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A. APPENDIX A: THE CHOICE OF ORDERING

The main paper noted that an ordering of categories must be imposed to use the stick-breaking represen-
tation. The choice of ordering is not discussed in detail in Linderman et al. (2015) (although they note
that their results are similarly robust to order permutations), perhaps because the models estimated do not
parameterize the stick-breaks in a way where the ordering may have more importance. I claimed that the
results of the model for the key quantities of interest (ideal points and the predicted probabilities of responses
as ideal points vary) are fairly invariant to the choice of ordering. Thus, this section provides an analytic
and simulation-based justification for this claim.

First, I show that one can think of the stick-breaking representation as an approximation of the classic
multinomial logistic regression. As the latter does not specify an ordering, the fact that the stick-breaking
representation is an approximation of a representation where order does not matter should give us some
hope that the order chosen is fairly unimportant.

Second, I show that in both the simulated and actual ANES data, the quantities of interest estimated
via the stick-breaking representation are highly insensitive to the ordering chosen. Indeed, I show that any
differences in the ideal points recovered by different orders are generally much smaller than the uncertainty
associated with those estimates and thus, whilst there are limited effects to choosing an ordering, they will
tend to ‘wash out’ compared to other sources of uncertainty. For the ANES data, I compare the point
estimates from the EM algorithm under multiple orderings against the ideal points estimated using gradient
descent on a ‘classic’ multinomial formulation; I show that under all permutations, they are nearly perfectly
correlated.

Third, I discuss some diagnostic tools to examine which ordering performs ‘best’, although they should
be used with caution in conjunction with the EM estimation framework.

Finally, I discuss some extensions to the model above that would further relax the sensitivity of the model
to the choice of ordering.

A.1. Linear Approximations to Softmax Regression

As the classic multinomial version of logistic regression is parameterized via a softmax formulation, I now
derive some results to show that two approximations of this framework coincide with the stick-breaking
formulation above. For notation, the classic way of defining a multinomial outcome in the ideal point
context is as follows:

Pr (yij = k) =
exp(αk

j + γkj xi)∑Kj

l=1 exp(αl
j + βl

jxi)

Given some arbitrary ordering Oj , we can write the stick-break for some category k as follows (the sum
now ranges from k to Kj rather than from 1 to Kj):

∗Code to implement the models in the paper, and the mIRT more generally, can be found at http://dx.doi.org/10.7910/DVN/
LD0ITE
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Pr (yij = k|yij ≥ k) =
exp(αk

j + γkj xi)∑Kj

l=k exp(αl
j + γljxi)

With some re-arrangement, we can write this as:

Pr (yij = k|yij ≥ k) =
exp

(
αk
j + γkj xi − ln(

∑Kj

l=k+1 exp(αl
j + γlj))xi)

)
1 + exp

(
αk
j + γkj xi − ln(

∑Kj

l=k+1 exp(αl
j + γljxi))

)
The stick-breaking representation can thus be seen as approximating the complicated term inside the

exponential with an affine function of xi that hopefully captures much of the salient information. I show
that two common functional approximations return this linear form. For clarity, I focus on the unidimensional
models. First, consider a way of bounding the log-sum-of-exponentials:

max{αl
j + γljxi}

Kj

l=k+1 ≤ ln

 Kj∑
l=k+1

exp
(
αl
j + γljxi

) ≤ max{αl
j + γljxi}

Kj

l=k+1 + log(#terms)

This states that the log-sum-of-exponentials is bounded below by the largest term in the summation
and above by the largest term plus the log of the number of terms in the summation, i.e. the number of
categories that are after k in the ordering. As most questions rely on fairly small numbers of categories (e.g.
a seven-point scale), this bound is thus quite tight in most actual applications. Thus, if it is the case that

there is a unique maximum, i.e. maxαl
j + γljxi

Kj

l=k+1
= α∗j +γ∗j xi for all xi or all xi in the space that contains

the estimated ideal points, then the linear approximation is quite good as the multinomial softmax can be
tightly approximated in terms of stick-breaks as the following:

Pr (yij = k|yij ≥ k) ≈
exp(αk

j − α∗j + (γkj − γ∗j )xi)

