
Supplemental Appendix for:

Disasters and Elections: Estimating the
Net Effect of Damage and Relief in

Historical Perspective

November 8, 2016

1



Contents

A. Data and Variable Construction 3

B. Framework for Statistical Inference 5

C. Disaster Severity and Aid Delivery 8

D. Alternative Operationalizations of Flood Severity 9

E. Alternative Model Specifications 16

F. Synthetic Control Models 22

G. Placebo Test - 1924 Election 38

H. Turnout and Migration Effects as Alternative Mechanisms 43

2



A. Data and Variable Construction

Our raw data come from four primary sources. For county-level Presidential election

results, we used data from ICPSR’s Historical Election Returns collection.1 For our

measure of the black population in each county, we used the 1920 Census. To estimate

the level of Protestantism in each county, we used the Census of Religious Bodies from

1926, conducted by the US Census Bureau and provided via ICPSR.2 Finally, we gathered

data on the extent and severity of flooding, as well as the relief efforts, from a Red Cross

report written in 1929.3

The 1926 Census of Religious Bodies reports the number of members of various congre-

gations at the county level, but—because it was not a full population census—provides

no denominator in the form of county population. We interpolate county population—

using the 1920 and 1930 Censuses—to the year 1926, to calculate the percentage of each

county’s population that adheres to a Protestant faith. We define Protestantism broadly

to include Churches of Christ, who were more closely tied to other Protestant faiths at

this time than they are today, as well as Anabaptists and Unitarians. The latter category

in the 1926 Census data presumably refers to Biblical Unitarians, since the Universalist

Unitarian movement did not exist in 1926.

To measure flood severity, we employ the Red Cross report on the number of individuals

affected by the flood. This measure is reported as a raw count at the county level, which

we convert to a percentage using total county population. Again, we interpolate county

population using the 1920 and 1930 Censuses, this time to the year 1927. We also gathered

data on land acreage flooded, but focused our analysis on population impacted because

it is a better indicator of actual suffering by voters in the affected areas.

Finally, to measure relief efforts, we use the Red Cross’ data on families provided aid.

1Inter-university Consortium for Political and Social Research. United States Historical Election
Returns, 1824-1968 [Computer File]. ICPSR00001-v3. Ann Arbor, MI: Inter-university Consortium for
Political and Social Research [distributor], 1999-04-26. http://doi.org/10.3886/ICPSR00001.v3.

2U.S. Dept. of Commerce, Bureau of the Census. Censuses of Religious Bodies, 1906-1936. ICPSR
ed. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [producer and distrib-
utor], 1980. http://doi.org/10.3886/ICPSR00008.v1.

3“The Mississippi Valley Flood Disaster of 1927: Official Report of Relief Operations of The American
National Red Cross.” The American National Red Cross, 1929.
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Because the Red Cross reported on families rather than individuals, we use 1920 Census

data on average family size at the county level, as well as total population, to convert

this measure to the percentage of individuals receiving aid in a county.4

4Specifically, Aid in county i in our data is measured as:
Aidi = Ai×FSi

Popi
× 100,

where Ai is the number of families receiving aid in county i, FSi is average family size in county i and
Popi is total population in county i.
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B. Framework for Statistical Inference

The best method for conducting statistical inference in synthetic control models is an open

question. Abadie, Diamond and Hainmueller (2010) recommend placebo-based inference

in research designs with a single treated case. In these situations, the unit treatment effect

can be compared to placebo-treatment effects for all available untreated units using the

same specification, allowing researchers to calculate exact p-values.

Because our research question diverges from the case study approach described by

Abadie, Diamond and Hainmueller (2010), we conduct inference in two ways. The first

is a version of Abadie, Diamond and Hainmueller’s recommended approach, applied to

cases with multiple treated units, as in Acemoglu et al. (2016). The second applies

Fisher’s randomization inference (1935) in the manner proposed by Rosenbaum (2002)

and implemented in the synthetic control context previously by Heersink and Peterson

(2016). We label these alternatives “ADH p-values” (Abadie, Diamond and Hainmueller)

and “Fisher p-values,” respectively.

