
Online Appendix: How Cross-Validation Can
Go Wrong and What to Do About it. ∗

Marcel Neunhoeffer and Sebastian Sternberg

Center for Doctoral Studies in Social Sciences, University of Mannheim

Submitted: June 28, 2018

This is the Online Appendix for Neunhoeffer and Sternberg, 2018: How Cross-Validation
Can Go Wrong and What to Do about it.

Abstract

The introduction of new “machine learning” methods and terminology to political
science complicates the interpretation of results. Even more so, when one term –
like cross-validation – can mean very different things. We find different meanings
of cross-validation in applied political science work. In the context of predictive
modeling, cross-validation can be used to obtain an estimate of true error or as a
procedure for model tuning. Using a single cross-validation procedure to obtain an
estimate of the true error and for model tuning at the same time leads to serious
misreporting of performance measures. We demonstrate the severe consequences of
this problem with a series of experiments. We also observe this problematic usage
of cross-validation in applied research. We look at Muchlinski et al. (2016) on the
prediction of civil war onsets to illustrate how the problematic cross-validation can
affect applied work. Applying cross-validation correctly, we are unable to reproduce
their findings. We encourage researchers in predictive modeling to be especially
mindful when applying cross-validation.

∗Replication materials are available online as a dataverse repository (Neunhoeffer and Sternberg,
2018) https://doi.org/10.7910/DVN/Y9KMJW. We thank Thomas Gschwend, Richard Traunmüller,
Sean Carey, Sebastian Juhl, Verena Kunz, Guido Ropers, the participants of the CDSS Political Science
colloquium and two anonymous reviewers for their helpful comments. All remaining errors are our own.
This work was supported by the University of Mannheims Graduate School of Economic and Social
Sciences funded by the German Research Foundation.

Contents

A Cross-Validating Cross-Validation in Political Science 3

B Experimental Exploration of Problematic
Cross-Validation 6

B.1 Three common performance measures . 6

B.2 Code for the Experiment . 8

C Problematic Cross-Validation in Muchlinski et al. (2016) 19

C.1 Description of data set used in Muchlinski et al. (2016) 19

C.2 Re-analysis of Muchlinski et al. (2016) 19

C.3 Reporting random probabilities as out-of-sample predictions 22

C.3.1 Incomplete out-of-sample data . 23

C.3.2 Reporting random probabilities 23

2

A Cross-Validating Cross-Validation in Political Sci-

ence

The following table summarizes the results of our survey of the literature.

Author(s) Journal

Cross-Validation for Validating New Measures/Instruments

Weber (2011) American Journal of Political Science

Ghitza and Gelman (2013) American Journal of Political Science

Cantú (2014) American Journal of Political Science

Besley and Reynal-Querol (2014) American Political Science Review

König et al. (2013) Political Analysis

Atkeson et al. (2014) Political Analysis

Guess (2015) Political Analysis

Cross-Validation as a Robustness Check

Engstrom (2012) American Journal of Political Science

Bisbee and Larson (2017) American Political Science Review

Cross-Validation to Estimate True Error

Ahlquist and Wibbels (2012) American Journal of Political Science

Grimmer et al. (2012) American Political Science Review

Hill and Jones (2014) American Political Science Review

Fariss (2014) American Political Science Review

Montgomery et al. (2012) Political Analysis

Grimmer and Stewart (2013) Political Analysis

Caughey and Warshaw (2015) Political Analysis

Montgomery et al. (2015) Political Analysis

Wilkerson et al. (2015) American Journal of Political Science

Cranmer and Desmarais (2017) Political Analysis

3

Peterson and Spirling (2018) Political Analysis

Cross-Validation for Model Tuning

Hopkins and King (2010) American Journal of Political Science

Boas and Hidalgo (2011) American Journal of Political Science

Desmarais et al. (2015) American Journal of Political Science

Abadie et al. (2015) American Journal of Political Science

Lauderdale and Clark (2012) American Political Science Review

Keele (2010) Political Analysis

Carter and Signorino (2010) Political Analysis

Imai and Strauss (2011) Political Analysis

Glynn and Quinn (2011) Political Analysis

Caughey and Sekhon (2011) Political Analysis

Esarey and Pierce (2012) Political Analysis

Keele and Minozzi (2013) Political Analysis

Hainmueller and Hazlett (2014) Political Analysis

Keele and Titiunik (2015) Political Analysis

Montgomery et al. (2015) Political Analysis

Xu (2016) Political Analysis

Cranmer and Desmarais (2017) Political Analysis

Other or no use of Cross-Validation

Greenhill et al. (2011) American Journal of Political Science

Rainey (2014) American Journal of Political Science

Jessee (2016) American Journal of Political Science

Beauchamp (2017) American Journal of Political Science

Desmarais and Harden (2012) Political Analysis

Iacus et al. (2012) Political Analysis

Bowers et al. (2013) Political Analysis

4

Our survey of the literature suggests that the term cross-validation has four different

meanings in applied political science work. We searched JSTOR for the term cross-

validation in publications of three leading political science journals since 2010. In total

we found 42 articles with the term cross-validation. The search was conducted on April

25 2018. The three journals in our search are APSR, AJPS, and PA. Since the time period

covered by JSTOR is different for each journal, we supplemented the JSTOR search with

manual searches on the journal websites for the term cross-validation in the period after

the last result in JSTOR and before April 25 2018.

