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Additive and Multiplicative Effects Gibbs Sampler

To estimate, the effects of our exogenous variables and latent attributes we utilize
a Bayesian probit model in which we sample from the posterior distribution of the full
conditionals until convergence. Specifically, given observed data Y and X - where X is
a design array that includes our sender, receiver, and dyadic covariates - we estimate
our network of binary ties using a probit framework where: y;;; = 1(6,;; > 0) and
0:;: = B Xijt+a; +b; +u/ DV, +¢;. The derivation of the full conditionals is described
in detail in Hoff (2005) and [Hoff (2008), thus here we only outline the Markov chain

Monte Carlo (MCMC) algorithm for the AME model that we utilize in this paper.

e Given initial values of {3,a,b,U,V, X, p, and 2}, the algorithm proceeds as fol-

lows:

sample 6 | 3,X,0,a,b,U V, >, p, and % (Normal)

- sample 3| X,0,a,b,U,V. 3, p, and o2 (Normal)

- samplea,b | 3,X,0,U,V. X, p, and o2 (Normal)

- sample X, | 3,X,0,a,b,U,V, p, and o2 (Inverse-Wishart)

- update p using a Metropolis-Hastings step with proposal p*|p ~ truncated
normali_1 1)(p, o2)

- sample¢? | 3,X,0,a,b,U, V.3, and p (Inverse-Gamma)

- Foreachk € K:

« Sample U4 | 8,X,0,a,b,U;_j,V, %, p, and o2 (Normal)

* Sample Vi4 | 8,X,80,a,b,U,V|_4, %, p, and o2 (Normal)

« Sample Dy, | 3,X,0,a,b, UV, Xy, p, and o? (NormalJ]

'Subsequent to estimation, D matrix is absorbed into the calculation for V as we iterate through K.
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Ingold & Fischer Model Specification and Expected Effects

Variable

Description

Expected Effect

Conflicting policy preferences

Business v. NGO
Opposition/alliance

Preference dissimilarity
Transaction costs

Joint forum participation
Influence

Influence attribution

Alter's influence in-degree

Influence absolute diff.
Alter = Government Actor

Functional requirements
Ego = Environment NGO
Same actor type

Binary, dyadic covariate that equals one when one actor is from the busi-
ness sector and the other an NGO.

Binary, dyadic covariate that equals one when i, sender, perceives j, re-
ceiver, as having similar policy objectives regarding climate change.
Transformation of four core beliefs into a Manhattan distance matrix,
smaller the distance the closer the beliefs of 7 and j.

Binary, dyadic covariate that equals one when 7 and j belong to the same
policy forum.

Binary, dyadic covariate that equals one when i considers j to be influen-
tial.

Number of actors that mention ¢ as being influential, this is a measure of
reputational power.

Absolute difference in reputational power between ¢ and j.

Binary, nodal covariate that equals one when j is a state actor.

Binary, nodal covariate that equals one when ¢ is an NGO.
Binary, dyadic covariate that equals when i and j are the same actor type.

Endogenous dependencies: ERGM Specific Parameters

Mutuality
Outdegree popularity
Twopaths

GWIdegree (2.0)
GWESP (1.0)
GWOdegree (0.5)

Captures concept of reciprocity, if s indicates they collaborated with j then
j likely collaborates with 7.

Captures idea that actors sending more ties will be more popular targets
themselves for collaboration.

Counts the number of two-paths in the network, two-path is an instance
where i is connected to j, j to k, but i is not connected to k.

Takes into account how many ties a node sends in the network, used to
capture network structures that result from some highly active nodes.
Counts the number of shared partners for each pair and sums across.
Takes into account how many ties a node receives in the network, used to
capture networks structures that result from some highly popular nodes.

