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1. DETAILS ON THE P-GBME
As detailed in the paper, the partial observability generalized bilinear mixed effects
(P-GBME) framework treats the observed symmetric outcome, yij = yji, as result-
ing from a joint decision taken by a pair of actors. We formalize the joint decision
making process using a bivariate probit model with a standard normal link function:

yij = yji =

 1 if zij > 0 and zji > 0,

0 else, (1)
 zij

zji

 ∼ N

 µij + ai + bj + u′
ivj

µji + aj + bi + u′
jvi

,

 σ2 ρσ2

ρσ2 σ2


 , (2)

(ai, bi)
′ ∼ N (0,Σab) , (3)

ui ∼ NK(0, σ
2
uI), (4)

vi ∼ NK(0, σ
2
vI). (5)

ai and bj represent sender and receiver random effects that account for first
order dependence patterns that often arise in relational data, while u′

ivj captures
the likelihood of a pair of actors interacting with one another based on third order
dependence patterns such as transitivity, balance, and clustering. For identification
purposes, we fix σ2 = 1 and ρ = 0. The former is a standard restriction in probit
frameworks with a binary outcome. We undertake the latter restriction because
Rajbhandari (2014) shows that in this framework it is difficult to recover reliable es-
timates for ρ as the parameter is highly sensitive to the initial value.

The sender and receiver random effects (ai and bj) are drawn from amultivariate
normal distribution centered at zero with a covariance matrix, Σab, parameterized
as follows:
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Σab =

σ2
a σab

σab σ2
b

 (6)

The nodal effects are modeled in this way to account for the fact that in many
relational datasets we often find that actors who send a lot of ties are also more
likely to receive a lot of ties. Heterogeneity in the the sender and receiver effects is
captured by σ2

a and σ2
b , respectively, and σab describes the covariance between these

two effects.
µ represents the systematic component of actors’ utilities and is expressed as a

linear function of sender (s), receiver (r), and dyadic (d) covariates:

µij = β(s)x
(s)
i + β(r)x

(r)
j + β(d)x

(d)
ij , (7)

µji = β(s)x
(s)
j + β(r)x

(r)
i + β(d)x

(d)
ji . (8)

This formulation allows us to incorporate exogenous actor and dyad level char-
acteristics into how actors make decisions within the partial probit framework. Fol-
lowing Hoff (2005), to enable a more efficient estimation, we reparameterize the
model to implement hierarchical centering of the random effects (Gelfand, Sahu
and Carlin, 1995):

zi,j ≈ N (β(d)x
(d)
ij + si + rj + u′

ivj), (9)
si = β(s)x

(s)
i + ai, (10)

rj = β(s)x
(r)
j + bj. (11)

3



1.1. Parameters and Priors
To estimate the parameters discussed in the previous section, we utilize conjugate
priors and a Monte Carlo Markov Chain (MCMC) algorithm. Prior distributions for
the parameters are specified as follows:1

• β(s), β(r), and β(d) are each drawn from multivariate normals with mean zero and
a covariance matrix in which the covariances are set to zero and variances to 10

• Σa,b ∼ inverse Wishart(I2×2, 4)

• σ2
u, and σ2

v are each drawn from an i.i.d. inverse gamma(1,1).
Starting values for each of the parameters are determined using maximum like-

lihood estimation.

1.2. The MCMC algorithm
To estimate this model a Gibbs sampler is used. This sampler follows the procedure
laid out in Hoff (2005, 2009) with the exception of the first step in which we extend
the GBME by accounting for the possibility that seemingly symmetric events are the
result of a joint decision between a pair of actors. This first step involves sampling
from a truncated normal distribution, we show the full conditional distribution be-
low.

1. Modeling partially observable outcome. Conditional on there being an ob-
served link between i and j, and conditional on other parameters, we draw
the latent variables zij and zji from the bivariate normal distribution such that
both latent variables are positive:
zij

zji

∣∣∣∣∣∣∣ yij = 1

 ∼ N

 µij + ai + bj + u′
ivj

µji + aj + bi + u′
jvi

,

 σ2 ρσ2

ρσ2 σ2


1{zij > 0 ∩ zji > 0}.

1For details on the full conditional distributions of each of the parameters see Hoff (2005).
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Conditional yij = 0 (there is no observed link between i and j), we sample the
latent variables from the bivariate normal distribution where at least one of
the latent variables, zij or zji, is constrained to be negative:
zij

zji

∣∣∣∣∣∣∣ yij = 0

 ∼ N

 µij + ai + bj + u′
ivj

µji + aj + bi + u′
jvi

,

 σ2 ρσ2

ρσ2 σ2


1{zij < 0 ∪ zji < 0}.

