observe how many replication studies the

authors of each article considered as they conducted their research. However, the combination of a

disproportionate amount of replication studies showing weaker or mixed results and a general lack

of justification for the samples of replication studies is consistent with the selection bias problem.

We also note that generalizability is a concern in the current conduct of replication analyses.

Figure A1 presents, for each journal, the distribution of replication studies reported in articles

coded in our meta analysis. It shows that methodologists typically report a small number of studies.

There are some exceptions to this pattern. Lall (2016), for instance, reports 30 replications (in a

sample of studies that is clearly justified). But that example represents a clear outlier in comparison

to the rest of the articles we coded. The mean is only 2.20 and the standard deviation is 3.38. The

median, which is perhaps a better measure of location in this case, is just one replication study.

2This finding is consistent with the “gotcha bias” problem that plagues replication analyses in

general (see Berinsky, Druckman, and Yamamoto 2018).
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Figure A1: Distributions of Replication Studies Reported in Methodological Articles, 2008–2018
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Note: The graph presents the distributions of replication studies reported in articles coded in our
meta analysis.

Even if no selection bias is present, these small samples of replication studies limit what

methodologists can say about a method’s broader impact on the research community. Thus, we

see considerable value in attempting to increase the number of replication studies in methodolog-

ical articles, particularly given that the discipline as a whole is moving toward more widespread

availability of replication data.

2 The Evaluation Framework
Here we detail the steps involved in our framework for evaluating new methods. Recall that

the two modes of evaluation that comprise the framework share a common set of initial steps, but

differ in the extent to which they facilitate generalizable claims about the utility of the new method.

Importantly, both modes offer a more comprehensive evaluation of a new method compared to the

proof of concept approach that is the current standard in methodological replication analyses. In
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brief, the methodologist begins both modes by defining a relevant population of applied research

studies and collecting a sample of replication data from that population. He or she documents

this information in a preanalysis plan, then carries out the replications. The two modes diverge at

this point; one involves description of the replication results while the other involves conducting

inference about the new method’s effect on applied research.3

The first mode of our framework, the test of concept replication analysis (TCRA), is similar to

the proof of concept method in that the methodologist uses the replications as illustrative examples

of the new method. The key difference between the current approach and TCRA stems from

the fact that the replication plan is preregistered in the latter, which alleviates concerns about

selection bias. The methodologist conducts the replications as described in a preanalysis plan,

then presents a complete picture of the results, likely with histograms or summary statistics of key

quantities. In other words, the goal of this mode is to provide description of a preregistered, larger,

more representative sample of replication studies. It stops short of projecting from the in-sample

replication results to the broader population of research studies. Thus, although it sets a higher

evaluation standard than the proof of concept approach, there is still a natural ceiling on how much

information the TCRA mode can convey to applied researchers. However, it may be all that is

feasible if, for example, replication data are hard to obtain.

The second mode—the full inference replication analysis (FIRA)—includes all of the steps of

the TCRA, then adds one crucial additional step: it treats empirical evaluation of a new technique

as an inference problem, similar to the manner in which applied researchers test substantive hy-

potheses. The FIRA mode involves using results from the replications as data in testing the null

hypothesis that there is no substantive difference, on average, between the existing and new meth-

ods of analysis. Importantly, we recommend establishing a priori the substantive criteria for testing

3Our framework is limited to cases in which the methodologist can make a useful comparison

between different methods. In some cases a new method might not provide a “better” estimate

of the same quantity, but instead yield new quantities altogether that allow the analyst to test new

hypotheses.
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this null. Compared to the TCRA, this mode of replication can provide more analytic leverage re-

garding the new method’s utility to applied researchers. However, it is also more demanding with

respect to the availability of replication data. In the remainder of this section we further elaborate

on the details of both of these modes of replication.

2.1 Preregistration

The crucial first step in our evaluation framework—for both the TCRA and FIRA modes—is to

publicly describe the replication plan before collecting or analyzing any data. Preregistration of re-

search designs has gained popularity in political science in recent years (e.g., Humphreys, Sanchez

de la Sierra, and van der Windt 2013; Monogan 2013). The practice promotes transparency and

honesty by compelling scholars to commit to key elements of the research design before collecting

and analyzing the empirical evidence. Doing so reduces the chances of a researcher making design

choices that reflect “data fishing,” or searching for results that are perceived to increase the like-

lihood of publication. Preregistration is not without its own problems (see Laitin 2013; Gelman

2013), but it does provide a useful means of reducing the adverse incentives that researchers face

when analyzing data.

We contend that preregistering replication analyses is a vital component to the introduction of

new methods. Preregistration directly addresses one of the main problems we describe in this letter:

selection bias in the set of replication studies that methodologists present. Current practice opens

up the possibility that a methodologist could privately conduct a large number of replications, but

only publicly report one or two. This approach is, in our view, quite problematic; omitting many

replication studies that are relevant to the new method could bias the research community’s view

of that method. For instance, reporting only those studies that show large differences between the

existing and new methods could produce overconfidence in its utility to applied researchers.

In contrast, a preanalysis plan for replications establishes which studies are relevant in advance

of looking at the data. This approach reflects an important change to the goal of the replication en-

terprise. Instead of focusing on finding one or two examples that demonstrate that the new method

can have a big effect on substantive research (i.e., the proof of concept standard), it emphasizes
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the need to place replications in context. Evaluating the impact of a new method on a collection of

several replication studies chosen ahead of time provides applied researchers with more valuable

information and sets a stricter criterion for the method’s practical utility.4

The contents of the preanalysis plan will likely vary to some degree depending on the details of

the method under study. However, we propose three key elements to include in any application of

this approach. The first two of these include defining the population of replication studies relevant

to the new method and describing the target sample of studies drawn from this population for actual

replication. Additionally, we advise defining the specific quantities that will be computed as part

of the replication process to measure the differences between the existing and new methods.