To compute ADH p-values, we first estimate placebo models for each unit in our control

groups. Consider our primary specification, which uses a restricted donor pool (Donor

Pool #1) and limits the sample to southern counties: our treatment group consists of

all flooded southern counties; our overall control group consists of southern counties that

were not flooded and were not contiguous with flooded counties.5 We are left with 95

treated and 618 control counties. We estimate a placebo model for each of 618 control

counties, using the other 617 control counties as potential matches; we follow the same

specification used for treated counties by restricting the donor pool to the closest 100

matches on the basis of pre-treatment vote share (see description in Section F). After

computing unit treatment effects for all 618 control counties, we take random draws of 95

control counties and calculate the average placebo treatment effect, repeating this process

for 10,000 draws.6 We calculate a p-value by comparing our treatment estimate (the

5We also eliminate counties that are “second-order contiguous,” i.e. those counties that are contigu-
ous to contiguous-to-flooded counties. Finally, we also eliminate counties without a full time-series of
Presidential election results and data on black and Protestant populations.

6Note that we do not include treated counties in our simulations at all—repeated draws of 95 counties
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SATT) to the distribution of average placebo treatment effects across 10,000 iterations.

We repeat this process for each of our specifications to generate p-values reported in

Section F.

In contrast to ADH p-values, Fisher p-values are not calculated with reference to

placebo effects among the control group. The ideas behind randomization inference date

to Fisher’s early work on experimental design (1935). Using randomization inference,

researchers are able to calculate exact p-values without making parametric assumptions,

based strictly on the physical act of randomization. The basic process involves randomly

re-assigning units to treatment and control groups and re-calculating the treatment effect

many times. Under the sharp null hypothesis—no treatment effect for any unit—we

can calculate an empirical null distribution of potential treatment effects that would

occur under alternative versions of randomization.7 By comparing our estimate to this

distribution, we can calculate an exact p-value.

Importantly, Fisher’s method was developed with reference to “physical randomiza-

tion,” and has seen its greatest use in experimental research. However, as Rosenbaum

(2002) shows, Fisher’s method can be applied to observational studies if treatment as-

signment is unconfounded. Because our use of the synthetic control approach accounts

for confounding from both observed and unobserved covariates, a comparison of treated

units to their synthetic control units meets Rosenbaum’s criterion.

Again, consider our primary specification, which restricts the sample to southern coun-

ties. We have 95 pairs of units, each consisting of one treated county and one syn-

thetic control county. We randomly assign treatment within pairs and calculate our test

statistic—the average difference between treated and synthetic control units. We repeat

this process 10,000 times to generate the empirical null distribution, calculating a “Fisher

p-value” by comparing our treatment effect estimate to the null distribution.

We note possible objections to our approach: neither approach to calculating p-values

are limited to control counties. The likely effect is to understate the p-value we calculate, a good reason
to focus on both the Fisher p-values we present and the substantive effect sizes in question.

7The sharp null hypothesis described here is restrictive and, ultimately, a lower bar than the more
typical null hypothesis of “no average treatment effect.”
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produce typical p-values strongly supported by theory. We hope that researchers will

continue to develop methods for statistical inference that can be utilized alongside the

synthetic control method. Our preference is to focus on substantive effect sizes; however,

we provide estimates of uncertainty in the form of p-values for the sake of transparency.

We do not report p-values in the primary manuscript—including them only in the Supple-

mental Appendix—to focus attention on substantive effect sizes and to increase brevity.
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C. Disaster Severity and Aid Delivery

In this section of the Supplemental Appendix, we report the results of several linear mod-

els predicting the distribution of relief aid from the Red Cross. Figure 2 in the primary

manuscript shows the strong correlation between flood severity (percent of population

affected by the flood) and relief efforts (percent of population receiving aid from the

Red Cross). These models assess whether obvious political motivations shaped the relief

effort.