2. Additive effects
• Sample β(d), s, r | β(s),β(r),Σa,b, Z,U ,V (linear regression)
• Sample β(s),β(r) | s, r,Σa,b (linear regression)
• Sample Σa,b from full conditional distribution

3. Multiplicative effects2

• For i = 1, . . . , n:
– Sample ui | {uj, j ̸= i}, Z,β(d), s, r, σ2

u, σ
2
v ,V (linear regression)

– Sample vi | {vj, j ̸= i}, Z,β(d), s, r, σ2
u, σ

2
v ,U (linear regression)

1.3. Simulation Exercise
To test the capabilities of the P-GBME framework in representing the data generat-
ing process for a partially observable outcome we conduct a simulation exercise. In
each simulation, we randomly construct a directed network from a pair of dyadic
covariates, nodal covariates, and the random effects structure detailed in the pre-
vious section. The regression parameters for the dyadic covariates are set at 1 and
-1/2, and the parameters for the nodal covariates are set at 0 and 1/2. At this stage,
the network simulated from this data generating process is directed. We modify
the simulated network so that a link between a dyad only appears in the network if

2See Hoff (2009) for further details on how multiplicative effects are estimated in a directedcontext within the GBME framework.
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both the i, j dyad and the j, i dyad both have a link in the simulated network, thus
making the network appear undirected.

Next, we examine whether the P-GBME model can recover the data generating
process underlying the partially observed simulated network. We run the P-GBME
model in every simulation for 20,000 iterations with a 10,000 burn-in period. We
repeat this simulation process 100 times.

With the simulation results our first step is to examine whether the P-GBME
accurately recovers the regression parameter estimates for the dyadic and nodal
covariates. To test whether this is the case we calculate the mean regression pa-
rameter estimate from the MCMC results for each simulation, and we summarize
these results in Figure 1. For each parameter we indicate its true value by a colored
horizontal line and summarize the distribution of the mean regression values esti-
mated from the P-GBME using a boxplot. Given that for each of the parameters the
true value almost exactly crosses the median value indicated in the box plot, this
simulation shows that the P-GBME is quite effective in estimating the true parame-
ter values underlying a partially observed outcome.
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Figure 1: Boxplot of mean value of regression parameters estimated using the P-GBME across 100 simulations. Horizontal colored lines indicate the true parametervalues.
We also examine the proportion of times that the true value falls within the

95% credible interval of the estimated regression parameter. In over ninety percent
of the simulations, the true value falls within the 95% credible interval of each of
the estimated regression parameters from the P-GBME. Specifically, for β(d,1) the
coverage rate is 0.85, for β(d,2) 0.93, for β(s) 0.93, and for β(r) 0.97.

2. ESTIMATION AND APPLICATION

2.1. Data
Table 1 provides a description for each of the variables used in the analysis.
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Table 1: Variables in the analysis
Variable Level Definition Source
BIT dyadic 1 if i & j Signed a BIT by year t UNCTAD3
UDS (median) dyadic |UDSit−UDSjt| Pemstein et al. (2010)Law & Order dyadic |LOit−LOjt| ICRG4
Log(GDP per capita) dyadic |Log(GDPcap)it−Log(GDPcap)jt| WDIOECD dyadic 1 if i& j Both OECD members by year t OECDDistance dyadic Minimum distance between i&j Gleditsch & Ward (2001) 5
FDI/GDP node Net FDI inflow as % GDP in year t WDIICSID Disputes node Cumulative number of disputes by year t ICSID6
GDP per capita growth node Level of GDP per capita growth by year t WDIPTAs node Cumulative number of PTAs signed by year t DESTA7

A shortcoming of the existing GBME framework is its inability to account for ap-
plications where there is missingness in the set of exogenous covariates used in
the model. For our application, a number of the nodal covariates had varying lev-
els of missingness. Additionally, most of the dyadic covariates that we construct
from nodal variables, such as the unified democracy scores, also have varying lev-
els of missingness. The table below shows how much missingness we had for the
variables included in our analysis:

Table 2: Missingness among variables used in the analysis
Variable Proportion of Cases Missing
Law & Order 16.6%FDI/GDP 2.8%GDP per capita 1.4%GDP per capita growth 1.4%Unified Democracy Scores (UDS) 0.7%ICSID Disputes 0%PTAs 0%OECD 0%

In general, the level of missingness is not high. The only exception here is with
the Law & Order variable from the ICRG dataset, for this variable we had approxi-
mately 17% of country-year observations missing from 1990 to 2012. The only true
dyadic variable we include in our analysis is a calculation of the minimum distance
between countries, and this variable has no missingness. Additionally, our depen-
dent variable measuring whether or not two countries had signed a BIT by year t
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also has no missingness.
A number of works have noted the issues that can arise when simply using list-

wise deletion,8 thus before running the P-GBME sampler we impute missingness
among the covariates used in our model with a Bayesian, semi-parametric cop-
ula imputation scheme.9 We generate 1,000 imputed datasets from this imputation
scheme and save 10 for use in the P-GBME MCMC sampler.