1 + exp(αk
j − α∗j + (γkj − γ∗j )xi)

With this approximation, it is clear that the stick-breaking formulation shown above recovers a model
of this form where κkj = αk

j − α∗j and βk
j = γkj − γ∗j . As this approximation requires the maximum of the

constituent terms of the log-sum being constant or approximately so (and, indeed, knowing the ordering that
makes this hold), a different and more flexible approximation relies on a Taylor expansion of the log-sum-
of-exponentials. Calculating the expansion around xi = 0 yields:1

ln

 Kj∑
l=k+1

exp
(
αl
j + γljxi

) ≈ ln

 Kj∑
l=k+1

exp(αl
j)

+ xi

∑Kj

l=k+1 γ
l
j exp(αl

j)∑Kj

l=k+1 exp(αl
j)

By a similar argument to above, we see that the stick-breaking representation can be thought of as
encoding a first order approximation to the classic multinomial representation.

A.2. Simulations on Differing Orderings

Given an analytic justification for why the ordering of the stick-breaking representation may not be especially
important, it is important to test this in practice with simulated data.2 I return to the simulated data in
the main text and re-run the model ten times for each set of simulated parameters with different random
ordering of the categories for each question. To provide some visual evidence, Figure 1 reports the correlation

1As the priors on xi ensure that the resulting distribution is anchored around 0, this seems to be a reasonable value around
which to calculate the expansion.

2In the following empirical analysis on the American National Election Study, I also report the results of varying the ordering
to show that the near equivalence of results in response to changing orders is not merely an artifact of my ‘nice’ simulated data.
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between one permutation and the original estimates shown above. We see they are highly correlated across
all M (maximum number of response categories). We also see that the differences that do exist are quite
small and would be washed out by taking into account the uncertainty inherent in each estimated ideal point.
Across all permutations, the lowest correlation between any permuted set of labels and the truth is 0.925;
the lowest correlation between any set of estimates is 0.99!

Figure 1: Re-Ordering Multinomial Data

NB : Each panel indicates the M , i.e. that each question j is sampled from Kj ∈ {2, · · ·M}.

At the suggestion of a helpful reviewer, I also ran a test using a deliberately bad ordering; specifically,
assume that we can order the choices based on where the modes of their predicted probabilities are. Call
this the ‘true’ ordering Tj . I create a bad ordering Bj by placing the median item in Tj as the first item
in Bj ; the item in position two in Bj is the first item in Tj ; the item in position three in Bj is the last
item in Tj . I continue this ‘zipper’ type relationship to build an ordering that is very far from the true one
implied by the model. The results from this bad ordering are shown below in Figure 2. The y-axis shows
the maximum number of choices permissible. The x-axis shows the correlation with the truth. The ‘true’
ordering is shown in blue; the random permutations are in black; the ‘bad’ permutation is in red. We see
that using the correct ordering typically has a higher correlation with the truth, but that the bad order is
not systematically below the (still very high) correlation with random permutations. It’s important to note
these differences are slight; the correlations between any ordering and the truth never falls below 0.925.

A.3. Analysis of the ANES

Turning to actual data, I show that the same properties of invariance of the quantities of interest hold
when using ‘messier’ real data. Specifically, I re-run the model where I ‘insert’ the non-response response
in different places in the question ordering: I do this where I include it in the first, second, third, fourth,
fifth, and last positions.3 The ideal points are nearly identical across all models; even including when they
are placed first and thus required to have a monotonic effect, the smallest pairwise correlation between the

3If there are fewer than five responses, I put it as the last position.
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Figure 2: Re-Ordering Multinomial Data with a ‘Bad’ Ordering
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estimates is above 0.999. Despite some differences between some of the ideal points at the extremes, this
should give us confidence that the procedure is robust to the ordering imposed on the multinomial outcomes.
It is also clear that when looking at the uncertainty attached to any of these ideal points, that will dwarf
the variability that comes from scaling the questions using a different implied ordering.