+ 4+ o+ 4

+

+

Table A.1: Summary of variables to be included in model specification.
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AME Model Convergence

Trace plot for AME model presented in paper.
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Figure A1: Trace plot for AME model presented in paper. In this model, we utilize the SRM to
account for first and second-order dependence. To account for third order dependencies we
use the latent factor approach with K = 2.
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Multiplicative Effects Visualization

When it comes to estimating higher-order effects, ERGM is able to provide explicit
estimates of a variety of higher-order parameters, however, this comes with the caveat
that these are the “right” set of endogenous dependencies. The AME approach, as
shown in Equation 4 of the manuscript, estimates network dependencies by examining
patterns left over after taking into account the observed covariates. For the sake of
space, we focus on examining the third-order dependencies left over after accounting
for the observed covariates and network covariance structure modeled by the SRM. A

visualization of remaining third-order dependencies is shown in Figure [A2
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Figure A2: Circle plot of estimated latent factors.

In Figure |A2} the directions of 4;'s and ©;'s are noted in lighter and darker shades,
respectively, of an actor’s typef] The size of actors is a function of the magnitude of

the vectors, and dashed lines between actors indicate greater than expected levels of

2For example, actors from industry and business are assigned a color of blue and the direction of 4,

for these actors is shown in light blue and o, in dark blue
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collaboration based on the regression term and additive effects. In the case of the ap-
plication dataset that we are using here organization names have been anonymized
and no additional covariate information is available. However, if we were to observe
nodes sharing certain attributes clustering together in this circle plot that would mean
such an attribute could be an important factor in helping us to understand collabora-
tions among actors in this network. Given how actors of different types are distributed
in almost a random fashion in this plot, we can at least be sure that it is unlikely other

third-order patterns can be picked up by that factor.
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Other Network Goodness of Fit Tests

Below we show a standard set of statistics upon which comparisons are usually

conductedf]

Variable Description

Dyad-wise shared partners ~ Number of dyads in the network with exactly ¢ shared partners.

Similar to above except this counts the number of dyads with the same
number of edges.

The proportion of pairs of nodes whose shortest connecting path is of
Geodesic distances length k, for k = 1,2, .. .. Also, pairs of nodes that are not connected are
classified as k = oo.

Propensities for individuals to have connections with multiple network

Edge-wise shared partners

Incoming k-star

partners.

Proportion of nodes with the same value of the attribute as the receiving
Indegree node

Proportion of nodes with the same value of the attribute as the sending
Outdegree node

Table A.2: Description of a set of standard statistics used to assess whether a model captures
network dependencies.

We simulate 1,000 networks from the LSM, ERGM, and AME model and compare
how well they align with the observed network in terms of the statistics described in
Table The results are shown in Figure Values for the observed network are
indicated by a gray bar and average values from the simulated networks for the AME,
ERGM, and LSM are represented by a diamond, triangle, and square, respectively. The
densely shaded interval around each point represents the 95% interval from the sim-
ulations and the taller, less dense the 90% intervalf| Looking across the panels in Fig-
ure JA3|it is clear that there is little difference between the ERGM and AME models in
terms of how well they capture network dependencies. The LSM model, however, does
perform somewhat worse in comparison here as well. Particularly, when it comes to
assessing the number of edge-wise shared partners and in terms of capturing the in-

degree and outdegree distributions of the collaboration network.

3See|Morris et al.|(2008) for details on each of these parameters. If one was to examine goodness of

fit in the ergm package these parameters would be calculated by default.
4Calculation for the incoming k-star statistic is not currently supported by the latentnet package.
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Figure A3: Goodness of fit statistics to assess how well the LSM, ERGM, and AME approaches
account for network dependencies. Grey bars indicate true values.
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Comparison with other AME Parameterizations

Here we provide a comparison of the AME model we present in the paper that

uses K = 2 for multiplicative effects and show how results change when we use K =

{1,3,4}. Trace plots for K = {1, 3,4} are available upon request.