In our search, we included all occurrences which mentioned the term “cross-validation”.

This also includes instances where the term cross-validation was only referred to in the

references, or briefly mentioned in the body of a paper. When the usage of the term cross-

validation could not be assigned to either of the first four categories (cross-validation

for validating new measures/instruments, cross-validation as a robustness check, cross-

validation to estimate true error, or cross-validation for model tuning), we assigned it to

the category “Other or no use of cross-validation”. There are 42 unique articles where the

term “cross-validation” occurs at least once. Note that two papers can be found in two

categories (Montgomery et al., 2015; Cranmer and Desmarais, 2017), so that the table

includes 42+ 2 = 44 references. This is because in these two papers, the authors use and

discuss cross-validation for both the estimation of true error and model tuning.

5

B Experimental Exploration of Problematic

Cross-Validation

B.1 Three common performance measures

Generally, the results of a binary classifier (and any other classifier) can be summarized

by a confusion matrix. In the case of binary classification this is a 2× 2 table of the four

possible classification outcomes of a model. The three performance measures – F1 score,

ROC-AUC and PR-AUC – can all be explained with the help of confusion matrices. To

get class predictions from predicted probabilities of belonging to the positive class one has

to set a threshold for positive prediction. Usually, the default value of this threshold for

positive prediction is 0.5. However, any other value between 0 and 1 could be a sensible

threshold for positive prediction.

Confusion Matrix

Observed
Positive Negative

Predicted Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

• F1 score: The F1 score is the harmonic mean of precision and recall at some

threshold of positive prediction. In our experiment and application we set this

threshold to 0.5. In terms of the confusion matrix, the F1 score can be expressed

as: F1 =
2·TP

2·TP+FN+FP

• ROC-AUC score: ROC-AUC stands for the area under the receiver operating

characteristic curve. The receiver operating characteristic (ROC) curve is a plot of

the true positive rate (TPR, a.k.a Recall or Sensitivity) against the false positve rate

(FPR, a.k.a probability of false alarm) for confusion matrices of various thresholds.

Where TPR = TP
TP+FN

(true positives divided by the sum of all observed positives)

and FPR = FP
FP+TN

(false positives divided by the sum of observed negatives).

6

Plotting the two for various thresholds against each other yields the ROC curve. The

area under the curve can than be calculated by taking the integral: ROC-AUC =∫ −∞
∞ TPR(T)FPR′(T)dT where T is the threshold parameter. A perfect classifier

has a ROC −AUC value of 1 and a random uninformative classifier has a ROC −

AUC value of 0.5. We calculate the ROC − AUC values using the roc function

from the R package pROC (Robin et al., 2011).

• PR-AUC score: PR-AUC stands for the area under the precision recall curve. The

precision recall (PR) curve is a plot of the precision against the recall (a.k.a. TPR

see above) for confusion matrices of various threshold. Where Precision = TP
TP+FP

(the ratio of correctly classified positives and all predicted positives) and Recall =

TPR = TP
TP+FN

. Plotting the two for various thresholds against each other yields the

PR curve. Again taking the integral PR-AUC =
∫ −∞
∞ Precision(T)Recall′(T)dT . A

perfect classifier will have a PR-AUC value of 1, the PR-AUC value of an uninfor-

mative classifier will depend on the class balance (ratio of observed Positives and

observed Negatives in the data). In our experiment the true PR-AUC is 0.05. Note

that since PR-AUC does not consider true negatives it is not affected by class im-

balances (see Cranmer and Desmarais, 2017). We calculate the PR− AUC values

using the aucPRp function from the Replication Code provided by Cranmer and

Desmarais (2016).

7

B.2 Code for the Experiment
##

Install and load Packages needed to run

##

p_needed <- c("randomForest", "caret","ROCR", "pROC",

"stepPlr", "doMC", "separationplot", "logistf")

packages <- rownames(installed.packages())

p_to_install <- p_needed[!(p_needed %in% packages)]

if (length(p_to_install) > 0) {

install.packages(p_to_install)

}

print(sapply(p_needed, require, character.only = TRUE))

registerDoMC(cores = detectCores()-1)

source("AUC_PR.R")

confMat <- function(threshold = 0.5, pred, obs){

if(class(obs)=="factor") obs <- as.numeric(obs)-1

uMat <- matrix(threshold,length(obs),length(threshold),byrow=T)

preds <- c(pred)-uMat > 0

TP <- t(obs)%*%preds

FP <- t(1-obs)%*%preds

TN <- t(1-obs)%*%(1-preds)

FN <- t(obs)%*%(1-preds)

cmMat <- cbind(c(TP),c(FP),c(TN),c(FN))

colnames(cmMat) <- c("tp","fp","tn","fn")

cmMat <- data.frame(cmMat)

#

return(cmMat)

}

##

Experiments

##

set.seed(20180503)

prob1 indicates the distribution of 1s in the dependent variable

prob1 <- 0.05

Generate uncorrelated experiment data

y <- rbinom(2000, 1, prob1)

x <- list(NULL)

for(i in 1:90){

x[[i]] <- rnorm(2000)

}

8

X <- do.call(cbind, x)

df <- data.frame(y, X)

df$y <- as.factor(y)

levels(df$y) <- c("Negative", "Positive")

Split into training and test data

sel <- sample(nrow(df), floor(0.25* nrow(df)))

test_data <- df[sel,]

training_data <- df[-sel,]

