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1 Markov Chain Monte Carlo Estimation Strategy

1.1 Priors and hyperparameters
Thecompletemodel requires proper priors on all parameters following Frühwirth-
Schnatter et al. (2009) and Fox et al. (2011). It is possible to fix the values of the
hyperparameters, 𝛼, 𝜅, and 𝛾. Following, Fox et al. (2011), I put diffuse priors on
these parameters to allow the data to partially determine their value. It is easier to
work with transformations of these parameters, (𝛼+𝜅), and 𝜃 = 𝜅/(𝛼+𝜅). With
these in hand, I use the following independent priors:

(𝛼 + 𝜅) ∼ Ga(1, 0.1); (1)
𝛾 ∼ Ga(1, 0.1); (2)
𝜃 ∼ Beta(100, 1); (3)

𝜌𝑘 ∝ 𝜌𝑘(𝜌𝑘 + 10)−4; (4)
𝛽𝑘 ∼ 𝒩(0, 25). (5)
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1.2 Block sampling the latent regimes and HDP parameters
To draw the latent states and the HDP parameters, I use the blocked sampler from
Fox et al. (2011). Sampling for theHDPparameters,𝜹,𝛼,𝜅, and𝛾 are complicated
and require a heavy notational burden, so I refer the interested reader to Appendix
D and Appendix E of Fox et al. (2011). To draw the latent states, Fox et al. (2011)
rely on a forward-backward procedure similar to the algorithm of Chib (1998).
Note that we can write the full conditional posterior of 𝐬 as

𝑝(𝑠𝑇 |𝑠𝑇−1, 𝐲, Θ, 𝝅)×𝑝(𝑠𝑇−1|𝑠𝑇−1𝐲, Θ, 𝝅)×⋯×𝑝(𝑠𝑡 |𝑠𝑡−1, 𝐲, Θ, 𝝅)×⋯×𝑝(𝑠1|𝐲, Θ, 𝝅),
(6)

where Θ = (𝜷, 𝝆, 𝜼) is the collection of the model parameters. From this deriva-
tion, we can see that we can sample 𝑠1 from its full posterior, then sample 𝑠2 con-
ditional on that value of 𝑠1, and so on. To calculate the form of these distribution,
however, requires the calculation of a series of “messages” passed from 𝑠𝑡 to 𝑠𝑡−1.
These messages are defined recursively as:

𝑚𝑡,𝑡−1(𝑠𝑡−1) ∝
⎧{
⎨{⎩
∑𝑠𝑡

𝑝(𝑠𝑡 |𝜋𝑠𝑡−1)𝑝(𝑦𝑡 |𝛽𝑠𝑡 , 𝜂𝑡)𝑝(𝜂𝑡 |𝜌𝑠𝑡)𝑚𝑡+1,𝑡(𝑠𝑡), 𝑡 ≤ 𝑇;
1, 𝑡 = 𝑇 + 1;

(7)

∝ 𝑝(𝑦𝑡∶𝑇 |𝑠𝑡−1, Θ, 𝝅) (8)

With these messages in hand, we can calculate distributions above as:

𝑝(𝑠𝑡 |𝑠𝑡−1, 𝐲, Θ, 𝝅) ∝ 𝑝(𝑠𝑡 |𝝅𝑠𝑡−1)𝑝(𝑦𝑡 |𝛽𝑠𝑡 , 𝜂𝑡)𝑝(𝜂𝑡 |𝜌𝑠𝑡)𝑚𝑡+1,𝑡(𝑠𝑡). (9)

With these states in hand, it is straightforward to draw the transition probabilities
as a function of the priors and the number of transitions observed in 𝐬. That is, I
draw

𝝅𝑗 |𝐬, 𝛼, 𝜅, 𝜹 ∼ Dirichlet(𝛼𝛿1 + 𝑛𝑗1, … , 𝛼𝛿𝑗 + 𝜅 + 𝑛𝑗𝑗, … , 𝛼𝛿𝐾 + 𝑛𝑗𝐾)

for 𝑗 = 1, … , 𝐾 . Here, 𝑛𝑗𝑘 is the number of times subsequences in 𝐬 with 𝑠𝑡−1 = 𝑗
and 𝑠𝑡 = 𝑘.