I then replicated Figures 5 (‘Predicted Probabilities for Moral Questions’) and 6 (‘Probability of Non-
Response’) from the main paper using the permuted orderings. We see that, whilst there are some differences
in the posterior means as indicated by the solid lines, the intervals mostly overlap especially in the region
where most ideal points are located. To the extent we see differences that are distinguishable from variability
in the quantities of interest, they mostly occur in the tails of the distribution. It is also interesting to note
that for categories with relatively large numbers of outcomes (i.e. the categories in the ‘often prayer’ and
‘same sex marriage’ question), the differences between the orderings are very small indeed.

Finally, I also used gradient descent in Python to estimate a model based on the classic multinomial
formulation (softmax) noted above. In this framework, it is not easy to impute missing data and thus I run
the model based only on the observed responses. Figure 6 shows the scatterplot between the preferred mIRT

method (i.e. ‘don’t know’ being position last), the classic multinomial point estimates, and factor analysis.
Visually, we see that both methods for scaling multinomial data return highly correlated responses with

the correlation between the classic multinomial and the mIRT being 0.989! We also see that this does not
depend on the ordering as the smallest entry in Table 1 is 0.988. My sense is that the differences that
arise are also partially driven by the lack of imputation in the classic multinomial framework estimated via
gradient descent.

This is hopeful decisive proof that, at least for the ANES data, using the stick-breaking approximation
returns (a) nearly identical ideal points to that from using a classic multinomial formulation and (b) returns
the correct results regardless of where the ‘don’t know’ is inserted into the ordering.

4



Figure 3: Re-Ordering ANES: Same Sex Marriage
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Table 1: Correlation of Ideal Points with Re-Ordering and Classic Multinomial

0 1 2 3 4 5 Classic Multinomial
0 1.000 0.993 0.998 0.998 0.998 0.999 0.989
1 0.993 1.000 0.998 0.997 0.996 0.996 0.988
2 0.998 0.998 1.000 1.000 0.999 0.999 0.990
3 0.998 0.997 1.000 1.000 1.000 1.000 0.990
4 0.998 0.996 0.999 1.000 1.000 1.000 0.991
5 0.999 0.996 0.999 1.000 1.000 1.000 0.991

Classic Multinomial 0.989 0.988 0.990 0.990 0.991 0.991 1.000

A.4. Model Selection Based on Orderings

One possible strategy for deal with choosing an ordering is to run the model with a number of different
orderings and then select the one that has the best model fit. There are many different ways to examining
model fit in a Bayesian context, see Gelman et al. (2013) for a detailed discussion. One simple approach that
could be done using the quantities returned by the EM estimation framework is to use those estimates of the
posterior model and calculate the associated log-likelihood of the data. As the number of free parameters is
constant in the model, this can be seen as roughly analogous to using an AIC or BIC selection rule insofar as
the penalty term is constant and thus the variation in fit is driven solely by the log-likelhood. As there are
good objections to the AIC and BIC in a Bayesian context (Gelman et al., 2013), one could also estimate
other criteria, e.g. the WAIC (Watanabe, 2010) or Pareto Smoothing Importance Sampling (Vehtari et al.,
2017), to engage in model selection. Note, however, that these methods require a sample from the posterior
and thus one would need to use the Gibbs Sampler implementation to evaluate the orderings using this
metric. A combination approach, that I use later to generate estimate of uncertainty, would take the EM
point estimates of the posterior mode as starting values for a Gibbs Sampler to hopefully achieve fairly rapid
convergence even with large datasets.

Another potential downside of relying on the EM point estimates is that even when the model is run
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Figure 4: Re-Ordering ANES: Prayer
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for a long period of time (e.g. until all parameters correlate with their previous iteration at 1 − 10−6), the
values of the AIC and BIC appear reasonably sensitive to different initializations and stopping rules. This
is perhaps because given a large amount of data, slight differences in the point estimates (and the lack of an
inherent underlying scale of the ideal point model) might translate into reasonably different log-likelihoods.
However, to show that this approach is at least roughly on the correct track, Figure 7 plots the log-likelihood
evaluated at the posterior mode against the correlation between the estimated ideal points and the truth for
the ten permutations run above.