Create folds for 10-fold cross-validation

nrFolds <- 10

We use stratified cross-validation (to have similar distributions of 1s and 0s)

folds <- rep(NA, nrow(training_data))

folds[training_data[,1]=="Negative"] <-

rep_len(1:nrFolds,

sum(training_data[,1]=="Negative"))[sample(sum(training_data[,1]=="Negative"),

sum(training_data[,1]=="Negative"))]

folds[training_data[,1]=="Positive"] <-

rep_len(1:nrFolds,

sum(training_data[,1]=="Positive"))[sample(sum(training_data[,1]=="Positive"),

sum(training_data[,1]=="Positive"))]

####################

Section 3 Experiments

####################

Experiment 1

res <- NULL

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

rf1 <- randomForest(y~., data = training_data, ntree = 1000)

predictions <- predict(rf1, newdata = test_data, type = "prob")

confusion <- confMat(pred = predictions[,2], obs = test_data$y)

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(test_data$y, predictions[,2])$auc)

9

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(test_data[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

res <- rbind(res, data.frame(Model = "Procedure 1",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

Experiment 2

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

actual cross validation

for(k in 1:nrFolds) {

actual split of the data

fold <- which(folds == k)

cv_training <- training_data[-fold,]

cv_test <- training_data[fold,]

rf_cv <- randomForest(y~., data = cv_training, ntree = 1000)

predictions <- predict(rf_cv, newdata = cv_test ,type = "prob")

confusion <- confMat(pred = predictions[,2], obs = cv_test$y)

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(cv_test$y, predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(cv_test[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

}

res <- rbind(res, data.frame(Model = "Procedure 2",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

Experiment 3 - CV and down-sampling correctly done

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

actual cross validation

for(k in 1:nrFolds) {

actual split of the data

fold <- which(folds == k)

10

cv_training <- training_data[-fold,]

cv_test <- training_data[fold,]

rf_cv <- randomForest(y~., data = cv_training, ntree = 1000,

sampsize = c(sum(cv_training$y=="Positive"),

sum(cv_training$y=="Positive")))

predictions <- predict(rf_cv, newdata = cv_test ,type = "prob")

confusion <- confMat(pred = predictions[,2], obs = cv_test$y)

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(cv_test$y, predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(cv_test[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

}

res <- rbind(res, data.frame(Model = "Procedure 3",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

Experiment 4 - CV and down-sampling wrongly done

Downsample data prior to cross-validation

sel1 <- sample(nrow(training_data[training_data$y=="Positive",]),

sum(training_data$y=="Positive"))

sel0 <- sample(nrow(training_data[training_data$y=="Negative",]),

sum(training_data$y=="Positive"))

ds_training_data <- rbind(training_data[training_data$y=="Positive",][sel1,],

training_data[training_data$y=="Negative",][sel0,])

Stratified cross-validation folds for down-sampled data

ds_folds <- rep(NA, nrow(ds_training_data))

ds_folds[ds_training_data[,1]=="Negative"] <- rep_len(1:nrFolds,

sum(ds_training_data[,1]=="Negative"))[sample(sum(ds_training_data[,1]=="Negative"),

sum(ds_training_data[,1]=="Negative"))]

ds_folds[ds_training_data[,1]=="Positive"] <- rep_len(1:nrFolds,

sum(ds_training_data[,1]=="Positive"))[sample(sum(ds_training_data[,1]=="Positive"),

sum(ds_training_data[,1]=="Positive"))]

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

actual cross validation

for(k in 1:nrFolds) {

11

actual split of the data

fold <- which(ds_folds == k)

cv_training <- ds_training_data[-fold,]

cv_test <- ds_training_data[fold,]

rf_cv <- randomForest(y~., data = cv_training, ntree = 1000,

sampsize = c(sum(cv_training$y=="Positive"),

sum(cv_training$y=="Positive")))

predictions <- predict(rf_cv, newdata = cv_test ,type = "prob")

confusion <- confMat(pred = predictions[,2], obs = cv_test$y)

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(cv_test$y, predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(cv_test[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

}

res <- rbind(res, data.frame(Model = "Procedure 4",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

Procedure 5 weird MSHK apparent error

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

tc <- trainControl(method="cv",

number=10,#creates CV folds - 10 for this data

summaryFunction=twoClassSummary, # provides ROC summary stats in call to model

classProb=T)

caret_rf <- train(y~.,

metric = "ROC", method = "rf",

ntree = 1000,

sampsize=c(sum(cv_training$y=="Positive"),

sum(cv_training$y=="Positive")),

trControl = tc, data = training_data)

predictions <- predict(caret_rf, type = "prob")

confusion <- confMat(pred = predictions[,2], obs = training_data$y)

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(training_data$y, predictions[,2])$auc)

12

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(training_data[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

res <- rbind(res, data.frame(Model = "Procedure 5",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

Procedure 6 weird MSHK oos error

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

predictions <- predict(caret_rf, test_data, type = "prob")

confusion <- confMat(pred = predictions[,2], obs = test_data$y)

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(test_data$y, predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(test_data[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

res <- rbind(res, data.frame(Model = "Procedure 6",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