To account for missingness within the P-GBME, at the beginning of every itera-
tion of the MCMC for model, we draw a randomly sampled imputed dataset from
the posterior of the Copula, calculate the parameters associated with the P-GBME
using the imputed dataset, and repeat this process for every iteration of the sam-
pler for the model. This approach directly incorporates imputation uncertainty into
our posterior distributions of the P-GBME parameters without having to run and
combine separate models.

2.2. Estimation details
In our application we estimate the P-GBME separately for each year from 1990 to
2012 using the prior distributions and MCMC algorithm described above. For each
year, we ran the P-GBME MCMC sampler for 20,000 iterations, discarding the first
10,000 iterations as burn-in. We thinned the chain by saving only every 10th value.

The following trace plot describes MCMC convergence for all parameters in the
2012 P-GBME model.

8See, for example, King et al. (2001).9See Hoff (2007); Hollenbach et al. (2016) for details on this imputation scheme and how itdiffers from other approaches frequently utilized in political science.
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Figure 2: Traceplot for 2012 P-GBME results.

2.3. Regression Parameters
Figure 3 displays the posterior mean and the 90% (thicker) and 95% (thinner) cred-
ible intervals (CIs). The first column contains the dyadic covariates; the second,
sender-level covariates; and, the third, receiver covariates. In each panel, we show
the parameter estimates for that variable from 1990 to 2012. The dotted horizontal
line is 0 and the thicker grey line is the posterior mean, pooling the posterior draws
across all years.

The P-GBME recovers directed sender- and receiver-effects for node-level co-
variates from an observed undirected network, something that other approaches,
including the GBME, are unable to do. Our estimation in this application indicates
substantial instability in these estimates over time, both relative to a baseline of 0
and relative to the pooled posterior mean. This instability is consistent with sub-
stantive arguments that the incentives to sign BITs have changed over time (Jand-
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hyala, Henisz and Mansfield, 2011).
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Figure 3: Left-most plot shows results by year for the dyadic parameters, next showsparameter results for sender covariates, and right-most plot show results for re-ceiver covariates. Points in each of the plots represents the average effect for theparameter and the width the 90 and 95% credible intervals. The grey bar in the pan-els represents the average effect of the parameter across all years. Dark shades ofblue and red indicate that the 95% CI does not contain 0 and lighter shades impliesthat the 0 is not in the 90% credible interval. Parameters in grey are are ones where0 is inside the 90% credible interval.
Dyadic covariates tend to be more stable across years in this application. But

they, too, show that the BIT formation process has changed over time. Economic
and political “distance”, for example, has become less important as the network
evolved and more lower-income countries have signed BITs with each other. Geo-
graphic distance, on the other hand, continues to be strongly related to the forma-
tion of BITs.

P-GBME covariate estimates shed light on the evolving processes producing the
observed BIT network in the 1990-2012 period. The changing values of covariate
parameters over time also indicates that common practice of pooling dyads and
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assuming the existence of temporally stable parameters may be dangerous.

2.4. Choosing dimension of the multiplicative effects,K
One of the parameters that users are able to set within the P-GBME to account for
third order dependence patterns is K – see the MCMC algorithm section above for
more details on this parameter and its relation to the model. In the results reported
in the paper, we set K = 2. To understand whether or not a higher value of K is
necessary users of this approach can compare the in-sample fit of the model with
varying values for K. In our application exercise, we varied K from 1 to 3 to settle
on an appropriate value ofK that can represent the data generating process of the
network. Results are shown in Table 3 below.
Table 3: In-sample performance results from running the P-GBME on data from 2012with varying values ofK.

AUC (ROC) AUC (PR)
K=1 0.87 0.63
K=2 0.90 0.71
K=3 0.92 0.71

As you can see afterK=2, the subsequent in-sample performance improvement
notably declines. There is a slight increase in performance from K=2 to K=3, how-
ever, every time one increases K we are also adding 2 ∗ n more parameters to the
P-GBME model. Adding this many more parameters can easily lead one to overfit
the data in an out-of-sample context.
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