
Supplementary Materials for “A Regression-with-Residuals

Method for Estimating Controlled Direct Effects”

A: Equivalence between RWR and Sequential G-Estimation Under No

Intermediate Interactions

To see the equivalence between RWR and sequential g-estimation, let us consider model (1) in the

main text and write the “naive” least squares regression of it as

Y = β̂0 + β̂T
1 X + β̂2A + β̂T

3 Z + M(γ̂0 + γ̂T
1 X + γ̂2A) + Y⊥, (1)

where Y⊥ denotes the residual. Suppose X is a column vector of p pretreatment confounders and

Z is a column vector of q intermediate confounders. For each of the components in Z, it has a least

squares fit on X and A. These least squares fits can be combined in matrix form:

Z = λ̂0 + Λ̂1X + λ̂2A + Z⊥, (2)

where λ̂0 and λ̂2 are q × 1 vectors, Λ̂1 is a q × p matrix, and Z⊥ is a q × 1 vector of residuals.

Substituting equation (2) into equation (1), we have

Y = (β̂0 + β̂T
3 λ̂0) + (β̂T

1 + β̂T
3 Λ̂1)X + (β̂2 + β̂T

3 λ̂2)A + β̂T
3 Z⊥ + M(γ̂0 + γ̂T

1 X + γ̂2A) + Y⊥. (3)

Since Y⊥ is the least squares residual for regression (1), it is orthogonal to the span of {1, X, A, Z, M, MX, MA}.

Because Z⊥ is a linear combination of X, A, and Z, {1, X, A, Z⊥, M, MX, MA} and {1, X, A, Z, M, MX, MA}

span the same space. Thus equation (3) represents the least squares fit of Y on {1, X, A, Z⊥, M, MX, MA},

1



meaning that the RWR estimator of the CDE is

ĈDERWR(a, a′, m) = (β̂2 + β̂T
3 λ̂2 + γ̂2m)(a− a′).

From equation (3), we also know that the de-mediated outcome can be written as

Yd = (β̂0 + β̂T
3 λ̂0) + (β̂T

1 + β̂T
3 Λ̂1)X + (β̂2 + β̂T

3 λ̂2)A + β̂T
3 Z⊥ + Y⊥. (4)

Since Z⊥ and Y⊥ are both orthogonal to the span of {1, X, A} (from the properties of least squares

residuals), β̂T
3 Z⊥ +Y⊥ is also orthogonal to the span of {1, X, A}. Thus equation (4) represents the

least squares fit of Yd on X and A, meaning that the sequential g-estimator of the CDE is

ĈDESG(a, a′, m) = (κ̂2 + γ̂2m)(a− a′) = (β̂2 + β̂T
3 λ̂2 + γ̂2m)(a− a′).

Obviously, the sequential g-estimator is the same as the RWR estimator.

B: Consistency of RWR in the Presence of Intermediate Interactions

First, we explain an implicit modeling assumption that underlies both the sequential g-estimator

and the RWR estimator described in the main text. Consider the following SNMM, which is anal-

ogous to the observed data regression in equation (1) except that it is a model for the potential

outcomes:

E[Y(a, m)|X, A = a, Z] = β0 + βT
1 X + β2a + βT

3 Z + m(γ0 + γT
1 X + γ2a). (5)

With the sequential g-estimator, the least squares regression in step 3 implies the linearity of

E[Y(a, 0)|X, A = a] in X and a:

E[Y(a, 0)|X, A = a] = κ0 + κT
1 X + κ2a. (6)

Setting m = 0 in model (5), we have

E[Y(a, 0)|X, A = a, Z] = β0 + βT
1 X + β2a + βT

3 Z. (7)
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Taking the expectation of equation (7) over Z, conditional on X, yields

E[Y(a, 0)|X, A = a] = β0 + βT
1 X + β2a + βT

3 E[Z|X, A = a]. (8)

Comparing equations (6) and (8), we see that βT
3 E[Z|X, A = a] must be linear in X and a. Since

β3 represents model parameters that can vary freely in Rq, the linearity of βT
3 E[Z|X, A = a] im-

plies that each component of E[Z|X, A = a] must be linear in X and a. Conversely, when each

component of E[Z|X, A = a] is linear in X and a, model 5 implies equation (6). Thus, the sequen-

tial g-estimator implicitly assumes each component of E[Z|X, A = a] is linear in X and a. This

assumption is more explicit in the RWR estimator, which requires the user to fit a linear model

for each of the intermediate confounders. Thus, both the sequential g-estimator and the RWR

estimator are based on the linearity of E[Z|X, A = a],

E[Z|X, A = a] = λ0 + Λ1X + λ2a, (9)

although this model can be specified more flexibly in practice by, for example, including higher-

order or interaction terms involving X and a. Similar to equation (2) in Appendix A, λ0 and λ2 are

both q× 1 vectors and Λ1 is a q× p matrix.