We do not find any evidence that the racial composition of counties influenced the

extent of relief that they received, nor do we find that Republican vote share in 1924

influenced the distribution of relief in 1927. In the south-only sample, 1924 vote share is

marginally significant at the 10 percent level. However, the direction of effect is the oppo-

site we would expect to see if the Republican Coolidge administration were distributing

relief to its supporters—a higher Republican vote share in 1924 is correlated with lower

levels of relief. More importantly, any political considerations are overpowered by the

correlation between flood severity and the relief effort. Bivariate models of the correla-

tion have high R2 values, which are not improved by the inclusion of additional political

and demographic variables.

Table A.1: Models Predicting Receipt of Relief

Full Sample South-Only Sample

(1) (2) (3) (4)
Flood Severity 0.691*** 0.676*** 0.699*** 0.696***

(0.02) (0.03) (0.03) (0.03)
Repub. Vote Share, 1924 -0.085 -0.147

(0.05) (0.08)
Pct. Black -0.005 -0.023

(0.03) (0.04)
N 133 133 98 98
R2 0.865 0.868 0.865 0.870

Linear models of relief efforts. Relief is the percentage of county population receiving aid
from the Red Cross. Sample is limited to flooded counties.
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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D. Alternative Operationalizations of Flood Severity

In this section, we consider a wide range of operational definitions for flood severity. First,

we model flooding as a binary treatment variable, to estimate the net effect of the flood

on vote share, averaging across all flooded counties. Our estimates suggest that, in the

mean flooded county, Hoover lost 10.8 percentage points compared to the counterfactual

outcome (Table A.2, Model 2). The treatment effect appears to have spilled over into

contiguous counties, which witnessed a 7.4 percentage point drop in Republican vote

share, compared to expectations (Table A.2, Model 3).

It is important to note that effect estimates reported in the primary manuscript are

presented in this section alongside many estimates that were excluded. Specifically, Figure

3 in the primary manuscript includes treatment effect estimates from a model with a

binary treatment variable (Table A.2), a model with subjective cutpoints (Table A.3,

Column 1), a model splitting treatment severity into three quantiles (Table A.3, Column

3) and a model splitting treatment severity into five quantiles (Table A.4, Column 3). In

the manuscript’s discussion and conclusion, we focus on the effect estimate from a binary

model (Table A.2, Model 2) because it is a straightforward quantity, easily interpretable,

restricted to the most relevant within-region (southern) comparison, and is also among

the more conservative estimates across our many specifications.

To investigate treatment effect heterogeneity, we estimate a series of models in which

the treatment variable is divided into a number of categories. As discussed in the primary

manuscript, we use both subjective and objective cutpoints. These models all take the

following basic form:

vi1928 − vi1924 = β0 + αγi + θδi + µ,

where γ is a vector of covariates and δ is a vector of treatment dummies. In this difference-

in-differences model, we focus on the value of θ—in some specifications we incorporate a

single binary treatment dummy; in other specifications we separate treatment by severity

according to quantiles and subjective judgments. Subjective cutpoints divide the sample

into four categories of flood severity: 0.1 to 5 percent, 5 to 20 percent, 20 to 50 percent
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and 50+ percent. Objective cutpoints divide the data into various numbers of quantiles:

3, 4, 5, and 8. These results are reported in Tables A.3, A.4, and A.5.

We also exploit the continuous nature of our treatment variable (percent of popula-

tion affected by the flood) to study treatment effect heterogeneity in greater depth. In

Table A.5, Columns 3 and 4, we estimate models that incorporate a binary treatment

variable (flood = 1) and a continuous variable capturing flood severity. In this model,

the coefficient on the binary treatment variable represents the effect of moving from 0

percent to 0.1 percent flood severity; the coefficient on the continuous treatment variable

represents the effect of increasing flood severity within the treated category.

The results in a sample restricted to the south indicate that lightly-flooded counties

exhibit large negative effects and that the treatment effect diminishes as flooding becomes

more severe (a positive coefficient estimate for the continuous measure of flood severity).