We see that whilst there are differences in the log-likelihood values, these are both comparably small
relative to the overall magnitude of the log-likelihood as well as corresponding to very small changes in the
correlation between the estimated ideal points and the truth. It is important to note, however, that the
‘correct’ ordering does have both the highest correlation with the truth and the highest log-likelihood.

Given the sensitivity of the value of the log-likelihood when using the plug-in method from the EM
algorithm, my tentative advice to researchers would be to try to impose a sensible ordering based on prior
knowledge as well as ensuring the option in the first category can be assumed to be monotonic based on prior
knowledge about the latent scale. If concerns about the ordering are especially salient, using the model with
different orderings and then using a Gibbs Sampler to allow a proper estimation of model fit (rather than
relying on the point estimates used in the discussion above) is probably a safer approach. However, as all of
the results in this section suggest that, in practice, the ordering does not matter too much and thus picking a
plausible ordering and checking that the results are stable to some number of random permutations is likely
also a sensible way to proceed.

A.5. Further Ways to Relax The Functional Form Assumption

This section briefly outlines two further ways to relax the functional form assumption. First, one could rely
on a quadratic link function in terms of the ideal points: In the notation above, ψn

ij = κnj + βn
j xi + νnj x

2
i .

This would correspond to a second-order approximation to the log-sum-exponential and thus may have
better correspondence with that model. As the E-step remains materially unchanged, the only further

6



Figure 5: Re-Ordering ANES: ‘Non-Response’
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Figure 6: ANES: mIRT vs Classic Multinomial

challenge of including a quadratic link function is that the M -step may become more complicated. As this
simply involves finding the roots of a polynomial equation, however, this can be done quickly using standard
statistical software and still allows for an exact EM implementation. It may however lead to complications in
the xi updates for a Gibbs Sampler, but one could then rely on a ‘Metropolis-in-Gibbs’ or some alternative
framework for those updates.
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Figure 7: Comparison of Orderings
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NB : Each panel indicates the M , i.e. that each question j is sampled from Kj ∈ {2, · · ·M}.

A different tact to relaxing the functional form assumption, as well as the particular form of IIA imposed
above, would be to implement the IRT equivalent of a ‘mixed logistic regression’. In the classic formulation,
this is an attempt to relax IIA by introduce a random error term to each choice level, i.e. εnij , where the ε
are allowed to be correlated as they are assumed to come from a multivariate normal distribution with an
unconstrained correlation matrix. This could be thought of as a particular type of random effect for each i-j
combination that induces dependence between the outcome categories and thus increases the flexibility of
the model. It can be shown in a regression context that a particular formulation of ε leads to the multinomial
logistic regression approximating the multinomial probit (Train, 1998; McFadden and Train, 2000) and thus
a similar insight may apply here. This would likely require a more complicated E and M step and thus is
outside of the paper to derive directly, but it is an interesting question for future research.
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B. APPENDIX B: IDENTIFICATION

As Rivers (2003) notes, identification in ideal point models turns on the concept of ‘observational equivalence’.
To define the concept briefly, assume the true parameter values are θ = (κn

j ,β
n
j ,xi) and that these are

recovered from the Bayesian or EM approach. Identification means that there must not be some other θ′

that is observationally equivalent, i.e. that the likelihood function or posterior distribution is identical for
all observations for events that occur with non-zero probability. A model is said to be ‘locally identified’
if and only if there is some neighbourhood N around the proposed solution θ such that no other θ′ in said
neighbourhood is observationally equivalent to θ. Rivers (2003) provides a more extensive discussion.

For my purposes, it is sufficient to note that Rivers’s proof (or others) of the restrictions necessary to
identify binary ideal point models can be applied without modification to the mIRT’s core multinomial model.
Recall that the stick-breaking representation says that for some bill j and MP i, their decision can be thought
of as making Kj − 1 binary choices, e.g. Pr (yij = 1), Pr (yij = 2|yij 6= 1), etc., that are independent. i’s
revealed outcome yij = n is thus a deterministic function of those stick-breaking binary choices, e.g. reveal
2 if the first binary choice is ‘no’ and the second binary choice is ‘yes’. Given this view of the model, it
fits exactly into the data generating process discussed by Rivers (2003), i.e. a series of binary choices that
are independent with the linear two parameter (κ, β) specification. Thus, his proof of multidimensional
identification (or others) is sufficient for identification in the mIRT.