Next, to see the consistency of the RWR estimator in the presence of intermediate interactions,

consider the following SNMM:

E[Y(a, m)|X, A = a, Z] = β0 + βT
1 X + β2a + βT

3 Z + m(γ0 + γT
1 X + γ2a + γT

3 Z). (10)

Given equation (9), the CDE can be expressed as

E[Y(a, m)−Y(a′, m)] = EXE[Y(a, m)|X, A = a]−EXE[Y(a′, m)|X, A = a′] (because Y(a, m) ⊥⊥ A|X,∀a, m)

= EXEZ|X,A=aE[Y(a, m)|X, A = a, Z]−EXEZ|X,A=a′E[Y(a′, m)|X, A = a′, Z]

= β2(a− a′) + γ2m(a− a′) + βT
3 ·EX[E[Z|X, A = a]−E[Z|X, A = a′]]

+ γT
3 m ·EX[E[Z|X, A = a]−E[Z|X, A = a′]]

= β2(a− a′) + γ2m(a− a′) + βT
3 λ2(a− a′) + γT

3 λ2m(a− a′)

= [(β2 + βT
3 λ2) + (γ2 + γT

3 λ2)m](a− a′)
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It is easy to show that the RWR estimator based on model (??) is equal to

ĈDERWR(a, a′, m) = [(β̂2 + β̂T
3 λ̂2) + (γ̂2 + γ̂T

3 λ̂2)m](a− a′).

Thus, when linear models for both E[Y(a, m)|X, A = a, Z] and E[Z|X, A = a] are correctly speci-

fied and the potential outcomes are sequentially ignorable, all coefficient estimates are consistent.

It follows that ĈDERWR(a, a′, m) is also consistent.

C: R Code for RWR

In this appendix, we illustrate the implementation of RWR in R for estimating the CDE of me-

dia framing on support for immigration. Replication data can be found at Teppei Yamamoto’s

Dataverse: https://hdl.handle.net/1902.1/19036

library(dplyr)

# load data

load("PA-ImaiYamamoto.RData")

# function for demeaning

demean <- function(x) x - mean(x, na.rm = TRUE)

# function for residualizing intermediate confounders

residualize <- function(formula, df) residuals(lm(formula, df))

# data preprocessing

Brader2 <- Brader %>%

select(immigr, emo, p_harm, tone_eth, ppage, ppeducat, ppgender, ppincimp) %>% na.omit() %>%

mutate(immigr = 4 - immigr,

hs = (ppeducat == "high school"),

sc = (ppeducat == "some college"),

ba = (ppeducat == "bachelor's degree or higher"),

female = (ppgender == "female")) %>%

mutate_at(vars(emo, p_harm, ppage, female, hs, sc, ba, ppincimp), demean) %>%

mutate(., p_harm_res = residualize(p_harm ~ ppage + female + hs + sc + ba + ppincimp + tone_eth, .))

# total effect model

total_mod <- lm(immigr ~ ppage + female + hs + sc + ba + ppincimp + tone_eth,

data = Brader2)

# rwr without intermediate interactions

rwr1_mod <- lm(immigr ~ ppage + female + hs + sc + ba + ppincimp + tone_eth + p_harm_res +

emo * ( ppage + female + hs + sc + ba + ppincimp + tone_eth),

data = Brader2)
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# rwr with intermediate interactions

rwr2_mod <- lm(immigr ~ ppage + female + hs + sc + ba + ppincimp + tone_eth + p_harm_res +

emo * (ppage + female + hs + sc + ba + ppincimp + tone_eth + p_harm_res),

data = Brader2)

# bootstrap

nboots <- 500

rwr1_hold <- matrix(NA, nrow = length(coef(rwr1_mod)), ncol = nboots)

rwr2_hold <- matrix(NA, nrow = length(coef(rwr2_mod)), ncol = nboots)

for (i in 1:nboots) {

star <- sample(1:nrow(Brader2), replace = TRUE)

Brader2_star <- Brader2[star, ]

Brader2_star <- Brader2_star %>% tbl_df() %>%

mutate(., p_harm_res = residualize(p_harm ~ ppage + female + hs + sc + ba + ppincimp + tone_eth, .))

rwr1_star <- lm(immigr ~ ppage + female + hs + sc + ba + ppincimp + tone_eth + p_harm_res + emo * ( ppage + female + hs + sc + ba + ppincimp + tone_eth),

data = Brader2_star)

rwr2_star <- lm(immigr ~ ppage + female + hs + sc + ba + ppincimp + tone_eth + p_harm_res + emo * (ppage + female + hs + sc + ba + ppincimp + tone_eth + p_harm_res),

data = Brader2_star)

rwr1_hold[, i] <- coef(rwr1_star)

rwr2_hold[, i] <- coef(rwr2_star)

}

rownames(rwr1_hold) <- names(coef(rwr1_mod))

rownames(rwr2_hold) <- names(coef(rwr2_mod))

out_coefs <- c("(Intercept)", "tone_eth", "emo", "tone_eth:emo", "p_harm_res", "p_harm_res:emo")

rwr1_est <- coef(rwr1_mod)[out_coefs]

rwr2_est <- coef(rwr2_mod)[out_coefs]

rwr1_se <- apply(rwr1_hold, 1, sd)[out_coefs]

rwr2_se <- apply(rwr2_hold, 1, sd)[out_coefs]
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