However, in the full nationwide sample, this effect reverses: we still observe a negative

point estimate for the flood/treatment dummy; however, as flood severity increases, the

effect on Republican vote share becomes larger and more negative. To illustrate the

expected treatment effect at varying levels of treatment intensity, we plot the predicted

effects when flood severity varies across the range observed in our data (from 0.1 percent

of the population affected to over 100 percent of the population affected8). As Figure A.1

shows, the negative effect of flooding diminishes as severity increases in the southern

sample, but when we widen the sample, we find that increasing severity increases the

flood’s negative effect. Overall, the evidence for heterogeneous treatment effects is mixed

across different specifications.

8Flood severity in our data goes beyond 100 percent because the Red Cross estimated the number
of individuals impacted by the flood in each county, and we convert this to a percentage using census
population figures, interpolated to 1927.
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Table A.2: Flooding and Republican Vote Share

South-Only Sample Full Sample

(1) (2) (3) (4) (5) (6)
Treat (binary) -18.323*** -10.814*** -12.342*** -1.680 -5.486*** -5.301***

(1.61) (1.66) (1.67) (1.61) (1.56) (1.56)
Contiguous (1st-order) -10.373*** -7.367*** 3.412* 0.790

(1.71) (1.66) (1.56) (1.46)
Contiguous (2nd-order) -5.918** -4.184 6.068*** 2.618

(2.28) (2.16) (1.83) (1.70)
Pct. Black -0.260*** -0.240*** 0.154*** 0.152***

(0.02) (0.02) (0.02) (0.02)
Pct. Protestant 0.164*** 0.138*** 0.332*** 0.331***

(0.04) (0.04) (0.02) (0.02)
N 996 980 980 3077 3049 3049

Linear models of Republican vote share using a binary treatment variable for flooded
counties and binary measures of contiguity to flooded counties (first-order contiguous
counties are adjacent to flooded counties; second-order contiguous counties are adjacent
to counties that are first-order contiguous).
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A.3: Flooding and Republican Vote Share

Subjective Cutpoints Three Quantiles

South Full Sample South Full Sample
(1) (2) (3) (4)

Low Severity -13.089** -7.006
(4.19) (3.59)

Med-Low Severity -10.223*** -0.736
(2.46) (2.27)

Med-High Severity -15.453*** -10.433***
(2.89) (3.04)

High Severity -4.517 -10.025**
(3.21) (3.66)

Pct. Black -0.266*** 0.164*** -0.266*** 0.161***
(0.02) (0.02) (0.02) (0.02)

Pct. Protestant 0.167*** 0.324*** 0.169*** 0.326***
(0.04) (0.02) (0.04) (0.02)

Quantile3 1 -9.992*** -3.467
(2.57) (2.56)

Quantile3 2 -14.882*** -3.475
(2.63) (2.53)

Quantile3 3 -7.219** -10.090***
(2.73) (2.68)

N 980 3049 980 3049

Linear models of Republican vote share. Subjective cutpoints (0.1 - 5 percent, 5 - 20
percent, 20 - 50 percent and 50+ percent) are reported in Models 1 & 2. Results based
on dividing the treatment variable into three quantiles are reported in Models 3 & 4.
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A.4: Flooding and Republican Vote Share

Four Quantiles Five Quantiles

South Full Sample South Full Sample
(1) (2) (3) (4)

Quantile4 1 -9.642** -3.998
(2.95) (2.94)

Quantile4 2 -12.338*** -1.898
(2.97) (2.91)

Quantile4 3 -15.789*** -7.151*
(3.00) (2.96)

Quantile4 4 -4.629 -9.611**
(3.15) (3.08)

Quantile5 1 -8.263* -5.494
(3.28) (3.24)

Quantile5 2 -13.164*** 2.281
(3.33) (3.31)

Quantile5 3 -14.238*** -4.500
(3.27) (3.25)

Quantile5 4 -14.023*** -11.420***
(3.41) (3.36)

Quantile5 5 -3.419 -9.296**
(3.43) (3.39)

Pct. Black -0.268*** 0.160*** -0.271*** 0.163***
(0.02) (0.02) (0.02) (0.02)