2.1.1 Define the Population

Placing replications in context involves clearly defining the relevant population of studies that

are potentially affected by the new method. This population may vary in size, but will ideally be

quite general. We recommend considering a broad definition of the types of studies that may have

benefited from the new method if it had been available at the time they were being conducted. We

encourage methodologists to consider multiple subfields of the discipline and perhaps even move

beyond political science entirely.5 Examples might include “all studies in political science that em-

ploy dyadic data” or “all studies that estimate the Cox proportional hazards model.” Alternatively,

the methodologist might decide to attempt a replication of all studies in a specific journal (Dewald,

Thursby, and Anderson 1986) or a specific literature (Lall 2016).

This step is a significant one because it communicates the scope of the new method’s potential

impact on the research community. If the method has wide-ranging reach into numerous literatures

4Of course, a preanalysis plan alone does not guarantee a representative sample of replication

studies.
5For simplicity we focus only on a population of political science studies in our example, but

this distinction may not be necessary or advisable. Indeed, many new methods are broadly appli-

cable across the social sciences and beyond. Thus, methodologists should also consider the impact

of their innovations beyond political science.
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and empirical strategies, defining this population serves as an initial piece of evidence in favor of

the utility of the new method for applied researchers. That is not to say that methodologists should

avoid developing methods for smaller, specialized research audiences. However, we contend that

the scope of the problem is relevant information when evaluating methodological innovations. A

large population of potential studies that might be affected represents a good preliminary sign of a

new method’s importance.

Methodologists should also keep the “file-drawer problem” (e.g., Franco, Malhotra, and Si-

monovits 2014) in mind when defining the population. The set of studies that ultimately makes it

to publication is not random, which may affect generalizability. If possible, obtaining replication

files for unpublished work would be ideal, but such data will likely not be available. Under such

a case, the methodologist should note that the population of interest comprises published studies

that employ the methods of interest.

2.1.2 List the Target Sample

Replicating all of the studies that fall into the population will likely never be feasible. Thus,

another piece of information that methodologists should include when preregistering replication

analyses is their plan for collecting a sample of replication studies from the population. Practical

matters may limit these efforts to some extent. For example, if the population is defined over

many disciplines, the methodologist might only be able to sample a few studies from each one. A

recency bias is also likely to appear due to the fact that widespread availability of replication data

is a relatively new phenomenon in political science. Even generating a list of all studies in the

population is unlikely to be feasible, so drawing a simple random sample from the population is

not a practical goal.

Nonetheless, it should still be possible to construct a sample that is representative of the pop-

ulation of studies. To do so, we first recommend searching a large database of academic articles

(e.g., Google Scholar or JSTOR) for keywords that identify studies from the population. We advise

refining this search to look within journals that have publicly-available replication archives in the

timeframe for which replication data are available. For instance, searching for articles published
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since 2014 in journals that have adopted the Data Access & Research Transparency (DA-RT) ini-

tiative will facilitate easy acquisition of data once the methodologist is ready to begin conducting

the replication analysis.6 These choices will likely weight the search results more heavily toward

recent research. However, we expect that this bias will naturally decline over time as more journals

require replication data to be deposited prior to publication.

The keywords employed in the search should be carefully selected so that they accurately

distinguish studies that employ the existing method of interest. However, some false positives that

result from overly general search terms are preferable to specific terms that miss relevant studies.

The methodologist should gather the entire list of results returned by the search—which we refer to

as the sampling frame—then read through each article to verify that it belongs to the population of

interest. We refer to this subset of relevant articles as the target sample. Note that this verification

should be done using only the text of each article; it should not involve the replication data or

software code. We recommend reporting bibliographic information of all of the studies in the

sampling frame and clearly identifying which studies comprise the target sample.

In an ideal scenario the target sample can be credibly deemed representative of the population

of relevant studies. If representativeness is in doubt, the methodologist should note that and discuss

the relevant issues. For instance, there may be overrepresentation of recent work or work from spe-

cific subfields. Variation in the implementation of replication policies by journals may also create

problems for sampling. Regardless of the source of the problem, a key consideration when one

arises is whether it is correlated with the specific quantities the methodologist intends to collect.

For instance, are studies from recent years more likely to show large differences between the two

methods compared to studies from many years ago? If the methodologist has reason to suspect that

such a pattern may appear, he or she should document the issue as well as any empirical strategy

6In political science, a number of journals that represent much of the empirical work in the

discipline signed the Journal Editors’ Transparency Statement (JETS) in 2014 as part of DA-RT.

By signing JETS, an editor publicly declared several commitments in support of a transparent

research process, including easy access to replication data as a requirement for publication.
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for correcting it.

If replicating every study in it is not feasible, the list could be further narrowed by selecting a

random subset, so long as replication code for the random selection is provided in the preregistra-

tion document. Most importantly, documenting the sampling frame and the target sample ahead of

time helps alleviate selection bias in the replication process. These lists establish all of the repli-

cation studies the methodologist could have conducted, given the keywords used in the search.

Documenting this information sharply contrasts with the current approach, in which methodolo-

gists report a small number of studies from an unknown sampling frame.

Finally, we recommend listing which models or statistical analyses within a given study the

methodologist plans to replicate, whether it is all of them or a subset.7 Doing so addresses the fact

that the selection of models for replication is itself a researcher degrees of freedom problem. If

the methodologist chooses a subset of models to replicate, he or she should describe the selection

criteria at this point as well.8

2.1.3 Define the Quantities of Interest

Another piece of information that a preregistration of a replication analysis should contain is

a list of quantitative measures that the methodologist will use to compare the original results with

7If feasible, replicating all of the models in each study may be the optimal choice. Doing so

removes a key researcher degree of freedom; the methodologist does not have to make choices

of which models to replicate and which ones to ignore. Additionally, it provides more informa-

tion for evaluating the methods, which increases the precision of the methodologist’s conclusions.