######

Section 4 Re-analysis of MSHK

######

set.seed(20180503)

setwd("~/Dropbox/4_PhD/4_PhD_Papers/pa-letter-civil-war/Revision 1/Misc/code/mn/experiment")

data <- read.csv(file = "SambnisImp.csv")

df <- data[,c("warstds", "ager", "agexp", "anoc", "army85", "autch98", "auto4",

"autonomy", "avgnabo", "centpol3", "coldwar", "decade1", "decade2",

"decade3", "decade4", "dem", "dem4", "demch98", "dlang", "drel",

"durable", "ef", "ef2", "ehet", "elfo", "elfo2", "etdo4590",

"expgdp", "exrec", "fedpol3", "fuelexp", "gdpgrowth", "geo1", "geo2",

"geo34", "geo57", "geo69", "geo8", "illiteracy", "incumb", "infant",

"inst", "inst3", "life", "lmtnest", "ln_gdpen", "lpopns", "major",

"manuexp", "milper", "mirps0", "mirps1", "mirps2", "mirps3", "nat_war", "ncontig",

13

"nmgdp", "nmdp4_alt", "numlang", "nwstate", "oil", "p4mchg",

"parcomp", "parreg", "part", "partfree", "plural", "plurrel",

"pol4", "pol4m", "pol4sq", "polch98", "polcomp", "popdense",

"presi", "pri", "proxregc", "ptime", "reg", "regd4_alt", "relfrac",

"seceduc","second", "semipol3", "sip2", "sxpnew", "sxpsq",

"tnatwar", "trade", "warhist", "xconst")]

Converting DV into Factor with names for Caret Library

df$warstds<-factor(

df$warstds,

levels=c(0,1),

labels=c("peace", "war"))

training_df <- df[data$year < 1990,]

test_df <- df[data$year >= 1990,]

Create folds for 10-fold cross-validation

nrFolds <- 10

We use stratified cross-validation (to have similar distributions of 1s and 0s)

folds <- rep(NA, nrow(training_df))

folds[training_df[,1]=="peace"] <-

rep_len(1:nrFolds,

sum(training_df[,1]=="peace"))[sample(sum(training_df[,1]=="peace"),

sum(training_df[,1]=="peace"))]

folds[training_df[,1]=="war"] <-

rep_len(1:nrFolds,

sum(training_df[,1]=="war"))[sample(sum(training_df[,1]=="war"),

sum(training_df[,1]=="war"))]

Procedure 1

res_re <- NULL

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

rf1 <- randomForest(warstds~., data = training_df, ntree = 1000)

rf1

predictions <- predict(rf1, newdata = test_df, type = "prob")

confusion <- confMat(pred = predictions[,2], obs = test_df$warstds)

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(test_df$warstds, predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

14

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(test_df[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

res_re <- rbind(res_re, data.frame(Model = "Procedure 1",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

Procedure 2

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

actual cross validation

for(k in 1:nrFolds) {

actual split of the data

fold <- which(folds == k)

cv_training <- training_df[-fold,]

cv_test <- training_df[fold,]

rf_cv <- randomForest(warstds~., data = cv_training, ntree = 1000)

predictions <- predict(rf_cv, newdata = cv_test ,type = "prob")

confusion <- confMat(pred = predictions[,2], obs = cv_test$warstds)

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(cv_test$warstds, predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(cv_test[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

}

res_re <- rbind(res_re, data.frame(Model = "Procedure 2",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

Experiment 3 - CV and down-sampling correctly done

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

actual cross validation

for(k in 1:nrFolds) {

actual split of the data

fold <- which(folds == k)

cv_training <- training_df[-fold,]

cv_test <- training_df[fold,]

15

rf_cv <- randomForest(warstds~., data = cv_training, ntree = 1000,

sampsize = c(sum(cv_training[,1]=="war"),

sum(cv_training[,1]=="war")))

predictions <- predict(rf_cv, newdata = cv_test, type = "prob")

confusion <- confMat(pred = predictions[,2], obs = cv_test[,1])

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(cv_test[,1], predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(cv_test[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

}

res_re <- rbind(res_re, data.frame(Model = "Procedure 3",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

Experiment 4 - CV and down-sampling wrongly done

Downsample data prior to cross-validation

sel1 <- sample(nrow(training_df[training_df[,1]=="war",]),

sum(training_df[,1]=="war"))

sel0 <- sample(nrow(training_df[training_df[,1]=="peace",]),

sum(training_df[,1]=="war"))

ds_training_data <- rbind(training_df[training_df[,1]=="war",][sel1,],

training_df[training_df[,1]=="peace",][sel0,])

Stratified cross-validation folds for down-sampled data

ds_folds <- rep(NA, nrow(ds_training_data))

ds_folds[ds_training_data[,1]=="peace"] <- rep_len(1:nrFolds,

sum(ds_training_data[,1]=="peace"))[sample(sum(ds_training_data[,1]=="peace"),

sum(ds_training_data[,1]=="peace"))]

ds_folds[ds_training_data[,1]=="war"] <- rep_len(1:nrFolds,

sum(ds_training_data[,1]=="war"))[sample(sum(ds_training_data[,1]=="war"),

sum(ds_training_data[,1]=="war"))]

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

actual cross validation

for(k in 1:nrFolds) {

actual split of the data

fold <- which(ds_folds == k)

16

cv_training <- ds_training_data[-fold,]

cv_test <- ds_training_data[fold,]

rf_cv <- randomForest(warstds~., data = cv_training, ntree = 1000,

sampsize = c(sum(cv_training[,1]=="war"),

sum(cv_training[,1]=="war")))

predictions <- predict(rf_cv, newdata = cv_test ,type = "prob")

confusion <- confMat(pred = predictions[,2], obs = cv_test[,1])