1.3 Drawing the model parameters
Now that we have draws of the latent states, we need to take draws of the model
parameters in each regime (𝛽𝑘, 𝜌𝑘). The non-linear nature of the distributions in-
volved eliminate the possibility of closed-form posterior distributions. This makes
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the straightforward application of Gibbs sampling impossible. To avoid the inef-
ficiencies of other MCMC approaches, I draw on the auxiliary mixture sampling
approach of Frühwirth-Schnatter et al. (2009). This approach augments the data
with a set of latent variables 𝜏𝑡1 and 𝜏𝑡2 which contain all the distributional in-
formation about the outcome 𝑦 and whose distribution can be approximated by a
mixture of Normals. With draws of 𝜏𝑡 = (𝜏𝑡1, 𝜏𝑡2) and mixture component indi-
cators 𝑟𝑡 = (𝑟𝑡1, 𝑟𝑡2), we can turn this non-linear problem into a linear Gaussian
regression problem. That is, conditional on 𝜏𝑡, 𝑟𝑡, and 𝜂𝑡, posterior inference on
the 𝛽𝑘 is simply a Bayesian linear regression. I block sample the negative bino-
mial parameters 𝜌𝑘 and 𝜂𝑡, using slice sampling to draw 𝜌𝑘 conditional on 𝐲 and
𝜷. With these in hand, 𝜈𝑡 is distributed Gamma with shape 𝜌𝑠𝑡 + 𝑦𝑡 and scale
𝜌𝑠𝑡 + exp(𝑋𝑡𝛽𝑠𝑡).

Putting all of these steps together, we have the following draws for a single
iteration of the MCMC algorithm:

1. Draw 𝐬|𝐲, Θ, 𝝅 as described above.

2. Draw (𝝆, 𝜼)|𝐲, 𝜷, 𝐬:

a) Draw 𝜌𝑘 |𝐲, 𝜷 unconditional on 𝜼 using slice sampling (Neal, 2003).
b) Draw𝜂𝑡 |𝐲, 𝜷, 𝝆, 𝐬 ∼ Gamma (𝜌𝑠𝑡 + 𝑦𝑡, 𝜌𝑠𝑡 + exp(𝑋𝑡𝛽𝑠𝑡)), for 𝑡 = 1, … , 𝑇 .

3. Sample𝝉, 𝐫|𝐲, 𝜷, 𝜼, 𝝆using the auxiliarymixture approachFrühwirth-Schnatter
et al. (2009).

4. Draw from 𝜷|𝝉, 𝐫, 𝜼 using the auxiliary mixture approach of Frühwirth-
Schnatter et al. (2009).

5. Draw𝝅𝑗 |𝐬, 𝛼, 𝜅, 𝜹 fromDirichlet(𝛼𝛿1+𝑛𝑗1, … , 𝛼𝛿𝑗 +𝜅+𝑛𝑗𝑗, … , 𝛼𝛿𝐾 +𝑛𝑗𝐾),
for 𝑗 = 1, … , 𝐾 .

6. Draw 𝛽, 𝛼 + 𝜅, 𝜃 and 𝛾 as in Fox et al. (2011).

One issue with this approach is that assessing convergence is a difficult pro-
cess due to the number of parameters and the label-switching between draws of
the sampler. It is possible to avoid these issues by developing a variational approx-
imation approach to estimating such a model (Jordan et al., 1999). The benefit of
this would be to side-step the issue of convergence since it is both guaranteed and
is easy to assess. Furthermore, it would also alleviate the label-switching issue be-
cause it would find a single “canonical” labeling as the estimate. A downside to this
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approach is that some common approaches to variational inference will underesti-
mate the posterior variance relative to MCMC approaches (Grimmer, 2011). De-
spite this, developing a variational approximation to thismodelwould be a valuable
topic for future research.