However, the main drawback to this approach is that it could lead to unequal weighting of replica-

tion studies, because some articles report many specifications and some report few. To avoid this

problem, the methodologist may want to choose one “main” specification from each study (and

preregister his or her criteria).
8In our preanalysis plan for the example described here we preregistered the criteria for repli-

cation model selection, but not the actual list of models, which we added post-hoc (see Table A2).

We thank an anonymous reviewer for suggesting this step.
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those from the new method. We refer to these measures as replication quantities of interest (RQI).

Defining the RQI is important because it clearly communicates the specific criteria by which the

new method will be judged. In other words, it tells the research community how it will know if the

impact of the new method is “small” or “large.” The methodologist should include as much detail

as possible on the measures and justification for why they are useful in evaluating the influence of

the new method on substantive conclusions.9

The RQI will depend on the application. If the new method is an alternative estimator of a

statistical model, one option might be the ratio of a coefficient estimate from the new method to

the same estimate from the existing method (see our example in the main text). This RQI gives

the proportional change in the estimate between the two methods. It is useful because it is easily

comparable across many replication studies and can be applied to several parameter estimates or

a specific subset.10 Additionally, a coefficient ratio has substantive appeal for applied researchers

whose primary concern is explanatory and/or causal modeling. In essence, it efficiently answers

the question “how different would substantive conclusions about the effect of this covariate be if

the new method was used instead of the existing method?” Changes in the statistical significance

of key parameter estimates between existing and new methods may also be relevant (e.g., the ra-

tio or difference in p-values). However, as a general rule we advise the use of RQI that address

substantive significance.11 Finally, methodologists may be interested in comparing some type of

9We also recommend establishing which statistical models or analyses within a given study the

methodologist plans to replicate.
10We do not recommend using a linear difference between two estimates unless the estimates

fall on a scale that is common across replication studies.
11Another potentially informative RQI could be an indicator of whether an estimate from the

new method is statistically significantly different from the analogous estimate with the existing

method. This quantity would be most relevant if the methodologist views the new method as

complementing the existing method; that is, his or her advice to applied researchers would be to

report results from both methods. If the new method is meant to entirely replace the existing

method—perhaps because the existing method has some fundamental flaw—this RQI may not be
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predictive loss function between the two methods (e.g., correct classification metrics). These quan-

tities could be used with the framework as well. Our main advice is simply that methodologists

should declare and justify the RQI ahead of time.

The central objective of the FIRA mode in our evaluation framework is to conduct a test of

the null hypothesis of no average substantive difference between the existing and new methods

using the RQI. This can be done with null hypothesis significance testing (NHST), in which case

we advise declaring a significance threshold in the preanalysis plan. However, NHST can be

quite restrictive (see Gill 1999), so we also advise that methodologists pay attention to substantive

differences. The process we recommend for doing so, which we detail in section 2.2.1 below,

involves selecting a cutoff value that denotes the smallest substantively meaningful RQI value. This

value can and should be informed by substantive context, but will always be somewhat arbitrary.

Thus, we advise selecting it ahead of time and reporting it in the preanalysis plan as well.

2.2 Conducting and Reporting the Replications

Once the preanalysis plan is deposited, the next step is to obtain the corresponding replication

files from each study in the target sample (or the random subset) and verify that the results can be

replicated using those files. We recommend that the research paper include the list of studies that

clear this final check for replicability. The accountability mechanism of preregistration is strongest

if there is transparency regarding the sampling frame and target sample (see above) as well as the

list of studies that ultimately appear in the data. After verifying replicability, the methodologist

can employ the new method. He or she should seek to replicate the original results exactly and

ensure that the new method is conducted on the exact same data as the existing method. We advise

reporting and explaining any deviations from this norm. After completing this step, the chosen

RQI should be computed according to the preanalysis plan. Depending on the research goals, there

may be several RQI generated from a single replication dataset. This process should be repeated

for every replication study in the final list, and the RQI stored in a common data file. Once this

file is complete, the final step in the process is the evaluation and reporting of differences between

as useful.
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existing and new methods.

If the methodologist chooses the TCRA mode, comparing the methods under study consists of

providing descriptive information about the RQI. Graphical summary methods such as histograms

and boxplots might be useful, as well as numerical quantities (e.g., means, medians, and standard

deviations). The objective in this case is to emphasize the replication context rather than just one

or two examples. Importantly, both the location and scale of the distributions of RQI are relevant

for the comparison; providing them further elevates the evaluation standard of this mode above a

proof of concept. Consider a proof of concept replication analysis that only reports replications

with large differences between existing and new methods. In such a case the methodologist only

informs applied researchers about a tail of the RQI distribution, and applied researchers may not

even know that they are only seeing extreme values. In contrast, the TCRA approach provides a

complete picture of the distribution of replication results. However, the TCRA approach is still

illustrative in nature. We next turn to the FIRA mode, which allows methodologists to make more

generalizable claims about the impact of a new method on applied research.

2.2.1 Inference with Replication Results

The FIRA mode employs the logic of hypothesis testing to evaluate new methods from a sample

of replication results. The null hypothesis that we consider is that there is no difference, on average,

between the existing and new methods. For example, without loss of generality consider a RQI

discussed above: the ratio of two methods’ coefficient estimates, with each covariate indexed by i,

for J replication studies indexed by j.

ri j =
β̂

i j
new

β̂
i j
old

. (1)

Testing for a statistical difference between the existing and new methods based on this RQI implies

the following null (H0) and alternative (HA) hypotheses regarding the mean of r, which we denote
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τ:

H0: τ = 1 (2)

HA: τ 6= 1.