AME (k=1) AME (k=2) AME (k=3) AME (k=4)
Intercept/Edges -3.08 -3.40 -3.74 -3.92
[-3.91,-2.30] [-4.40;-2.51 [-4.80;-2.75] [-5.13;-2.87]
Conflicting policy preferences
Business vs. NGO -1.28 -1.38 -1.51 -1.50
[2.20;-0.46] [-2.47;-0.49] [-2.64;-0.53] [-2.69;-0.52]
Opposition/alliance 0.95 1.08 1.19 1.27
[0.65; 1.28] [0.72; 1.49] [0.80; 1.63] [0.84; 1.76]
Preference dissimilarity -0.65 -0.79 -0.92 -0.96
[-1.29; -0.02] [-1.55; -0.07] [-1.76;-0.12] [-1.80; -0.15]
Transaction costs
Joint forum participation 0.84 0.92 1.02 1.05
[0.37;1.31] [0.40; 1.46] [0.46; 1.62] [0.43;1.73]
Influence
Influence attribution 1.00 1.10 1.21 1.27
[0.64; 1.39] [0.70; 1.55] [0.77:1.70] [0.80; 1.83]
Alter’'s influence indegree 0.10 0.1 0.13 0.13
[0.07; 0.14] [0.07; 0.15] [0.08; 0.17] [0.09; 0.18]
Influence absolute diff. -0.06 -0.07 -0.08 -0.08
[-0.10; -0.03] [-0.11; -0.03] [-0.13;-0.04] [-0.12; -0.04]
Alter = Government actor 0.52 0.56 0.66 0.63
[-0.04; 1.07] [-0.06; 1.16] [-0.04; 1.46] [-0.08; 1.36]
Functional requirements
Ego = Environmental NGO 0.61 0.68 0.77 0.79
[-0.31;1.56]  [-0.36;1.73]  [-0.35;1.93] [-0.38;2.04]
Same actor type 0.97 1.03 1.14 1.18
[0.60; 1.36] [0.62; 1.48] [0.66; 1.66] [0.70; 1.70]

Table A.3: 95% posterior credible intervals are provided in brackets.
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Figure A4: Assessments of out-of-sample predictive performance using ROC curves, separation
plots, and PR curves. AUC statistics are provided as well for both curves.
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Comparison of amen & latentnet R Packages

Here we provide a comparison of the AME model we present in the paper with a
variety of parameterizations from the latentnet package. The number of dimensions

in the latent space in each of these cases is set to 2. LSM (SR) represents a model in

which random sender and receiver effects are included.

LSM LSM (SR) AME
Intercept/Edges 0.95 0.61 -3.40
[0.09; 1.85] [1.07,2.34]  [-4.40; -2.51]
Conflicting policy preferences
Business vs. NGO -1.37 -3.06 -1.38
[-2.39;-0.40] [-4.72;-1.59] [-2.47;-0.49]
Opposition/alliance 0.00 0.30 1.08
[-0.40; 0.40] [-0.26; 0.86] [0.72; 1.49]
Preference dissimilarity -1.77 -1.88 -0.79
[-2.64; -0.91] [-3.06;-0.69] [-1.55; -0.07]
Transaction costs
Joint forum participation 1.51 1.55 0.92
[0.85; 2.17] [0.66; 2.40] [0.40; 1.46]
Influence
Influence attribution 0.08 0.30 1.10
[-0.40; 0.54] [-0.38; 0.96] [0.70; 1.55]
Alter's influence indegree 0.01 0.06 0.1
[-0.03; 0.04] [-0.03; 0.14] [0.07; 0.15]
Influence absolute diff. 0.04 -0.08 -0.07
[-0.01; 0.09] [-0.14; -0.02] [-0.11; -0.03]
Alter = Government actor -0.46 -0.09 0.56
[-1.08; 0.14] [-1.85; 1.77] [-0.06; 1.16]
Functional requirements
Ego = Environmental NGO -0.60 -1.72 0.68
[-1.30; 0.08] [-3.76; 0.25] [-0.36; 1.73]
Same actor type 117 1.81 1.03
[0.62; 1.72] [1.09; 2.56] [0.62; 1.48]

Table A.4: 95% posterior credible intervals are provided in brackets.