1.4 A simulation study
To show how the present model compares to other approaches, I apply it to sim-
ulated datasets from three different data generating processes, one with no co-
variates (unconditional) and two conditional models, one with easily detectable
changepoints (high power) andonewith harder to detect changepoints (lowpower).1
In the unconditionalmodel, there are 𝑇 = 200 observations with four regimeswith
50 observations each. I simulated the data in each regime with a simple intercept,
so that 𝜷 = (6, 3, 6, 3) and with overdispersion parameters 𝝆 = (1.5, 0.5, 3, 1.5).
In the conditional models, there is one covariate distributed Unif(0, 2) in the high-
powered scenario andUnif(0, 0.5) in the low-powered scenario, with three regimes
with coefficients 𝛽1 = (1, 1), 𝛽2 = (1, −2), and 𝛽3 = (1, 2). Each regime lasts 50
observations and the overdispersion parameters are 𝝆 = (1.5, 0.5, 3). The two
conditional models differ in the variance of the covariate, with the higher variance
covariate leading to smaller sampling variance for the coefficients in each regime.
To investigate the properties of the various models, I draw 100 datasets from each
DGP and apply a series of models to each draw from the DGPs:

• the sticky HDP-HMMwith a negative binomial outcome distribution,

• a HDP-HSMMwith a negative binomial outcome distribution (Johnson and
Willsky, 2013),

• a series of fixed-number-of-regime models with negative binomial outcome
distributions (varying from 0 to 7 changepoints),

• a left-to-right model (similar to that of Chib (1998) or Park (2010)) with no
fixed number of changepoints,

• the sticky HDP-HMMwith a Poisson outcome distribution.

The left-to-right model alters the Chib (1998) prior structure in two ways: (1) the
prior distribution of the state for the first period is uniform over the possible states,

1Thanks to an anonymous reviewer who suggested these simulation settings.
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and (2) there is no requirement that all of the states are visited so that the last state
is drawn from its posterior rather than fixed to final state. Peluso, Chib, and Mira
(2016) proposed a similar prior structure that would maintain the left-to-right na-
ture of the Chib (1998) model without fixing the number of regimes a priori. The
first four models compare various ways of allowing the number of changepoints
to vary with ergodic (sticky HDP-HMM) and non-erogic (HSMM and the left-to-
right) models. The last model fixes the sticky HDP-HMM structure and explores
how misspecifying the outcome distribution affects the posterior distribution of
the number of changepoints.

For each of these models, I ran theMCMC sampler with an upper bound of 10
states for 5,000 iterations, thinned by 5, with a burin period of 5,000 iterations. In
each of the fixed-number-of-regimes models, I also calculated the marginal like-
lihood of the model using the approach of Chib (1995). This allows me to infer
the probability distribution over the number of changepoints, assuming a uniform
prior over themodels. With these in hand, I created average posterior probabilities
from these model across the 100 draws from each DGP.This allows us to see what
the average posterior probability of a changepoint is for a given model and what
the average posterior probability over the number of changepoints is. Ideally, we
would want to see each method selecting the true number of changepoints with
high average posterior probability and placing those changepoints near the true
values (with some variance).

The average posterior probabilities for changepoint locations for the uncon-
ditional model and the high-power conditional model are presented in Figures 1
and 3. Both of these show a similar pattern: the negative binomial models all give
results that are close to the true distribution of changepoints, whereas the Pois-
son stickyHDP-HMMgives amassive number of changeopints spread throughout
the data. This result reveals one danger of the HDP-HMM approach: because the
model is ergodic, the state variable can move freely between states a fairly fast rate.
Usually the sticky version of the HDP-HMM can overcome this and produce more
coherent clusters. Here, though, the model misspecification of the variance of the
count data leads themodel to quickly switch between the large counts and the small
counts. Once properly specified with a negative binomial outcome model, the dif-
ferent ways of modeling the number of changepionts (sticky HDP-HMM, HDP-
HSMM, marginal likelihood, and open-ended left-to-right) all give very similar
answers, with the left-to-right approach having slightly higher variance.