Testing this null requires a theory of inference. The usual framework of frequentist hypothesis

testing (e.g., t-tests) could be used in this scenario, but would be problematic for two reasons.

First, the standard version of this approach requires a normality assumption, which may be suspect

if the sample size is not large enough to invoke the central limit theorem (CLT). This concern is

particularly relevant here given that replication data can be hard to obtain, and thus the sample size

may be small. Consider a typical “rule of thumb” for the necessary sample size to justify the CLT:

30 observations (e.g., Urdan 2005). Reaching that number is often feasible in data collection for a

substantive study, but collecting enough replication studies to yield 30 values of the RQI may be

more difficult, especially if the chosen RQI is defined at the study level.

Second, a standard frequentist hypothesis test forces the methodologist to rely on test statis-

tics, p-values, and the language of statistical significance to measure the new method’s value. We

contend that this approach is too restrictive in general (see Gill 1999), and especially so for the

assessment of new methods. A p-value can only communicate the likelihood that the data are con-

sistent with the null hypothesis; it cannot tell the analyst much about the credibility of an alternative

hypothesis. Yet, the credibility of an alternative is exactly the information that would benefit ap-

plied researchers the most in this context. Specifically, researchers need to know something about

the relative value of the new method compared to the existing method. We advocate communicat-

ing this information with nuance and detail rather than a simple statement about whether or not the

difference between the existing and new techniques is statistically significant.

We address both of these issues—the suspect nature of the normality assumption and the need

for more information in interpretation—by bootstrapping from a Bayesian perspective, with the

goal of constructing a posterior distribution for τ (e.g., Rubin 1981; Efron 2012). For a vector

of data values x of length n, classical bootstrapping can be conceptualized as repeatedly drawing
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probability weights π = {π1,π2, . . . ,πn} for the n data points and computing the statistic of inter-

est (e.g., the mean of x) weighted by π . The weights are constructed by drawing counts of each

observation in a bootstrap sample from a multinomial distribution with n trials and all probabilities

p ∈ (p1, p2, . . . , pn) equal to
1
n

, then normalizing such that the counts sum to 1.12 The Bayesian

bootstrap accomplishes this same objective, but draws the weights from a uniform posterior Dirich-

let distribution with parameter α = 1 (see Rubin 1981).13

Classical and Bayesian bootstrapping are essentially equivalent in practice, especially as n

grows larger.14 Indeed, classical bootstrapping is akin to generating a “poor man’s Bayes pos-

terior” (Hastie, Tibshirani, and Friedman 2009, 272). However, the Bayesian approach is useful

here for two reasons. First, in small samples—which are likely in this context—the classical boot-

strapping weights generated from normalizing discrete multinomial counts can be “choppy” due

to the presence of very few observed values of x. The Dirichlet distribution, by contrast, allows for

smooth draws of the weights at all sample sizes. Second, bootstrapping in a Bayesian framework

12For example, consider a vector of four data points. One possible draw of counts from the

multinomial distribution would be (1, 0, 2, 1), which would translate to weights of (0.25, 0.00,

0.50, 0.25). In other words, that sample would give no weight to observation #2 (i.e., leave it out

of the sample) and double the weight of observation #3 compared to unity (i.e., observation #3

appears twice in the sample).
13The sampling distribution for π remains a Multinomial(p1, p2, . . . , pn) as in the classical case.

The posterior is the product of this sampling distribution and a limiting Dirichlet prior, which

concentrates density near the vertices of an n-dimensional simplex as α → 0 (Rubin 1981). This

prior is weakly informative in that it gives the most weight (but not all) to x values that appear in

the observed data. In fact, classical bootstrapping is a special case of the Bayesian bootstrap with

a Dirichlet prior and α = 0, which places all of the prior weight on the observed x values. The

posterior of the statistic of interest is generated by repeatedly sampling π from its posterior and

using each draw as a weight in the computation.
14Bayesian bootstrapping as we describe here is straightforward in the R statistical environment

with the bayesboot package (Bååth 2016; R Core Team 2018).
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produces a proper posterior distribution of the statistic of interest to evaluate in hypothesis testing.

Instead of simply reporting whether the mean RQI is statistically significant or not, the methodol-

ogist can employ the more substantively intuitive logic of Bayesian inference to draw conclusions

about the new method.

We advise formally assessing substantive differences between the existing and new methods

via Bayesian highest posterior density (HPD) intervals generated from the posterior distribution of

τ . To do so, we recommend Rainey’s (2014) method of evaluating whether “meaningful effects”

are conceivable in a given sample, modified for the Bayesian context.15 This approach can be used

to determine if “large” differences—as defined by the RQI—between the two methods’ results are

plausible. A key aspect of this process involves choosing a cutoff value, which Rainey (2014)

refers to as m, that defines the smallest substantively meaningful average RQI. In other words, the

methodologist should determine how different, on average, the existing and new methods must be

such that it would be inadvisable for an applied researcher to ignore the new method as a possible

empirical strategy. This quantity can be symmetric such that values greater than m and less than

−m are deemed meaningful, but symmetry is not required (Rainey 2014, 1085). The choice for

m is a somewhat arbitrary one (but see Rainey 2014, 1085), which is why we advise selecting it

ahead of time and documenting the choice in the preanalysis plan.