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(cv_test[,1], predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(cv_test[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

}

res_re <- rbind(res_re, data.frame(Model = "Procedure 4",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

Procedure 5 weird MSHK apparent error

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

Original Code by MSHK just changing data.full to training_df

tc <- trainControl(method="cv",

number=10,#creates CV folds - 10 for this data

summaryFunction=twoClassSummary, # provides ROC summary stats in call to model

classProb=T)

model.rf<-train(as.factor(warstds)~.,

metric="ROC", method="rf",

sampsize=c(floor(0.0043*sum(training_df[,1]=="peace")),

floor(0.78*sum(training_df[,1]=="war"))), #Downsampling the class-imbalanced DV

importance=T, # Variable importance measures retained

proximity=F, ntree=1000, # number of trees grown

trControl=tc, data=training_df)

predictions <- predict(model.rf, type = "prob")

confusion <- confMat(pred = predictions[,2], obs = training_df[,1])

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

17

tmp_ROCAUC <- as.numeric(roc(training_df[,1], predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(training_df[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

res_re <- rbind(res_re, data.frame(Model = "Procedure 5",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

Procedure 6 weird MSHK oos error

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

predictions <- predict(model.rf, test_df, type = "prob")

confusion <- confMat(pred = predictions[,2], obs = test_df[,1])

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(test_df[,1], predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(test_df[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

res_re <- rbind(res_re, data.frame(Model = "Procedure 6",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

18

C Problematic Cross-Validation in Muchlinski et al.

(2016)

C.1 Description of data set used in Muchlinski et al. (2016)

Muchlinski et al. (2016) use a data set that is based on the data set provided by Hegre and

Sambanis (2006). The dependent variable civil war onset is a binary measure of whether

a civil war onset occurred for a given country in a given year1. The data set includes

7, 140 observations and a rich set of variables (while the original data set contains more

variables, Muchlinski et al. (2016) use 90 of them).

C.2 Re-analysis of Muchlinski et al. (2016)

For our re-analysis, we split the data set into two parts. The training set contains all

observations from 1945 to 1989, and the test data set all observations from 1990 to 2000.

This is a natural split into training and test set for time series data. The training set

contains 5, 299 observations, with 88 civil war onsets (0.017% civil war onsets). The test

data set contains 1841 observations, with 28 civil war onsets (0.015% civil war onsets).

We mirror the experimental strategy used in section three of the paper, using the same

six procedures as before. For each of the procedures, we calculate the same performance

measures as before (F1 score, ROC-AUC, PR-AUC).

• Procedure 1: For Procedure 1, we train a default random forest (with mtry set to

9 and the number of trees to 1, 000) without parameter tuning on the training set

and report the performance on the test set.
1In the replication dataset (Muchlinski, 2015) provided by Muchlinski et al. (2016) the ratio of 1s

(civil war onsets) and 0s (peace) is about 1:100. This class imbalance complicates the prediction.

19

• Procedure 2: For Procedure 2, we train a default random forest model without

parameter tuning on the training set, but this time using 10-fold cross-validation.

We then use the average across all 10 test folds to obtain the true error.

• Procedure 3: for Procedure 3, we combine 10-fold cross-validation and down-

sampling correctly. This means we first split the entire data set into 10 folds,

and then only down-sample the folds used for training while not touching the test

folds.

• Procedure 4: for Procedure 4, we combine 10-fold cross-validation and down-

sampling wrongly. This means we first down-sample the data set prior to the

cross-validation, resulting in balanced training and test folds

• Procedure 5: for Procedure 5, we follow the exact modeling procedure of Muchlinski

et al. (2016). This is, we combine down-sampling and parameter tuning in a single

cross-validation and report the apparent error scores of the best model. The best

model means the model with the mtry value with the smallest cross-validation error

(in the case of Muchlinski et al. (2016), the model with mtry = 2 gives the minimal

cross-validation error). This model was then used to predict the outcomes of the

training data, which results in reporting the apparent error.

• Procedure 6: for Procedure 6, we use the model from procedure 5 and use it for

an out-of-sample prediction on the test set. Because out-of-sample prediction gives

a close approximation of the true error, we observe that the model performance in

terms of PR-AUC drops from 0.43 in procedure 5 to only 0.07 in Procedure 6.

In Muchlinski et al. (2016), the authors report a ROC-AUC of 0.91 (page 96 in the

original paper) obtained by the exact same procedure as outlined in Procedure 5 above.

This means they train a random forest model with 10-fold cross-validation on the complete

data set, where they use cross-validation to tune the value of mtry. The model with the

best tuning parameter (i.e. the value of mtry that gives the minimum error across all

20

folds of the cross-validation procedure) is then used to predict the same data set that was

used in the training process.
library(caret)

set.seed(666) #the most metal seed for CV

#This method of data slicing - or CV - will be used for all logit models - uncorrected and corrected

tc<-trainControl(method="cv",

number=10,#creates CV folds - 10 for this data

summaryFunction=twoClassSummary, # provides ROC summary stats in call to model

classProb=T)