C. APPENDIX C: DERIVATION OF DYNAMIC IDEAL POINT MODELS

Recall from before that g denotes individuals and i denotes individuals-in-particular Congresses, e.g. x
(g)
i is

John Kerry in a particular Congress. This model changes the independent normal priors on xi to a normal

prior that has mean x
(g)
i−1 and variance ∆. I derive results here for the binary case for expositional simplicity;

the multinomial case is derived analogously. The Q function now sums over g, i, and j and becomes,
suppressing the notation of constants and unrelated priors. Further, to avoid unbearable notational clutter,
I suppress the indexing of the parameters by iteration t.

Q(θ, θ(t−1)) ∝
∑
g

∑
i

∑
j

(yij − 1/2)ψij − ω∗ijψ2
ij/2−

1

2∆
(x

(g)
i − x

(g)
i−1)2; ω∗ij = E

[
ωij |yij , θ(t−1)

]
The E-step is unchanged as the prior does not affect this calculation. The M -step for the x

(g)
i is the

only different step; I focus on the one-dimensional case. To begin, we note that the posterior of p(x(g)|−) is
multivariate normal given the Pólya-Gamma augmentation variables. If this was an MCMC approach, we
could thus rely on the standard Kalman filtering and smoothing to sample from the full conditional. For
our purposes, however, we can simply find the means of the multivariate normal x(g)|− and this is the EM

update. We note that this will occur where the partial derivative of Q equal zero for all x
(g)
i . Define f as

the first period and l as the last period where unit g appears. Note that the prior on x
(g)
f ∼ N(µ

(g)
0 ,∆

(g)
0 )

Let us focus on some unit g. Define B
(g)
i =

∑
j βj(yij − 1/2− ω∗ijκ) and O

(g)
i =

∑
j ω
∗
ijβ

2
j . For all i > f ,

i.e. all but the initial period, I also add Σ−1x to O
(g)
i to add an additional degree of regularization. This

also means that as ∆→∞, all periods still have the stabilizing effect of the prior in the basic mIRT. I have
found from experience on the SCOTUS data that this random walk bridging is unstable and thus needs
extra regularization to stabilize the model. This is especially true in cases where the i may have relatively
few votes. If their ideal point is unstably estimated and the pooling effect from adjacent periods is weird,
this seems to disrupt their entire ideal point sequence.

∂Q

∂x
(g)
f

= B
(g)
f −O(g)

f x
(g)
f +

1

∆
(x

(g)
f+1 − x

(g)
f )− 1

∆0
(x

(g)
f − µ

(g)
0 )

∂Q

∂x
(g)
i

= B
(g)
i −O(g)

i x
(g)
i +

1

∆
(x

(g)
i+1 − x

(g)
i )− 1

∆
(x

(g)
i − x

(g)
i−1)
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∂Q

∂x
(g)
l

= B
(g)
l −O(g)

l x
(g)
l −

1

∆
(x

(g)
l − x

(g)
l−1)

The set of x(g) that set all of these equations equal to zero thus is the M -update. There are many ways
to solve this. Given the relatively short duration of the time series, we can simply set this up as a (sparse)
system of linear equations and solve. To note:

B
(g)
f +

1

∆0
µ
(g)
0 = 0x

(g)
f−1+

(
O

(g)
f +

1

∆
+

1

∆0

)
x
(g)
f −

1

∆
x
(g)
f+1

B
(g)
i = − 1

∆
x
(g)
i−1+

(
O

(g)
i +

2

∆

)
x
(g)
i −

1

∆
x
(g)
i+1

B
(g)
l = − 1

∆
x
(g)
l−1+

(
O

(g)
l +

1

∆

)
x
(g)
l − 0x

(g)
l+1

Given the sensitivity of these models to ∆ and the starting variances and means of the ideal points, I
would suggest that this model be run with some caution in the absence of other bridging mechanisms.4 For
example, Bailey et al. (2017) use repeated resolutions to bridge certain βn