With m in place, the next step is to compare the HPD interval for τ to m. The critical question to

answer is how much of the HPD interval is contained inside [−m, m]. As more posterior probability

falls inside that range, meaningful differences between existing and new methods are less likely,

on average. Alternatively, if large portions of the posterior exceed m (or fall below −m), relatively

more plausible values of τ represent substantively meaningful differences. Figure A2 presents

several illustrative examples. The points plot hypothetical posterior means for a given RQI mean

and the lines indicate 95% HPD intervals. Vertical dotted lines represent −m and m and the solid

15Rainey’s (2014) focus is on how applied researchers can use frequentist confidence intervals

to argue in favor of null effects; here we adapt his approach to use HPD intervals in assessing

substantively meaningful differences.
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Figure A2: Illustrative Examples of Mean RQI Posterior Interpretations
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Away from zero,
 more meaningful

Away from zero,
 some meaningful

Away from zero,
 meaningful

Away from zero,
 negligible

Includes zero,
 negligible

−m 0 m
RQI Posterior Means and HPD Intervals

Note: The graph presents example scenarios for interpreting the posterior distribution of the mean
RQI. The points plot hypothetical posterior means for a given RQI mean and the lines indicate
Bayesian HPD intervals. Vertical dotted lines represent −m and m and the solid line indicates
zero (i.e., no difference between the two methods). Portions of each HPD interval that fall inside
(outside) [−m, m] are colored gray (black).

line indicates zero (i.e., no difference between the two methods). Portions of each HPD interval

that fall inside (outside) [−m, m] are colored gray (black).

Interpretation of the first case is straightforward; it shows a HPD interval that is entirely in the

range of [−m, m] and overlaps zero, providing clear evidence of no meaningful difference between

existing and new methods. The next example is what would be referred to as statistically significant

from a frequentist perspective. However, it is not substantively significant under our application of

Rainey’s (2014) method. The entire HPD interval is bounded away from zero but still falls entirely

inside [−m, m]. In contrast, the third example shows a statistically and substantively significant

τ; the HPD interval is entirely to the left of −m. That case provides clear evidence of a notable

difference between existing and new methods.
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The final two examples highlight the value of employing Bayesian inference. From a frequen-

tist perspective, the two cases would be considered essentially identical: both estimates are statis-

tically significant (HPD intervals bounded away from zero) and neither estimate is substantively

significant (HPD intervals inside [−m, m]). However, the sizes of the portions of the posterior

distributions that fall outside of [−m, m] indicate a noteworthy distinction between the two cases.

The posterior distribution of the former case includes approximately 30% of its density to the left

of −m, while about 86% of the latter distribution is larger than m. Thus, while both HPD intervals

are bounded away from zero, the last example shows a great deal more evidence that the average

RQI is substantively large.

This FIRA mode represents our ideal standard for evaluating new methods. Reporting these

inferences—along with the descriptive measures of the TCRA mode—yields a great deal of useful

information for applied researchers. Most importantly, it provides an authentic picture of the new

method’s expected value to the research community. The FIRA mode is much more demanding

than the proof of concept approach in that it requires the completion of several steps ahead of time

as well as execution of a comprehensive set of replications. However, in our view this additional

work is worth the resulting increase to the standard for substantive evaluation of new methods.

A final important point to note is that our framework could be extended beyond the relatively

simple comparison of RQI that we describe above. Specifically, instead of just collecting the

RQI, the methodologist could also collect additional information from each study as “replication

covariates.” Then those variables could be used in the analysis of the RQI. Using them to weight

studies based on some relevant criteria is one option. Another might be to move to a regression

framework. That is, regress the RQI on the other features of the studies, such as sample size,

correlation structure between variables, or number of covariates in the model. This approach would

give the methodologist insight into what empirical conditions might lead us to expect large or small

differences between the methods, which would allow him or her to provide very precise advice

about their substantive consequences.
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3 Cox Model Example
This section contains additional details about our example of the evaluation framework: a repli-

cation of the replication analysis in Desmarais and Harden (2012). We provide more information

about the estimators in the comparison, discuss our implementation of the evaluation framework,

and supplement our previous summary of the results. Much of this content can also be found in

our preanalysis plan.

3.1 Methodological Background

The Cox proportional hazards model is a popular choice among several alternatives for the

analysis of duration data, likely due to its inherent flexibility (Box-Steffensmeier and Jones 2004).

However, Desmarais and Harden (2012) note that the method is particularly sensitive to deviations

from its assumptions, such as measurement error or omitted variable bias. These problems can

easily generate outlying event times (observations with large deviations between the actual rank

of the duration and the model’s expected failure rank), which bias parameter estimates. Bednarski

(1993) presents an alternative estimator of the Cox model that downweights outliers with the goal

of reducing this bias. Desmarais and Harden (2012) compare this alternative estimator to the

conventional partial likelihood estimation method (Cox 1975) and develop a sample-based test—

which they call the cross-validated median fit (CVMF) test—for empirically choosing between the

two approaches.

In our replication of replications, we compare Bednarski’s (1993) estimator and the conven-

tional partial likelihood approach. Desmarais and Harden (2012) conduct this same comparison,

reporting results from five replication studies. We employ our evaluation approach to examine the

practical utility of the alternative estimation method based on a larger, more representative sample

of replication studies. We examine the full distribution of differences between the two methods

and conduct inference regarding the null hypothesis that the alternative estimator is no different,

on average, from the conventional approach. Additionally, we assess the frequency with which

Desmarais and Harden’s (2012) CVMF test selects the alternative estimator. The results place the
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replications of Desmarais and Harden (2012) in better context, which is especially important here

because they focus their attention on the replications that point to the alternative method as the

better choice.