Pct. Protestant 0.168*** 0.327*** 0.171*** 0.324***
(0.04) (0.02) (0.04) (0.02)

N 980 3049 980 3049

Linear models of Republican vote share. Treatment (flood severity) is separated into four
quantiles (Models 1 & 2) or five quantiles (Models 3 & 4).
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A.5: Flooding and Republican Vote Share

Eight Quantiles Continuous Treatment

South Full Sample South Full Sample
(1) (2) (3) (4)

Quantile8 1 -13.001** -8.047*
(4.19) (4.08)

Quantile8 2 -6.418 0.247
(4.03) (4.20)

Quantile8 3 -13.578** 1.972
(4.16) (4.08)

Quantile8 4 -11.062** -5.851
(4.16) (4.09)

Quantile8 5 -19.784*** -3.310
(4.22) (4.20)

Quantile8 6 -11.934** -10.875**
(4.08) (4.13)

Quantile8 7 -7.852 -11.667**
(4.24) (4.28)

Quantile8 8 -1.142 -7.932
(4.35) (4.21)

Treat (Binary) -13.520*** -3.148
(2.18) (2.02)

Flood Severity (Continuous) 0.090 -0.093
(0.05) (0.05)

Pct. Black -0.271*** 0.163*** -0.269*** 0.162***
(0.02) (0.02) (0.02) (0.02)

Pct. Protestant 0.171*** 0.325*** 0.172*** 0.326***
(0.04) (0.02) (0.04) (0.02)

N 980 3049 980 3049

Linear models of Republican vote share. Treatment (flood severity) is separated into four
quantiles (Models 1 & 2) or five quantiles (Models 3 & 4).
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Figure A.1: Heterogeneous treatment effects at varying levels of flood severity. At higher
levels of flood severity, the estimated treatment effect is statistically indistinguishable
from zero.

15



E. Alternative Model Specifications

In the primary manuscript, we focus our attention on the total effect of flooding in the US

south in 1927, estimating the effect of flood damage, without accounting for differentiation

in terms of relief efforts. In contrast, Gasper and Reeves (2011) and other scholars in this

literature have often modeled incumbent vote share as a function of both disaster severity

(monetary damages, for instance) and relief efforts (such as disaster declarations). Our

motivations for this departure are two-fold: first, flood severity and the extent of relief

aid are closely correlated in our case. This makes it very difficult to parse the two effects

accurately, as multicollinearity decreases the stability of our estimates.9 Second, our

interest is not in whether increased levels of aid marginally increase support for Hoover

in 1928—rather, we are interested in the overall or total effect of flooding, including

the disaster response that followed it. It may be the case that aid increases vote share.

But if it only does so at the margins, and voters still—in total—punish the incumbent

for the flood’s overall impact, it suggests that blind retrospection dominates attentive

retrospection in this case.

To ensure full transparency, we report a series of models that mimic those of Gasper

and Reeves in this section. In these models, we incorporate separate variables that cap-

ture flood severity and aid efforts (both measured as a percentage of county population).

The results for a southern-only sample are reported in Table A.6, column 1. Although the

coefficient estimates are in the expected direction—more severe flooding reduces Repub-

lican vote share, while more generous aid increases it—neither coefficient is statistically

significant. Moreover, these results are arguably driven by the modeling choice: if we

incorporate a treatment dummy as well, the coefficient signs flip, though they remain

insignificant. The choice to add a treatment dummy is defensible, because a linear model

without it assumes that the difference between 0% flooding and 1% flooding is the same

as that between 1% flooding and 2% flooding. In contrast, the model we report in column

2 (and in other specifications elsewhere in this Appendix) allows the effect of moving from

9Gasper and Reeves, to take one example, have a significantly larger n; moreover, their blunter
measure of aid (disaster declarations) is also less correlated with disaster severity than our’s.
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no flooding to very light flooding to differ from that of increasing flood intensity, among

flooded counties. Because we estimate such large differences between non-flooded and

lightly-flooded counties—as shown in Table A.6 as well as throughout the paper—it is

important that we incorporate such a treatment dummy.

