
Online Appendix for: Estimating Heterogeneous
Treatment Effects and the Effects of Heterogeneous

Treatments with Ensemble Methods

Justin Grimmer ∗ Solomon Messing † Sean J. Westwood ‡

April 14, 2017

1 Constructing the Ensemble via Ensemble Bayesian

Model Averaging

A closely related ensemble creation procedure is Ensemble Bayesian Model Averaging (EBMA)
(Raftery et al., 2005; Montgomery, Hollenbach and Ward, 2012). EBMA draws on an analogy
to Bayesian Model Averaging (BMA) to generate a weighted ensemble to generate predic-
tions. To do this, EBMA utilizes a predictive posterior that is a mixture of component
predictions. Given our focus on dichotomous dependent variables, we note that estimates of
E[Y (k)|x], g(k,x) are also estimates of P (Y (k) = 1|x). In this case, then, we can write out
predictive posterior as,

p(Y (k) = 1|x,Y) =
M∑
m=1

∫
wmP (Y (k) = 1|x)p(wm|x,Y)dwm

=
M∑
m=1

∫
wmgm(k,x)p(wm|x,Y)dwm

And if we assume that weights are point masses at the maximum a posterior (MAP)
estimate—as is commonly done in the literature (Raftery et al., 2005; Montgomery, Hollen-
bach and Ward, 2012)—then this reduces to p(Y (k) = 1|g1, g2, . . . , gm,x) =

∑M
m=1wmgm(k,x).

Our estimate of the CATE for treatment conditions k and k
′

with covariates x is

φ̂(k, k
′
,x) =

M∑
m=1

wmgm(k,x)−
M∑
m=1

wmgm(k
′
,x). (1.1)

∗Associate Professor, Department of Political Science, Stanford University; Encina Hall West 616 Serra
St., Stanford, CA, 94305

†Director, Data Labs, Pew Research Center 1615 L Street NW, Washington, DC
‡Assistant Professor, Department of Government, Dartmouth College

1

This is, of course, equivalent to Equation ??, or the formula used to compute our ensemble
for estimating heterogeneous treatment effects previously proposed.

Super learning and EBMA share a methodology focused on accurate combinations of
component methods. The two methods differ (as presented here) in how the weights are
estimated. In Appendix 1.1 we provide three ways to estimate the weights for EBMA,
including the maximum a posteriori (MAP) methods used in the prior literature (Raftery
et al., 2005; Montgomery, Hollenbach and Ward, 2012) and two ways to obtain the posterior
distribution on the weights—Gibbs sampling and a variational approximation (Jordan et al.,
1999). While distinct, the methods presented in Appendix 1.1 share the same intuition as
the regression in Step 2 of the super learner algorithm: the out of sample predictions are
used to identify the methods that provide accurate out of sample predictions of individual
values.

1.1 Estimating Weights for EBMA

In this appendix we describe the posterior distribution for EBMA and provide three ways
to estimate the weights. Following prior literature (Raftery et al., 2005; Montgomery, Hol-
lenbach and Ward, 2012) we assume that our predictive posterior is a mixture of the com-
ponent methods. We will suppose that the weights are drawn from a uniform distribution
(or a Dirichlet(1)). We will suppose that each observation i is drawn from one of the M
component models. Denote the model with a M × 1 indicator vector τ i where τim = 1 when
observation i is drawn from model m and all other entries are zero. We will suppose that
τ i ∼ Multinomial(w). Finally, given a realization of τ i with τim = 1 we will suppose that
the out of sample prediction for observation i assigned to treatment k Y (k)i is drawn from a

Bernoulli distribution, with chance of success π = gim(k,x) or Ŷim(k) in the notation above.
Together this implies the following model

w ∼ Dirichlet(1)

τ ∼ Multinomial(w)

Yi(k)|τim = 1,x ∼ Bernoulli
(
Ŷim(k)

)
and the following posterior distribution for the weights,

p(w, τ |Ŷ ,x,Y) ∝
N∏
i=1

M∏
m=1

[
wm ×

(
Ŷim(k)Yi(k) × (1− Ŷim(k))1−Yi(k)

)]τim
We provide three ways to estimate weights with this posterior: an Expectation-Maximization

(EM) algorithm, a Gibbs sampler, and a variational approximation. Each derivation is
straightforward and available in previous work on estimation in mixture models.