3.1.1 Summaries of Methods

The standard partial likelihood method, or PLM, is the original approach to Cox model es-

timation (Cox 1975). It involves maximizing a “partial” likelihood function that is described as

such because only the ranks of the durations are used, not the actual event times. This estimator

converges to maximum likelihood as the sample size increases if the model’s assumptions are valid

(see Desmarais and Harden 2012, 115). However, if one or more of the Cox model’s assumptions

are not valid, the PLM approach will yield sensitivity in its estimates. The iteratively reweighted

robust (IRR) estimator is designed to address this problem (Bednarski 1993). Specifically, it mod-

ifies the score of the partial likelihood to downweight outliers, thereby reducing their influence on

the final estimates. Outliers in this context are defined as observations with large differences be-

tween the expected and actual failure ranks; they often result from misspecification problems such

as measurement error or omitted variables (Desmarais and Harden 2012, 115–116). The analyst

controls the severity of the downweighting by setting a proportion (e.g., 0.05) of the most extreme

outliers to obtain weights of zero.

The PLM and IRR estimators represent a classic bias-variance tradeoff. PLM is the more

efficient estimator of the two, but exhibits greater bias under misspecification. The IRR estimator

reduces bias, but at the expense of efficiency. The CVMF test, which is the main innovation

proposed in Desmarais and Harden (2012), is designed to help researchers navigate this tradeoff in

the context of a sample of data. Specifically, it provides information about which estimator—PLM

or IRR—fits the observed data better. In brief, the test evaluates the two estimators by comparing

their observation-wise contributions to the log-partial likelihood. It computes these contributions

via leave-one-out cross-validation. Then, it constructs a binomial test statistic as a count of the

observations for which the IRR cross-validated log-partial likelihood is greater than that of PLM.

The null hypothesis of equal fit implies a binomial distribution of size equal to the estimation
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sample size with probability of success equal to 0.50. Thus, the researcher can obtain a p-value to

test the null of equal fit.16

3.2 Implementing the Evaluation Framework

In our evaluation framework the first step is to preregister the replication plan. In our preanal-

ysis plan we (a) defined the relevant population of studies, (b) listed the target sample from this

population, and (c) defined RQI.17 We discuss each of these items below.

3.2.1 Defining the Population

The relevant population for this replication analysis is any published political science study

that employs the Cox model.18 This is a broad definition, covering all empirical subfields of the

discipline. For simplicity, we limit our scope to political science, but our definition could cover

other fields as well. We do not include studies that only employ parametric duration models. While

the data in these studies could be used to estimate the Cox model, we exclude them because those

researchers chose a different methodological strategy. Studies that employ parametric duration

models and the Cox model are included in the population.

16For example, consider a hypothetical sample of 100 observations. The null hypothesis of

equal fit stipulates that the expected number of IRR log-partial likelihood contributions greater

than PLM log-partial likelihood contributions is 50. If the data show that 60 observations obtain

larger IRR log-partial contributions, the test statistic is 60 and the corresponding p-value based on a

B(100,0.50) distribution is ≈ 0.02. Using a standard significance threshold of 0.05, this outcome

would result in a rejection of the null hypothesis of equal fit and the selection of the IRR estimator

as the better fit for that particular sample and model specification.
17We deposited the preanalysis plan at the Political Science Registered Studies Dataverse on

June 22, 2018 (https://doi.org/10.7910/DVN/J7HFRX).
18In our preanalysis plan we declared the population to be any political science study that em-

ploys the Cox model. However, we did not sample from unpublished studies when collecting data,

and so we must limit this definition to published work only.
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3.2.2 The Target Sample

The large size of the population of studies defined above necessitates that we draw a sample of

studies with which to conduct our replication analysis. This sample should be representative of the

population, so ideally we would randomly sample from the entire population. However, a simple

random sample is not feasible because we do not have a list of every study that belongs in the

population and replication data are not available for all studies. Accordingly, we first selected a set

of journals, then randomly sampled studies from those journals. We had two goals in mind when

choosing journals: covering a representative collection of empirical political science and selecting

journals for which we knew replication data are publicly available.

Specifically, we began with the list of 27 journals that signed the Journal Editors’ Transparency

Statement (JETS) as part of the discipline-wide Data Access & Research Transparency (DA-RT)

initiative in 2014.19 This choice ensured that we would be able to find studies with available repli-

cation data. To obtain representative coverage of the empirical subfields of political science, we

chose the four most prominent general interest journals from the JETS list, which also happen to be

among the most prominent journals in the discipline: American Political Science Review (APSR),

American Journal of Political Science (AJPS), Journal of Politics (JOP), and British Journal of

Political Science (BJPS). We also selected three subfield journals: State Politics & Policy Quar-

terly (SPPQ, American politics), Comparative Political Studies (CPS, comparative politics), and

Journal of Peace Research (JPR, international relations).

Next we accessed each journal’s public replication data repository and determined the time

period for which data were available for all articles published that year (as of June 22, 2018). We

report this information in the first two columns of Table A1. To generate the sampling frame, we

first searched each journal in Table A1 in the years listed using Google Scholar. We used the search

string [Cox proportional hazards model].20 The results—comprised of a total of 33 studies—are

19See the statement here: https://www.dartstatement.org/2014-journal-editors-statement-jets.
20We also tried “Cox model” alone and with “Cox proportional hazards model”. The search

string we chose appeared to be the most effective at minimizing false positives and eliminating
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listed in a spreadsheet file in the replication materials. Next we read each article and denoted

in the file whether it is relevant (i.e., belongs in the population). To make this determination we

examined each article’s text for positive evidence of the use of the Cox model for at least one

model mentioned in the article.21 For instance, word searches for “Cox” typically pointed us to

phrases in the text or tables of results presenting Cox model estimates. This process yielded our

target sample: 24 relevant studies that we could potentially replicate, as described in Table A1.