j across sessions. If one does not
have bridging legislation and uses a moderate ∆, one might try running the model to completion and if
an individual i with a known polarity changes sign or moves dramatically without good theoretical cause,
then try re-running the model with stronger, i.e. more informative, starting priors on that individual.
Alternatively, one could run the session-by-session model and ensure that, say, Scalia was always given a
positive ideal point. Then, using the estimated θ as starting values for the dynamic model may provide
sufficient anchoring to ensure that plausible results are recovered. This could be seen as a solution in the
spirit of Nokken and Poole (2004)’s work on estimating Congress-by-Congress ideal points. These questions
remain unresolved and are a plausible avenue for future research.

D. APPENDIX D: IMPUTATION IN THE MIRT FRAMEWORK

The model derived in the main text assumes that yij is observed for all i, j. If it is not, and one wishes to
model non-response as missing-at-random (rather than a separate category), imputation of the yij should
occur in the E step.5 The Q function must now consider that we are augmenting over not only ωij but also
the missing yij . Yet, we know that given θ, yij is distributed binomial with probabilities given to us by the
logistic link. To begin, focus on a single vote yij that is missing. The relevant terms of the Q function are
shown below. The summand must run from n = 1 to Kj − 1 (the largest value) since we cannot exclude any
augmented ωij a priori because we do not observe yij .

Kj−1∑
n=1

snijψ
n
ij − ωn∗

ij /2(ψn
ij)

2

We note that yij only enters into the Q function via the snij = I(yij = n) − 1/2 term. Thus, for the

E-step, we simply need to calculate the following additional terms (in addition to the E
[
ωn
ij |θ(t−1)

]
):

pnij = E
[
I(yij = n)|θ(t−1)

]
= Pr

(
yij = n|θ(t−1)

)
4Indeed, even when increasing the stopping tolerance for the EM algorithm, different random restarts lead to sometimes

different ideal points—especially for those justices in the first session (i.e. with relatively little prior information to bridge on).
5Whilst we could drop the non-response, as would be needed in bridging applications, we should generally impute it to avoid

some respondents being estimated on a very small number of votes and thus having highly unstable or inappropriately extreme
ideal points. This is the approach taken in Imai et al. (2016) that requires imputation of missing data—which unfortunately
renders their package unable to engage in bridging applications at the time of writing.
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This can be done directly from the data generating process: Find the stick-breaking probabilities using the

logistic link and transform them to get the ‘true’ probabilities. For helpful notation define, cnij = 1−
∑Kj

k>n p
n
ij ,

i.e. cnij is the probability that yij > n. Plugging these into the above equation and re-arranging terms shows
that the relevant portion of the Q function can be expressed as

Kj−1∑
n=1

1

2
(pnij − cnij)ψn

ij − ωn∗
ij /2(ψn

ij)
2(pnij + cnij)

Thus, for observations (i, j) where yij is missing, one can use the same M -step results derived above if
one re-defines (with a notational slight of hand) snij as 1

2 (pnij − cnij) + 1/2 and (ωn
ij)
∗ as (ωn

ij)
∗(pnij + cnij).

To demonstrate the importance of imputation, consider the Ashai Todai dataset analysed earlier; it has
20,000 respondents and 100 questions, although most respondents answer only a small fraction of the data.
In the figure in the main text, I deal with missing data by ‘imputing’ outcomes as the EM algorithm runs,
following Imai et al. (2016).6 This ‘rolling imputation’ is, however, only one strategy to deal with large
quantities of missing data and implies that even if a respondent answers very few questions or votes on few
votes, they can still be included in the analysis. To show how this affects the results, I present two additional
figures that run the mIRT model (a) without imputation, i.e. dropping all missing responses, and (b) the
model without imputation but excluding the approximately 6,300 respondents who answered fewer than 5
questions and, arguably, should not be included in the analysis. Both strategies return very similar results
as the the correlation between those two methods is rounded up to ‘1’ at three decimal points.