The average posterior distributions over the number of changeopints is given
in Figure 2 for the unconditional model and Figure 4 for the high-powered condi-
tional model. These show that all of the models that use the negative binomial out-
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come distribution place high posterior probability on the true number of change-
points, with slightly different variances for each method. These differences are to
be expected because each method has a different prior structure for the number
of changepoints and it is difficult (and sometimes impossible) to encode the exact
same priors across models. In spit of this, the negative binomial methods all tend
to recover roughly the correct number of changepoints, at least across draws from
the DGP.The Poisson sticky HDP-HMM again places its posterior mass on a large
number of changeopints, again due to the overdispersed nature of the data.

Note that these results do not mean that the Poisson model is not useful. In
separate tests not reported here, the Poisson sticky HDP-HMM recovers correct
inferences about the number of changepoints when the data is, in fact, distributed
Poisson. The take-away from these results should be that the exact method for
allowing arbitrary numbers of changepoints is relatively less important than the
correct specification of the model within regimes. If the model is improperly spec-
ified, we may overestimate the number of changepoints.

Finally, the low-powered simulations in Figures 5 and 6 show how harder-to-
detect changepoints affect these estimators. We can see that all of themethods have
much higher average posterior variance over the number of changepoints, though
the location of the changepoints appears to be correct when they are identified.
One interesting feature of this simulation is that comparing marginal likelihoods
gives very different answers than the rest of the models, placing high posterior
mass on a model with 0 changepionts. There are a couple of reasons this might be
occurring. First, there could be computational problems with the marginal likeli-
hood calculations due to not being able to fully explore the posterior distribution.
This appears somewhat plausible because the ML calculations in these models can
be very sensitive to the point which the posterior ordinate is being calculated us-
ing the Chib (1995) approach. Second, the ML approach might be placing dif-
ferent implicit criteria on the inference via the uniform prior over the number of
changepoints. A generalized comparison of model selection via ML and via vari-
ous Bayesian nonparametric approaches is a good avenue for future research. Of
course, these are just three different data generating processes and it may be the
case that any of these methods may outperform another in a different scenario.