Table A1: Time Periods of Full Data Availability in Journal Replication Data Repositories

Journal Website Years Search
Hits

Relevant
Studies

APSR
https://dataverse.harvard.edu/
dataverse/the review

2017–2018 1 1

AJPS
https://dataverse.harvard.edu/
dataverse/ajps

2013–2018 7 4

JOP
https://dataverse.harvard.edu/
dataverse/jop

2015–2018 5 4

BJPS
https://dataverse.harvard.edu/
dataverse/BJPolS

2015–2018 5 2

SPPQ
https://dataverse.unc.edu/
dataverse/sppq

2015–2018 2 1

CPS
http://journals.sagepub.com/
home/cps

2014–2018 2 2

JPR
https://www.prio.org/Data/
Replication-Data/

2000–2018 11 10

Note: Cell entries report replication data information for each journal that we sampled.
Search hits comprise the sampling frame; relevant studies comprise the target sample.
The search result information is current as of June 22, 2018.

3.2.3 Replication Details

We attempted to replicate the entire target sample and re-replicate all five replication studies

presented in Desmarais and Harden (2012). Our objectives with each study were to (1) reproduce

the PLM Cox model results from a “main” model specification reported in each article, (2) estimate

false negatives.
21The model itself could be reported in the article or an appendix, but we required that it be a

reported model instead of a vague appeal to robustness.
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the same model with IRR, and (3) conduct the CVMF test.22 To start this process we read each

article and determined which model was of central substantive interest to the original authors;

we wanted to avoid underspecified models, such as those that only include the main covariate of

interest without control variables. For articles presenting several regression models (e.g., with and

without control variables), we identified the main regression by determining which one the authors

refer to the most in their discussion of results. In some cases this identification was straightforward

(some articles only report one Cox model) while in others it was more challenging. If more than

one model appeared to be discussed approximately the same amount, we selected the first one

presented in the relevant table in the article. Table A2 reports which model we chose for each

replication study and the rationale behind each choice.

We were ultimately successful in completely replicating a total of 16 studies: 11 from the

target sample and the five Desmarais and Harden (2012) replication studies.23 Table A2 lists

the entire set of studies and information about our replication efforts, including results from the

CVMF test. We include brief notes explaining the results of each study. Those labeled “exact

replication” produce exact matches between the results reported in the original articles and our

own estimation. In some cases we found slight differences, likely due to software discrepancies.

Other times, practical matters forced us to alter the specification slightly (e.g., remove a covariate

or fixed effects). Finally, in some cases the original model was not capable of estimation with

IRR, such as frailty models or models with interval-censored or counting process data (denoted

“outcome variable incompatible with IRR”).

We focus on two RQI in our evaluation of the methods. First, we record the CVMF test’s
22Throughout this replication analysis we set the IRR truncation parameter—which defines the

proportion of observations with weights of zero—to the software default of 0.05. We accepted any

other choices (e.g., the procedure for handling tied durations) that the original studies report.
23We successfully replicated the original PLM version of the model in all but three of the articles.

However, in some of these we were unable to complete IRR estimation and/or the CVMF test (see

Table A2).
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Table A2: Replication Studies and Outcomes

Article Journal Model Rationale Sample Successful Replication CVMF (p-value) Notes

Box-Steffensmeier et al. (1997) APSR Table 2 (331) Selected by Desmarais
and Harden (2012)

DH 3 IRR (0.12) Exact replication

Martin (2004) AJPS Table 1, Model 2 (454) Selected by Desmarais
and Harden (2012)

DH 3 PLM (0.00) Exact replication

Mattes and Savun (2010) AJPS Table 2 (520) Selected by Desmarais
and Harden (2012)

DH 3 IRR (0.09) Exact replication

Martin and Vanberg (2003) BJPS Table 2, Model 3 (330) Selected by Desmarais
and Harden (2012)

DH 3 IRR (0.00) Exact replication

Golder (2010) CPS Table 2, Model 4 (20) Selected by Desmarais
and Harden (2012)

DH 3 PLM (0.00) Exact replication

Graham et al. (2017) APSR Table A7 (Appendix) Only Cox model re-
ported

Preregistered 3 IRR (0.00) Must exclude covariate
bmr2 prevauth from
the specification for IRR to
estimate successfully

Park and Hendry (2015) AJPS – – Preregistered – Methodological article
Kelley and Simmons (2015) AJPS Table 1, Model 1.3 (64) First of several models

most often discussed in
the article

Preregistered – No replication materials

Laver and Benoit (2015) AJPS Table 5, Model 3, Col-
umn 5 (286)

Model most often dis-
cussed in the article

Preregistered 3 PLM (0.74) Exact replication

Thrower (2017) AJPS Table 1, Model 3 (651) First of several models
most often discussed in
the article

Preregistered – Sample size too large for IRR
to converge

Camerlo and Prez-Lin (2015) JOP Table 1, Model 3 (615) Model most often dis-
cussed in article

Preregistered – Replication materials do not
produce reported results

Davis and Wilf (2017) JOP Table 1, Model 3 (973) Model most often dis-
cussed in the article

Preregistered – Outcome variable incompati-
ble with IRR

Johns and Pelc (2018) JOP Table 1, Column 3 (11) First of two models
most often discussed in
the article

Preregistered 3 IRR (0.00) Must exclude covari-
ates hhi trade t,
startyear, and legal
issue fixed effects from the
specification for IRR to
estimate successfully

Boudreau and MacKenzie (2018) JOP Table A3, Column 1
(Appendix)

Only Cox model re-
ported

Preregistered 3 PLM (0.00) Exact replication

von Stein (2016) BJPS Table 1, Model 1 (666) First of three models
most often discussed in
the article

Preregistered – Outcome variable incompati-
ble with IRR

Ecker and Meyer (2017) BJPS Table S3, Model 6 (Ap-
pendix)

Only Cox model re-
ported

Preregistered 3 IRR (0.00) Must exclude year fixed ef-
fects from the specification for
IRR to estimate successfully

Cayton (2016) SPPQ Table 2, Model 2A (81) First of several models
most often discussed in
the article