10
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Figure A6: Assessments of out-of-sample predictive performance using ROC curves, separation
plots, and PR curves. AUC statistics are provided as well for both curves.
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Simulation Based Comparison of amen & latentnet

We construct a simulation study to examine differences in the ability of LSM and
LFM to capture network dependencies under varying scenarios of “egalitarianism”. By
egalitarianism here we refer to how equally balanced the nodes are in terms of their
number of ties. We construct six simulation scenarios representing varying degrees of
egalitarianism. Note that to provide as fair a test as possible to the LSM we focus on
comparing to just the LFM, the multiplicative effects portion of AME (see Equation 3 in
the manuscript). This means that we exclude the additive effects described by the SRM
portion of the model (see Equation 2 in the manuscript).

For each scenario, we simulate fifty binary, directed networks with 100 nodes each
and then evaluate the performance of LFM and LSM to predict this network structure.
The results are shown in Figure below. Each panel here represents one scenario
in which we vary the degree of egalitariansim. The left most panel represents the sit-
uation in which the structure of the network is most egalitarian. The numbers at the
top of each panel indicate the standard deviation of the degree distribution averaged
across fifty simulations. Across the diagnoal of the visualization, we also provide an
example of the type of network that was simulated. The size of nodes in each exam-
ple network corresponds to the number of ties that node has. As we go from left to
right, we can see much greater variance in the size of nodes within the network, which
indicates that the level of egalitarianism is changing.

We run a LFM and LSM on each of the simulated networks from each scenario, and
compare the predictive performance based on AUC (ROC) and AUC (PR) statistics. We
set K = 2 for both the LFM and LSM and estimate each model without any covariates.
The results of this analysis indicate that under these varying scenarios of egalitarian-
ism LFM consistently outperforms the LSM. However, the performance of both models

tends to decline as the structure of the simulated networks become less egalitarian

12
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(i.e., the extent of tie formation among just a few nodes becomes much higher than
the typical node in the network). If covariate information was provided to the model
about which nodes were more likely to form ties, then the predictive performance of
both models would obviously improve. Additionally, if we were to estimate the full AME
model (SRM + LFM) then the additive effects would be able to capture the degree het-
erogeneity. Typically, in most applied scenarios one would always to include both the

additive and multiplicative effects portions when using AME[]
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Figure A8: Predictive performance of LFM vs LSM for networks under five scenarios (the panels)
that vary the extent to which the distribution of ties are egalitarian. We use a box plot to
represent the performance of LFM and LSM across fifty simulations for each scenario. The
set of network visualizations across the diagonal of the plot illustrate a representative network
from one simulation under that scenario, and the size of nodes corresponds to their number of
ties. The labels at the top of each panel indicate the standard deviation of the number of ties,
which are averaged across the fifty simulations for that scenario.

5When using the amen, the SRM portion of the model will be included by default.
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Next, we construct a second simulation study to compare the predictive perfor-
mance of LSM and LFM under varying levels of reciprocity. Here again we simulate a
set of scenarios, and for each scenario we simulate fifty binary, directed networks with
100 nodes. The results are shown in Figure[Ag] Each panel here represents represents
one scenario with a certain degree of reciprocity. The left-most panel highlights the
case where there is little to no reciprocity in the network and the right-most where
the level of reciprocity is quite high. The average level of reciprocity across the fifty
simulated networks is given at the top of each panel.

To compare LFM and LSM, we again utilize AUC (ROC) and AUC (PR) statistics. K is
set to 2 for both models and no covariate information is provided. Here again we find
that the LFM consistently outpeforms the LSM, though at higher levels of reciprocity
the performance difference between the two approaches does shorten. If we were to
estimate the full AME model, then we would be better able to capture reciprocity in the

network, as dyadic reciprocity is estimated within the additive effects portion of AME.

14
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Figure Ao: Predictive performance of LFM vs LSM for networks with varying levels of reciprocity.
We use a box plot to represent the performance of LFM and LSM across fifty simulations for
each scenario. The labels at the top of each panel indicate the average level of reciprocity across
the fifty simulated in that scenario.
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