1.2 EM Algorithm

The EM algorithm proceeds in two steps. To begin, initialize estimates for the weights wtm
where t will index the iteration. Then, we compute the E-step. For each observation i and

2

each model m compute τ̂im which is equal to

τ̂ tim =
wtm

[
Ŷim(k)Yi(k) × (1− Ŷim(k))1−Yi(k)

]
∑M

l=1w
t
l

[
Ŷim(k)Yi(k) × (1− Ŷim(k))1−Yi(k)

]
Computing the M step is straightforward, with the new estimates of the weight for model

m, wt+1
m given by

wt+1
m ∝ 1 +

N∑
i=1

τ̂ tim

Estimation of the EM-algorithm proceeds until the change in the parameters (or other
summary of changes) drops below a predetermined threshold. The EM estimates,

1.3 Gibbs Sampler

A Gibbs sampler provides estimates of the posterior. This facilitates estimation of the
uncertainty in the weights when calcuating ATEs and CATEs. Like the EM algorithm, the
steps of the Gibbs sampler are well established. Again, initialize weights wtm where t tracks
the iteration of the sampler. We then sample in two stages. First, we draw τ̂ ti,

τ̂ ti ∼ Multinomial(1,θi)

where θi = (θi1, θi2, . . . , θiM) and

θtim =
wtm

[
Ŷim(k)Yi(k) × (1− Ŷim(k))1−Yi(k)

]
∑M

l=1w
t
l

[
Ŷim(k)Yi(k) × (1− Ŷim(k))1−Yi(k)

]
Conditional on the drawn indicator vectors, τ̂ i, we draw the weights, wt,

wt+1 ∼ Dirichlet(η)

where η = (η1, η2, . . . , ηM) and

ηm = 1 +
N∑
i=1

τ̂ tim.

After a burn in period and convergence is diagnosed, the sampler is run to approximate
the posterior distribution of weights. These weights can then be used to estimate the ATEs
and CATEs.

3

1.4 Variational Approximation

A third method for estimating the posterior on the weights is with a variational approxima-
tion, a deterministic method for approximating the full posterior. Variational approxima-
tions make a simplifying assumption about the posterior and then finds the member of this
simpler, though still general, functional family that provides the closest approximation to
the full posterior, as measured by the Kullback-Leibler divergence. We will approximate the
posterior distribution for w and τ with the simpler functional form q(w, t) = q(w)q(τ). By
the independence assumptions in our data, this implies that we can write the approximating
function as q(w)q(τ) = q(w)

∏N
i=1 q(τ i).

Standard arguments for variational approximations of exponential family distributions
(see Jordan et al. (1999); Bishop (2006)) leads to the form of the posterior approximations
and the update steps. A standard derivation shows that q(τ i) is a Multinomial distribution,
with parameter θi where

θim ∝ exp
(

E[logwm] + log
[
Ŷim(k)Yi(k) × (1− Ŷim(k))1−Yi(k)

])
where E[logwm] is taken over the approximating distribution and dependent on q(w). A

second standard calculation shows that q(w) is a Dirichlet(η) distribution with ηm equal to
,

ηm = 1 +
N∑
i=1

θim

This implies that E[logwm] = ψ(ηm)− ψ
(∑M

l=1 ηl

)
where ψ(·) is the digamma function.

After initializing values of ηt the formulas are applied iteratively to update the parameters
until the change in the parameters (or change in a lower bound) drops below a sufficient level
for convergence. The approximating posterior distribution on the weights with the converged
parameter estimates can then be used to reflect posterior uncertainty in the weights.

2 Details on Monte Carlo Simulations
We specify four data generating processes for our Monte Carlo simulations. Each of the
Monte Carlo simulations build off the simulations in Imai and Ratkovic (2013).

Monte Carlo 1 For this simulation we have a sparse data generating process with discrete
covariates. Specifically, we suppose that for all 2500 observations that,

Yi ∼ Bernoulli(πi)

πi = Φ

(
βT i + γX i +

46∑
k=1

2∑
j=1

ηjkXij × Tik

)
(2.1)

where:

- Φ is the standard Normal CDF

4

- T i is a 46-element treatment indicator vector. Suppose that p is a 47 element long
vector equal to (1

47
, 1
47
, . . . , 1

47
). Then we draw Ti ∼ Multinomial(p) and if all elements

of T i are equal to zero then this corresponds with a control condition.

- β = (β1, . . . , β46) are coefficients for Ti. We set β1 = 2, β2 = 1, β3 = 0.5, β4 = −1, β5−2.
For k from 6 to 46 we draw βk ∼ Uniform(−0.07, 0.07).

- X i is a 2-element long vector of covariates, with Xi1 ∼ Bernoulli(0.4) and Xi2 ∼
Bernoulli(0.6) .

- η is a vector of interaction terms for each treatment and covariate. We suppose that the
first five treatments have systematic interactions with the covariates. The remaining
eta values are assumed to be drawn from a Uniform(−0.1, 0.1) distribution.