Preregistered – No replication materials

Crespo-Tenorio et al. (2014) CPS Table 2, Model 1 (1061) First of several models
most often discussed in
the article

Preregistered – Frailty model not available
with IRR

Turcu and Urbatsch (2015) CPS Table 1, Model 5 (420) Model most often dis-
cussed in article

Preregistered – No replication materials

Krustev (2006) JPR Table 1, Model 5 (254) Model most often dis-
cussed in the article

Preregistered 3 PLM (0.00) Slight differences in repli-
cated and reported coefficient
estimates

Meernik and Brown (2007) JPR Table 2 (76) Only Cox model re-
ported

Preregistered 3 PLM (0.89) Slight differences in repli-
cated and reported coefficient
estimates

Quackenbush and Venteicher (2008) JPR Table 3, Model 8 (734) Model most often dis-
cussed in the article

Preregistered – Outcome variable incompati-
ble with IRR

Nilsson (2008) JPR Table 1, Model 1 (488) First of several models
most often discussed in
the article

Preregistered – Outcome variable incompati-
ble with IRR

Cunningham (2010) JPR Table 1, Model 4 (123) First of several models
most often discussed in
the article

Preregistered – Outcome variable incompati-
ble with IRR

Kim (2012) JPR Table 2, Model 3 (313) First of two models
most often discussed in
the article

Preregistered – Outcome variable incompati-
ble with IRR

Acosta (2016) JPR Table 3, Model 1 (189) First of three models
most often discussed in
the article

Preregistered 3 IRR (0.00) Exact replication

Lektzian and Regan (2016) JPR Table S2 (Appendix) Only Cox model re-
ported

Preregistered 3 PLM (0.10) Slight differences in repli-
cated and reported coefficient
estimates

Tokdemir and Akcinaroglu (2016) JPR Table 4, Model 1 (275) First of two models
most often discussed in
the article

Preregistered 3 IRR (0.00) Slight differences in repli-
cated and reported coefficient
estimates

Rudloff and Findley (2016) JPR Table 2, Model 4 (26) Model most often dis-
cussed in the article

Preregistered 3 IRR (0.73) Exact replication

Note: Cell entries report information about replication efforts with all potential studies in the replication analysis. CVMF test
results reflect two-tailed p-values.
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selection (TS): the estimator selected by the test for the model of interest. This quantity is measured

at the article level (sample size of 16) with a categorical variable that takes on the values PLM,

IRR, or neither (i.e., equal fit). We identified m = 25% in our preanalysis plan as the threshold

for a substantively meaningful proportion of studies for which IRR is the better estimator.24 We

employ two-tailed tests of the null hypothesis of equal fit between the two estimators with the

conventional (and preregistered) α = 0.05 threshold. Desmarais and Harden (2012) use a more

relaxed standard. In their claim that the test selects IRR in three of the five studies, they report p-

values below 0.05 for two replications (Martin and Vanberg 2003; Mattes and Savun 2010) and p

= 0.06 for a third one (Box-Steffensmeier et al. 1997). However, best practice would likely dictate

the use of two-tailed tests in all cases unless there was strong theoretical or empirical reasons to

prefer one estimator a priori. We summarize the results with 10,000 draws from the posterior of

each RQI mean (i.e., 10,000 bootstrap replicates).

As we discuss in the main text, the CVMF test selects the robust estimator as the better fit in six

studies, or 38% (95% HPD interval: [15%, 59%]). This value exceeds the threshold of 25% that

we established in our preanalysis plan as substantively meaningful, although it is much smaller

than the 60% that Desmarais and Harden (2012) report (97% of the posterior density falls below

60%). If we switch to Desmarais and Harden’s (2012) criteria—one-tailed tests and α = 0.06—the

CVMF test selects IRR in 8 studies, or 50% of the sample (95% HPD interval: [27%, 74%]), which

is closer to (but still below) their reported value (78% of the posterior density falls below 60%).

The second RQI we compute is the ratio of the absolute values of the IRR coefficient estimates

to the absolute PLM estimates. We refer to this quantity as the coefficient ratio (CR). It is equal

to 1 if the IRR and PLM estimates are equivalent, greater than 1 if the IRR estimate is larger in

magnitude, and less than 1 if the PLM coefficient is larger in magnitude. This RQI provides a

24We decided that it would not be necessary for the robust estimator to be the better option a

majority of the time, as Desmarais and Harden (2012) seem to imply. Instead, we wanted to choose

a value that would reflect a notable minority of studies. The specific value of 25% captures this

criterion, although it also reflects some anchoring toward an intuitive number.
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measure of the magnitude of the difference between the two estimation methods. We chose m =

10% as the threshold for a meaningful difference between estimators.25 It is defined at the article-

coefficient level, yielding a sample of 209 observations. The results reported in the main text and

discussed below reflect bootstrapping at this level. However, we also conducted the bootstrapping

at the article level to account for the possibility of nonindependence between coefficients from the

same article. Results are substantively similar (see the replication materials).

On average, the results with this quantity suggest that the IRR estimation method could produce

substantively distinct conclusions. As we note in the main text, the average ratio for the full sample

is about 2.01 (95% HPD interval: [1.53, 2.54]), or 101% larger magnitude of coefficients from the

robust estimator. The posterior density completely exceeds our preregistered substantive threshold

of 1.1. Furthermore, the HPD intervals indicate that average ratios of up to about 3 are plausible.

It is also important to note that these results are similar between the Desmarais and Harden (2012)

sample of replication studies and our new preregistered sample. While Desmarais and Harden

(2012) may overstate the value of their CVMF test (see above), their replications and our new set

clearly show that these two estimators can produce meaningful substantive differences.

25This choice was rooted in our own past experiences as applied researchers dealing with model

dependence. We decided that even a difference as small as 10% in the magnitude of two estimates

can be substantively consequential.
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