1.5 Consistency simulations
Miller and Harrison (2014) showed that Dirichlet process mixture models with a
fixed concentration parameter and no hierarchical structure is inconsistent for the
true number of regimes because those models tend to overestimate the number
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Figure 1: Average posterior probabilities of a changepoint at a given time period for the
various changepoint models for the unconditional simulations with true changepoints at
𝑡 = 51, 101 and 151, averaging over 100 draws from the DGP.
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Figure 2: Average posterior probability distributions over the number of changepoints for
the unconditional simulations for the methods with a negative binomial outcome distri-
bution (top) and the sticky HDP-HMM with a Poisson outcome distribution. The true
number of changepoints is 3.
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Figure 3: Average posterior probabilities of a changepoint at a given time period for the
various changepoint models for the conditional simulations with true changepoints at 𝑡 =
51 and 101, averaging over 100 draws from the DGP.
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Figure 4: Average posterior probability distributions over the number of changepoints for
the conditional simulations for themethodswith a negative binomial outcome distribution
(top) and the sticky HDP-HMMwith a Poisson outcome distribution. The true number of
changepoints is 2.
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Figure 5: Average posterior probabilities of a changepoint at a given time period for the
various changepoint models for the low-power conditional simulations with true change-
points at 𝑡 = 51 and 101, averaging over 100 draws from the DGP.
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Figure 6: Average posterior probability distributions over the number of changepoints for
the low-power conditional simulations for the methods with a negative binomial outcome
distribution (top) and the sticky HDP-HMM with a Poisson outcome distribution. The
true number of changepoints is 2.
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of regimes. To investigate this, we take a simple simulation setup that compares
the average posterior probability of draws from data with either no changepoints
or three changepoints (𝐾 = 4) to see if the posteriors fail to concentrate at the
true number as they do in the simulation studies of Miller and Harrison (2014).
I ran the NB sticky HDP-HMM, the NB open-ended left-to-right model, and the
separate NBmodels with fixed changepoints with marginal likelihood used to cal-
culate posterior probability of the changepoints. The DGP with 𝐾 = 1 that had
posterior mean 𝑒3 ≈ 20 and overdispersion parameter 𝜌 = 0.5 and the 𝐾 = 4
model had regime parameters 𝜷 = (3, 0.5, 4, 0.25) and 𝝆 = (0.5, 1, 0.75, 2). For
each DGP, I generated three different sample sizes of 100, 1000, and 5000, with
the changepoints evenly spaced in the 𝐾 = 4 DGP for each sample size. I drew
5000 MCMC samples after a burnin period of 5000 draws and I thinned the chain
by 5. For the 𝑁 = 100 and 𝑁 = 1000 sample sizes, I took 100 draws from each
of these DGPs and averaged the posterior probabilities of changepoints over the
draws. For the 𝑁 = 5000 sample size, I only ran the NB sticky HDP-HMM and
the NB open-ended left-to-right model for a single draw of the above DGP due to
the computational burden of the data at this size. Unfortunately, the HDP-HSMM
is very computationally inefficient as the sample size grows unless one puts a cap
on the maximum length of a regime, which would obviously induce the incorrect
posterior on the number of regimes.

The results in Figure 7 show that, at least for the sticky HDP-HMM, posterior
probability is overwhelmingly on finding the correct number of changepoints in
these situations and there is relatively little change as the sample size increases.
Thus, it appears as though the resultsMiller andHarrison (2014) do not necessarily
apply to either of these model. One reason that consistency appears to hold in
this case may be that, in the sticky HDP-HMM, the concentration parameters are
being estimated from the data, rather than being set a priori as in the Miller and
Harrison (2014) setting. Another explanation might be that there is some very
small, though non-zero, posterior mass being left on situations with the incorrect
number of changepoints. This would be consistent with the results of Miller and
Harrison (2014) but indicate that the non-consistency results have less practical
relevance in this setting. Of course, this is one DGP and there may be other cases
where more serious issues do arise. We do see an inconsistency with the open-
ended left-to-right model, which may be a model that is closer to the type that
Miller and Harrison (2014) discuss. This would be a fruitful avenue for future
research since the simulations here are somewhat limited by the 𝑁 = 5000 case

13



●

●
● ● ● ● ● ● ● ●

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

Number of Changepoints

A
ve

ra
ge

 P
os

te
rio

r 
P

ro
ba

bi
lit

y

● NB Sticky HDP−HMM
NB Chib (Marginal Likelihood)
NB Open−Ended LTR

(a) N = 100, K = 1

●

● ● ● ● ● ● ● ● ●

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

Number of Changepoints

A
ve

ra
ge

 P
os

te
rio

r 
P

ro
ba

bi
lit

y
● NB Sticky HDP−HMM

NB Chib (Marginal Likelihood)
NB Open−Ended LTR

(b) N = 1000, K = 1
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(c) N = 5000, K = 1 (Single sample)
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(e) N = 1000, K = 4
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(f) N = 5000, K = 4 (Single sample)

Figure 7: Average posterior probability distributions over the number of changepoints
sample sizes 100, 1000, and 5000 and with either 0 or 3 changepoints. For the 𝑁 = 100
and 𝑁 = 1000 sample sizes, posteriors are averaged across 100 draws from the DGP. For
the 𝑁 = 5000 sample size, the posteriors are for a single draw of the DGP.
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being a single draw from the DGP.
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