The figures show that, unsurprisingly, without imputation there are a number of respondents who are
assigned relatively different ideal points than the emIRT estimates, although the correlation between all
methods is still quite high. This seems to vary based on starting values (even with the same, high, stopping
tolerance) and can be seen suggestively in the figure by the set of individuals who are given ideal points
around 0 in the mIRT but have a wider variation of ideal points in the emIRT model. It is hard to know
exactly what is driving this, e.g. the variational approximations of the emIRT or the lack of data for these
individuals, but this divergence may be driven by some βn

j being highly mis-estimated in the presence of
large amounts of missing data without imputation.

E. APPENDIX E: COMPARISON OF ESTIMATION METHODS FOR IDEAL POINTS

When estimating ideal point models, a key question is whether one cares about estimates of uncertainty. If
the answer is ‘no’, then a classic approach (e.g. NOMINATE) is to use some optimization algorithm (e.g.
gradient descent) to find the maximum likelihood or posterior mode of the model. A different approach, and
the one used in this paper, is to use EM to find the posterior mode; whilst sometimes slower than gradient
descent, it is more stable in that it is guaranteed to find a (local) mode without any tuning parameters being
required and will, at each iteration, be guaranteed to increase the objective function.

The other common approach is ‘variational inference’ [VI] (see Grimmer (2010) for an introduction
for political scientists). Imai et al. (2016) deploy this strategy to great effect on ideal point models by
showing that we can approximate the posterior (or likelihood) and then use EM to deterministically find
the maximum of this approximate distribution. VI also provides some rough measure of uncertainty of the
parameter estimates, although these are common agreed severely biased downwards and thus unreliable.

In terms of speed, VI and EM are roughly equivalent in theoretical terms (though will depend on the
specific implementation) as they are deterministic. For the purposes of ideal point estimation, therefore,
EM is more theoretically justified as it is finding the maximum of the actual model whereas VI is finding
the maximum of a (perhaps poor) approximating distribution. Typically scholars resort to VI when the
underlying model is intractable as it is a ‘last resort’ when exact inference is intractable or computationally
demanding, but as the underling mIRT model makes ideal point models for binary, multinomial and common

6The MCMC framework deals with this by ‘imputing’ outcomes as the sampler runs and Imai et al. (2016) do something
analogous in the E-step by noting that when yij is missing, there is no information on how the latent utility is truncated.
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Figure 8: Alternative Strategies for Missing Data

extensions (e.g. dynamic ideal points) tractable, it seems to be preferable on theoretical grounds. Of course,
not all models admit a simple EM representation and in those cases, VI is a reasonable strategy.

If one cares about uncertainty in the estimates, it is necessary to use Monte Carlo methods (classically
MCMC but see also Hamiltonian Monte Carlo) to generate samples that will approximate the true posterior
distribution. These models also have the benefit to not get stuck in local modes in ways that are possible
for both EM and VI. Existing ideal point frameworks for this exist, e.g. in MCMCpack, that rely on more
complicated samplers for non-binary models as the implied models lack a tractable distribution. These
procedures therefore have internal tuning parameters that must be set or calibrated for the particular case.
By contrast, the mIRT allows for these models to be estimated via a straightforward data augmentation
procedure where the full conditionals of the parameters are Gaussian, conditional on the augmentation
variables. This procedure is transparent, stable, and lacks tuning parameters. It may be somewhat slower,
but there is a large literature on how to speed up or parallelize Gibbs Samplers. In some sense, the MCMC
models are the most flexible (as one can model whatever one desires), but the reason to focus on the EM or
VI representations is for both speed and scalability for large datasets.

Overall, the mIRT represents a synthesis of existing frameworks in that it allows most of the common
ideal point models estimated in Imai et al. (2016) to be estimated exactly (without need for variational ap-
proximations) using an EM framework whereas also allowing the same models to be estimated and extended
via the implied MCMC framework. For some models (e.g. Poisson scaling), the VI approach of Imai et al.
(2016) is superior; for other complex models, it is necessary to resort to MCMC. Yet, the benefit of this data
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augmentation framework is that it unifies many existing models into a more tractable framework.
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