###Implementing RF (with CV) on entirety of data###

model.rf<-train(as.factor(warstds)~.,

metric="ROC", method="rf",

sampsize=c(30,90), #Downsampling the class-imbalanced DV

importance=T, # Variable importance measures retained

proximity=F, ntree=1000, # number of trees grown

trControl=tc, data=data.full)

model.rf$finalModel

library(ROCR)

attach(data.full) #have to attach the data to get probs for some reason

RF.1.pred<-predict(model.rf, data.full$warstds, type="prob")

pred.RF.1<-prediction(RF.1.pred$war, data$warstds)

perf.RF.1<-performance(pred.RF.1, "tpr", "fpr")

plot(perf.RF.1, add=T, lty=4)

They train the random forest model2 with the R package caret (from Jed Wing et al.,

2017). In the trainControl function they specify that 10-fold cross-validation should

be applied. By default caret uses cross-validation in combination with random forests

to tune the mtry parameter. In the call of the train function they furthermore down-

sample their data. To get their ROC-AUC value they then call predict on the caret

object model.rf . They do not specify a new data set. caret by default predicts (i.e.

when no new data is specified) predicted probabilities for the training data3, thus this

can only be used to get the apparent error of a model.

Muchlinski et al. (2016), thus, report the apparent error of their model as expressed by
2Note that this is a different random forest model than the one they use for “out-of-sample prediction”

below.
3This behavior of predict.caret is very different of the default behavior predict.randomForest ,

see below.

21

their ROC-AUC score, although they claim to report “cross-validated” scores (see footnote

7 in the original paper).

In short, Muchlinski et al. (2016) first train and optimize their model on the CWD, and

then use the optimized model to predict the same data. This results in a serious misreport

of model performance, because the random forest model actually just memorizes the

pattern in the training data (a.k.a. overfitting).

C.3 Reporting random probabilities as out-of-sample predictions

Muchlinski et al. (2016) report that they trained their random forest model on a data

set with observations from 19452000, and then updated this data set for all countries

in Africa and the Middle East for the years 2001-2014, giving them 737 out-of-sample

observations. Muchlinski et al. (2016) conclude that their random forest model correctly

predicts nine out of twenty civil war onsets in their new out-of-sample data. This conclu-

sion is prominently cited (see Cederman and Weidmann, 2017; Cranmer and Desmarais,

2017; Colaresi and Mahmood, 2017). They further report a table (Table 1 page 98 in the

original article) with the predicted probabilities of civil war onsets in the out-of-sample

data set.

However, we are unable to replicate these results. First, the data set used for the out-of-

sample predictions (i.e. 2001-2014) contains fewer variables than the training data. With

this data set it is, thus, not possible to obtain out-of-sample predictions. Second, our

analysis of the replication code shows that Muchlinski et al. (2016) randomly draw 737

probabilities from the in-sample predictions and merge them to out-of-sample observa-

tions of civil war onset. The authors then compare those random probabilities with the

true values of the out-of-sample-data. The corresponding author was not able to provide

additional data or code to clear this up. In the following, we elaborate on these two

points, and show the original replication code provided by Muchlinski (2015).

22

C.3.1 Incomplete out-of-sample data

We only could identify the main dependent variable (warstds), one ID variable (year ,

but no country ID variable), and eight predictors. These predictors do not have names

of variables which were used in the training. Strict out-of-sample prediction is thus not

possible with the provided data set.

C.3.2 Reporting random probabilities

The following code is the original code of the replication materials in the data verse. All

comments in the code are the original comments as in Muchlinski (2015).

Here, Muchlinski et al. (2016) train the random forest model on the whole CWD (data.full)

from 1945-2000. They use down-sampling (sampsize =c(30, 90) , the default mtry pa-

rameter
√
90 = 9 and run 1000 trees. The object RF.out contains the trained model.

###Running Random Forest without CV to get OOB Error Rate -

results not shown in paper###

RF.out<-randomForest(as.factor(warstds)~., sampsize=c(30, 90),

importance=T, proximity=F, ntree=1000, confusion=T, err.rate=T, data=data.full)

Then, they use this model (object RF.out) to get out-of-bag predictions on the training

data, that is, use the random forest to predict the probability of civil war onset for all

observations in the training data.
yhat.rf<-predict(RF.out, type="prob") #taken from RF on whole data

###We used original CW data for training data here for all models/algorithms###

Yhat.rf<-as.data.frame(yhat.rf[,2])

By default of predict.randomForest , these are out-of-bag predictions on the training

data, since in the predict command, no new data is specified. Therefore, this returns

7, 140 (the number of observations in the training data) predictions. The object Yhat.rf

contains the predicted probabilities of a civil war onset (the second column of the object

yhat.rf) for the training data.

23

Muchlinski et al. (2016) now take a random sample of 737 values (the number of obser-

vations in the out-of-sample data) from the predicted probabilities of the in-sample data

(from the Yhat.rf object). The corresponding comment in the code does not help to clar-

ify why this is done: Selecting random samples to make pred and actual lengths equal

###Selecting random samples to make pred and actual lengths equal###

set.seed(100)

predictors.rf<-Yhat.rf[sample(nrow(Yhat.rf), 737),]

In the next step, Muchlinski et al. (2016) then compare those random predicted prob-

abilities with the true values of the out-of-sample-data, and obtain a confusion matrix

providing the primary evidence for their conclusion. This confusion matrix compares

true outcomes from out-of-sample observations with predicted probabilities for random

in-sample observations.
library(SDMTools)

confusion.matrix(data3$warstds, predictors.rf, threshold=.5)

To sum up, in our re-analysis we find no evidence for the impressive predictive perfor-

mance of random forest as reported in Muchlinski et al. (2016). Given their misunder-

standing of cross-validation and based on a wrong out-of-sample prediction it is neither

correct to conclude that “Random Forests correctly predicts nine of twenty civil war on-

sets in this out-of-sample data” (Muchlinski et al., 2016, 96) nor that “Random Forests

offers superior predictive power compared to several forms of logistic regression in an

important applied domain – the quantitative analysis of civil war” (Muchlinski et al.,

2016, 101).