We then assess the RMSE by generating all possible treatment and covariate combinations
and comparing to the actual estimated effects.

Monte Carlo 2 For this simulation we maintain the same basic structure as in Monte
Carlo 1, but change the discrete covariates to continuous covariates. Specifically, we suppose
that in Equation 2.2 that for each i we generate ai ∼ Normal(0, 1), bi ∼ Normal(0, 1), and
ci ∼ Normal(0, 1). We then compute,

- Xi1 = sin(ai)× bi + cos(ci) ∗ ai

- Xi2 = exp
(
ai
10

)
× (b2i + sin(ci))

Because the continuous covariates don’t allow us to exactly estimate the treatment effects
for every possible valuable, we vary across a range of each variable to compare the actual
and estimate treatment effects.

Monte Carlo 3 Monte Carlo 3 provides a dense data generating process, with many
more treatments having a systematic and large effect—and many more having hetergeneous
treatment effects. We suppose again the basic structure

Yi ∼ Bernoulli(πi)

πi = Φ

(
βT i + γX i +

46∑
k=1

2∑
j=1

ηjkXij × Tik

)
(2.2)

where:

- Φ is the standard Normal CDF

- T i is a 46-element treatment indicator vector. Suppose that p is a 47 element long
vector equal to (1

47
, 1
47
, . . . , 1

47
). Then we draw Ti ∼ Multinomial(p) and if all elements

of T i are equal to zero then this corresponds with a control condition.

5

- But now we suppose that many more of the treatments have systematic effects. Specif-
ically we suppose for each k (k = 1, . . . , 46) that we draw nk ∼ Bernoulli(0.5). And
then we draw the coefficients,

βk ∼

{
Normal (−1, 0.1) If nk = 1

Normal (1, 0.1) If nk = 0

- And we suppose that there are interactions between covariates and the treatments for
all the covariate and treatment pairs. We suppose each for each j and k we draw
njk ∼ Bernoulli(0.5). And then for each ηjk we draw,

ηij ∼

{
Uniform(−1,−0.5) If njk = 1

Uniform(0.5, 1) If njk = 0

Monte Carlo 4 This Monte Carlo simulation generates the covariates as in Monte Carlo
2 and coefficients as in Monte Carlo 3.

3 Details on Simulation Results
This section provides the results for the individual iterations of the monte carlo simula-
tion. The tables contain the root mean square errors for the estimating the heterogeneous
treatment effect across the synthetic data sets.

Table 1: Monte Carlo Simulation 1
Methods Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
LASSO 0.04 0.05 0.04 0.04 0.05

Elastic Net 0.5 0.04 0.05 0.05 0.05 0.05
Elastic Net 0.25 0.07 0.08 0.07 0.07 0.07

Find It 0.05 0.05 0.05 0.06 0.05
Bayesian GLM 0.08 0.09 0.09 0.08 0.09

BART 0.04 0.05 0.05 0.05 0.05
Random Forest 0.23 0.23 0.25 0.23 0.23

KRLS 0.06 0.07 0.08 0.07 0.07
SVM-SMO 0.11 0.12 0.12 0.13 0.12

Weighted Ensemble 0.04 0.05 0.04 0.05 0.05
Naive Average 0.06 0.07 0.07 0.06 0.07

4 Details of Ensemble Creation
We apply seven methods to estimate the heterogeneous treatment effects.

1) LASSO: We estimate the LASSO using the glmnet (Friedman, Hastie and Tibshirani,
2010). We use cross validation to determine the penalty parameter, using mean square

6

Table 2: Monte Carlo Simulation 2
Methods Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
LASSO 0.14 0.15 0.12 0.26 0.15

Elastic Net 0.5 0.13 0.15 0.13 0.26 0.15
Elastic Net 0.25 0.17 0.17 0.19 0.24 0.18

Find It 3.03 2.89 2.51 2.47 2.47
Bayesian GLM 0.13 0.14 0.14 0.21 0.15

BART 0.48 0.46 0.5 0.49 0.46
Random Forest 0.33 0.26 0.3 0.3 0.36

KRLS 0.45 0.42 0.38 0.44 0.38
SVM-SMO 0.26 0.27 0.28 0.39 0.38

Weighted Ensemble 0.13 0.13 0.13 0.21 0.15
Naive Average 0.31 0.29 0.24 0.3 0.25

Table 3: Monte Carlo Simulation 3
Methods Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
LASSO 0.09 0.14 0.17 0.1 0.12

Elastic Net 0.5 0.08 0.14 0.16 0.08 0.11
Elastic Net 0.25 0.07 0.1 0.1 0.08 0.1

Find It 0.15 0.16 0.21 0.14 0.16
Bayesian GLM 0.09 0.13 0.13 0.07 0.1

BART 0.13 0.13 0.12 0.12 0.13
Random Forest 0.26 0.31 0.27 0.25 0.31

KRLS 0.07 0.13 0.14 0.08 0.09
SVM-SMO 0.14 0.2 0.18 0.14 0.18

Weighted Ensemble 0.07 0.11 0.11 0.08 0.1
Naive Average 0.08 0.09 0.13 0.08 0.12

error, and the binomial family. We predict values with the penalty parameter that
minimizes the mean square error.