24

References
Abadie, A., A. Diamond, and J. Hainmueller (2015). Comparative Politics and the

Synthetic Control Method. American Journal of Political Science 59 (2), 495–510.

Ahlquist, J. S. and E. Wibbels (2012). Riding the Wave: World Trade and Factor-Based
Models of Democratization. American Journal of Political Science 56 (2), 447–464.

Atkeson, L. R., A. N. Adams, and R. M. Alvarez (2014). Nonresponse and Mode Effects
in Self- and Interviewer-Administered Surveys. Political Analysis 22 (3), 304–320.

Beauchamp, N. (2017). Predicting and Interpolating State-Level Polls Using Twitter
Textual Data. American Journal of Political Science 61 (2), 490–503.

Besley, T. and M. Reynal-Querol (2014). The Legacy of Historical Conflict: Evidence
from Africa. American Political Science Review 108 (2), 319–336.

Bisbee, J. and J. M. Larson (2017). Testing social science network theories with on-
line network data: An evaluation of external validity. American Political Science Re-
view 111 (3), 502–521.

Boas, T. C. and F. D. Hidalgo (2011). Controlling the Airwaves: Incumbency Advantage
and Community Radio in Brazil. American Journal of Political Science 55 (4), 869–885.

Bowers, J., M. M. Fredrickson, and C. Panagopoulos (2013). Reasoning about Interference
Between Units: A General Framework. Political Analysis 21 (1), 97–124.

Cantú, F. (2014). Identifying Irregularities in Mexican Local Elections. American Journal
of Political Science 58 (4), 936–951.

Carter, D. B. and C. S. Signorino (2010). Back to the Future: Modeling Time Dependence
in Binary Data. Political Analysis 18 (3), 271–292.

Caughey, D. and J. S. Sekhon (2011). Elections and the Regression Discontinuity Design:
Lessons from Close U.S. House Races, 1942-2008. Political Analysis 19 (4), 385–408.

Caughey, D. and C. Warshaw (2015). Dynamic estimation of latent opinion using a
hierarchical group-level IRT model. Political Analysis 23 (2), 197–211.

Cederman, L.-E. and N. B. Weidmann (2017). Predicting armed conflict: Time to adjust
our expectations? Science (355), 474–476.

Colaresi, M. and Z. Mahmood (2017). Do the robot: Lessons from machine learning to
improve conflict forecasting. Journal of Peace Research 54 (2), 193–214.

Cranmer, S. and B. Desmarais (2016). Replication data for: What can we learn from
predictive modeling? https://doi.org/10.7910/DVN/UFSQ1J, Harvard Dataverse.

Cranmer, S. J. and B. A. Desmarais (2017). What can we Learn from Predictive Model-
ing? Political Analysis 25 (2), 145–166.

Desmarais, B. A. and J. J. Harden (2012). Comparing Partial Likelihood and Robust
Estimation Methods for the Cox Regression Model. Political Analysis 20 (1), 113–135.

25

https://doi.org/10.7910/DVN/UFSQ1J

Desmarais, B. A., R. J. La Raja, and M. S. Kowal (2015). The Fates of Challengers in U.S.
House Elections: The Role of Extended Party Networks in Supporting Candidates and
Shaping Electoral Outcomes. American Journal of Political Science 59 (1), 194–211.

Engstrom, E. J. (2012). The Rise and Decline of Turnout in Congressional Elections:
Electoral Institutions, Competition, and Strategic Mobilization. American Journal of
Political Science 56 (2), 373–386.

Esarey, J. and A. Pierce (2012). Assessing Fit Quality and Testing for Misspecification
in Binary-Dependent Variable Models. Political Analysis 20 (4), 480–500.

Fariss, C. J. (2014). Respect for Human Rights has Improved Over Time: Modeling
the Changing Standard of Accountability. American Political Science Review 108 (2),
297–318.

from Jed Wing, M. K. C., S. Weston, A. Williams, C. Keefer, A. Engelhardt, T. Cooper,
Z. Mayer, B. Kenkel, the R Core Team, M. Benesty, R. Lescarbeau, A. Ziem, L. Scrucca,
Y. Tang, C. Candan, and T. Hunt. (2017). caret: Classification and Regression Train-
ing. R package version 6.0-78.

Ghitza, Y. and A. Gelman (2013). Deep Interactions with MRP: Election Turnout and
Voting Patterns Among Small Electoral Subgroups. American Journal of Political
Science 57 (3), 762–776.

Glynn, A. N. and K. M. Quinn (2011). Why Process Matters for Causal Inference.
Political Analysis 19 (3), 273–286.

Greenhill, B., M. D. Ward, and A. Sacks (2011). The Separation Plot: A New Visual
Method for Evaluating the Fit of Binary Models. American Journal of Political Sci-
ence 55 (4), 991–1003.

Grimmer, J., S. Messing, and S. J. Westwood (2012). How Words and Money Culti-
vate a Personal Vote: The Effect of Legislator Credit Claiming on Constituent Credit
Allocation. American Political Science Review 106 (4), 703–719.