2) Elastic-Net α = 0.5: We estimate the elastic net using the glmnet (Friedman, Hastie
and Tibshirani, 2010). We use cross validation to determine the penalty parameter,
using mean square error, and the binomial family. We predict values with the penalty
parameter that minimizes the mean square error.

3) Elastic-Net α = 0.25: We estimate the elastic net using the glmnet (Friedman, Hastie
and Tibshirani, 2010). We use cross validation to determine the penalty parameter,
using mean square error, and the binomial family. We predict values with the penalty
parameter that minimizes the mean square error.

4) Bayesian GLM: We use the logit link in the binomial family in the arm package (Gelman
and Hill, 2007)

7

Table 4: Monte Carlo Simulation 4
Methods Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
LASSO 0.2 0.12 0.14 0.13 0.21

Elastic Net 0.5 0.16 0.12 0.14 0.13 0.17
Elastic Net 0.25 0.14 0.15 0.15 0.14 0.22

Find It 2.81 4 3.18 3.63 2.61
Bayesian GLM 0.13 0.12 0.14 0.12 0.13

BART 0.42 0.51 0.41 0.49 0.5
Random Forest 0.26 0.28 0.27 0.29 0.34

KRLS 0.41 0.44 0.41 0.42 0.43
SVM-SMO 0.27 0.27 0.24 0.32 0.32

Weighted Ensemble 0.12 0.12 0.13 0.12 0.14
Naive Average 0.29 0.38 0.32 0.34 0.28

5) Find It: we use the FindIt package (Imai and Ratkovic, 2013). We search for the
lambda parameters and use the glmnet option.

6) KRLS: we use the KRLS package, using a gaussian kernel with default settings for the
σ parameter.

7) SVM: we use the RWeka and rJava packages using the SMO command, with the poly-
nomial kernels.

8) BART: we use the BayesTree package and the bart function to the BART models,
where we have potential cut values chosen based on the empirical data distribution,
with 500 draws for burnin and 1000 draws for posterior summary.

References
Bishop, Christopher. 2006. Pattern Recognition and Machine Learning. Springer.

Chen, Jowei. 2010. “Electoral Geography’s Effect on Pork Barreling in Legislatures.” Amer-
ican Journal of Political Science 54(2):301–322.

Friedman, Jerome, Trevor Hastie and Rob Tibshirani. 2010. “Regularization Paths for Gen-
eralized Linear Models via Coordinate Descent.” Journal of Statistical Software 33(1):1.

Gelman, Andrew and Jennifer Hill. 2007. Data Analysis Using Regression and Multi-
level/Hierarchical Models. Cambridge University Press.

Grimmer, Justin. 2013. Representational Style: What Legislators Say and Why It Matters.
Cambridge University Press.

Grimmer, Justin, Solomon Messing and Sean J. Westwood. 2012. “How Words and Money
Cultivate a Personal Vote: The Effect of Legislator Credit Claiming on Constituent Credit
Allocation.” American Political Science Review 106.

8

Imai, Kosuke and Marc Ratkovic. 2013. “Estimating Treatment Effect Heterogeneity in
Randomized Program Evaluation.” The Annals of Applied Statistics 7(1):443–470.

Jordan, Michael et al. 1999. “An Introduction to Variational Methods for Graphical Models.”
Machine Learning 37:183–233.

Lazarus, Jeffrey and Shauna Reiley. 2010. “The Electoral Benefits of Distributive Spending.”
Political Research Quarterly 63(2):343–355.

Montgomery, Jacob M., Florian M. Hollenbach and Michael D. Ward. 2012. “Improving
Predictions Using Ensemble Bayesian Model Averaging.” Political Analysis 20(3):271–291.

Raftery, Adrian E., Tilmann Gneiting, Fadoua Balabdaoui and Michael Polakowski. 2005.
“Using Bayesian Model Averaging to Calibrate Forecast Ensembles.” Monthly Weather
Review 133:1155–1174.

Shepsle, Kenneth A. et al. 2009. “The Senate Electoral Cycle and Bicameral Appropriations
Politics.” American Journal of Political Science 53(2):343–359.

9