Grimmer, J. and B. M. Stewart (2013). Text as Data: The Promise and Pitfalls of
Automatic Content Analysis Methods for Political Texts. Political Analysis 21 (3),
267–297.

Guess, A. M. (2015). Measure for measure: An experimental test of online political media
exposure. Political Analysis 23 (1), 59–75.

Hainmueller, J. and C. Hazlett (2014). Kernel Regularized Least Squares: Reducing
Misspecification Bias with a Flexible and Interpretable Machine Learning Approach.
Political Analysis 22 (2), 143–168.

Hegre, H. and N. Sambanis (2006). Sensitivity Analysis of Empirical Results on Civil
War Onset. Journal of Conflict Resolution 50 (4), 508–535.

Hill, D. W. and Z. M. Jones (2014). An Empirical Evaluation of Explanations for State
Repression. American Political Science Review 3 (108), 661–687.

26

Hopkins, D. J. and G. King (2010). A Method of Automated Nonparametric Content
Analysis for Social Science. American Journal of Political Science 54 (1), 229–247.

Iacus, S. M., G. King, and G. Porro (2012). Causal Inference without Balance Checking:
Coarsened Exact Matching. Political Analysis 20 (1), 1–24.

Imai, K. and A. Strauss (2011). Estimation of Heterogeneous Treatment Effects from
Randomized Experiments, with Application to the Optimal Planning of the Get-Out-
the-Vote Campaign. Political Analysis 19 (1), 1–19.

Jessee, S. (2016). (How) Can We Estimate the Ideology of Citizens and Political Elites
on the Same Scale? American Journal of Political Science 60 (4), 1108–1124.

Keele, L. (2010). Proportionally Difficult: Testing for Nonproportional Hazards in Cox
Models. Political Analysis 18 (2), 189–205.

Keele, L. and W. Minozzi (2013). How Much Is Minnesota Like Wisconsin? Assumptions
and Counterfactuals in Causal Inference with Observational Data. Political Analy-
sis 21 (2), 193–216.

Keele, L. J. and R. Titiunik (2015). Geographic boundaries as regression discontinuities.
Political Analysis 23 (1), 127–155.

König, T., M. Marbach, and M. Osnabrügge (2013). Estimating Party Positions across
Countries and Time – A Dynamic Latent Variable Model for Manifesto Data. Political
Analysis 21 (4), 468–491.

Lauderdale, B. E. and T. S. Clark (2012). The Supreme Court’s Many Median Justices.
American Political Science Review 106 (4), 847–866.

Montgomery, J. M., F. M. Hollenbach, and M. D. Ward (2012). Improving Predictions
Using Ensemble Bayesian Model Averaging. Political Analysis 20 (3), 271–291.

Montgomery, J. M., S. Olivella, J. D. Potter, and B. F. Crisp (2015). An informed
forensics approach to detecting vote irregularities. Political Analysis 23 (4), 488–505.

Muchlinski, D. (2015). Replication Data for: Comparing Random Forests with Logistic
Regression for Predicting Class-Imbalanced Civil War Onset Data. http://dx.doi.
org/10.7910/DVN/KRKWK8, Harvard Dataverse.

Muchlinski, D., D. Siroky, J. He, and M. Kocher (2016). Comparing Random Forest with
Logistic Regression for Predicting Class-Imbalanced Civil War Onset Data. Political
Analysis 24 (1), 87–103.

Neunhoeffer, M. and S. Sternberg (2018). Replication data for: How cross-validation can
go wrong and what to do about it. https://doi.org/10.7910/DVN/Y9KMJW, Harvard
Dataverse.

Peterson, A. and A. Spirling (2018). Classification Accuracy as a Substantive Quantity
of Interest: Measuring Polarization in Westminster Systems. Political Analysis 26 (1),
120–128.

27

http://dx.doi.org/10.7910/DVN/KRKWK8
http://dx.doi.org/10.7910/DVN/KRKWK8
https://doi.org/10.7910/DVN/Y9KMJW

Rainey, C. (2014). Arguing for a Negligible Effect. American Journal of Political Sci-
ence 58 (4), 1083–1091.

Robin, X., N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, and M. Müller
(2011). pROC: an open-source package for R and S+ to analyze and compare ROC
curves. BMC Bioinformatics 12, 77.

Weber, T. (2011). Exit, Voice, and Cyclicality: A Micrologic of Midterm Effects in
European Parliament Elections. American Journal of Political Science 55 (4), 907–922.

Wilkerson, J., D. Smith, and N. Stramp (2015). Tracing the Flow of Policy Ideas in
Legislatures: A Text Reuse Approach. American Journal of Political Science 59 (4),
943–956.

Xu, Y. (2016). Generalized Synthetic Control Method : Causal Inference with Interactive
Fixed Effects Models. Political Analysis 25 (1), 57–76.

28

	A Cross-Validating Cross-Validation in Political Science
	B Experimental Exploration of Problematic Cross-Validation
	B.1 Three common performance measures
	B.2 Code for the Experiment

	C Problematic Cross-Validation in Muchlinski2016
	C.1 Description of data set used in Muchlinski2016
	C.2 Re-analysis of Muchlinski2016
	C.3 Reporting random probabilities as out-of-sample predictions
	C.3.1 Incomplete out-of-sample data
	C.3.2 Reporting random probabilities