Table A.6, columns 3 and 4, and Table A.7 reinforce this point. In the former, we

incorporate an interaction effect between flood severity and relief aid. In the latter, we

repeat these analyses in the full sample. Across these many specifications, the distinct

effects of flood severity and relief efforts vary wildly. We argue that this is a result of

their close correlation and our inability to parse the distinct effects accurately, problems

that threaten other research in this literature.

Finally, we apply a more flexible specification in Table A.8, using polynomials to allow

the effect of flood severity to vary more dramatically than in other models. We use linear,

quadratic and cubic terms to capture the impact of flood severity; in some models we also

include flexible polynomial terms for the size of each county’s black and Protestant pop-

ulations. Because models with higher-order polynomials make interpretation of overall

effects difficult, we plot predicted values across the range of flood severity in Figure A.2.
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Table A.6: Flooding, Relief Aid and Republican Vote Share — Southern Sample

(1) (2) (3) (4)
Flood Severity (Continuous) -0.289* 0.053 -0.233* 0.032

(0.11) (0.13) (0.11) (0.13)
Relief Aid (Continuous) 0.291 0.053 -0.427 -0.114

(0.17) (0.17) (0.24) (0.25)
Pct. Black -0.286*** -0.269*** -0.280*** -0.269***

(0.02) (0.02) (0.02) (0.02)
Pct. Protestant 0.211*** 0.173*** 0.193*** 0.172***

(0.04) (0.04) (0.04) (0.04)
Treat (Binary) -13.350*** -11.920***

(2.24) (2.74)
Severity x Aid 0.007*** 0.002

(0.00) (0.00)
N 980 980 980 980

Linear models of Republican vote share. Treatment is, alternately, measured as a contin-
uous variable or separated into both a continuous variable (among flooded counties) and
a dummy variable (distinguishing flooded from non-flooded counties).
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A.7: Flooding, Relief Aid and Republican Vote Share — Full Sample

(1) (2) (3) (4)

Flood Severity (Continuous) -0.185 -0.082 -0.162 -0.091
(0.12) (0.14) (0.12) (0.14)

Relief Aid (Continuous) 0.066 -0.015 -0.167 -0.107
(0.17) (0.18) (0.26) (0.27)

Pct. Black 0.159*** 0.162*** 0.161*** 0.162***
(0.02) (0.02) (0.02) (0.02)

Pct. Protestant 0.328*** 0.326*** 0.327*** 0.326***
(0.02) (0.02) (0.02) (0.02)

Treat (Binary) -3.198 -2.617
(2.11) (2.45)

Severity x Aid 0.002 0.001
(0.00) (0.00)

N 3049 3049 3049 3049

Linear models of Republican vote share in the full, nationwide sample. Treatment is,
alternately, measured as a continuous variable or separated into both a continuous variable
(among flooded counties) and a dummy variable (distinguishing flooded from non-flooded
counties).
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A.8: Flooding and Republican Vote Share –
Polynomial Regression Models

(1) (2) (3) (4)
Flood Severity -0.266** -0.536** -0.691*** -0.391

(0.10) (0.20) (0.20) (0.33)
Flood Severity, Sq. 0.002 0.009 0.014* 0.008

(0.00) (0.01) (0.01) (0.01)
Flood Severity, Cubed -0.000 -0.000* -0.000

(0.00) (0.00) (0.00)
Pct. Black 0.161*** 0.872*** 1.784*** 1.794***

(0.02) (0.05) (0.11) (0.11)
Pct. Black, Sq. -0.012*** -0.049*** -0.050***

(0.00) (0.00) (0.00)
Pct. Black, Cubed 0.000*** 0.000***

(0.00) (0.00)
Pct. Protestant 0.327*** 0.474*** 0.322* 0.323*

(0.02) (0.07) (0.14) (0.14)
Pct. Prot, Sq. -0.004*** -0.001 -0.001

(0.00) (0.00) (0.00)
Pct. Prot., Cubed -0.000 -0.000

(0.00) (0.00)
Treat (Binary) -3.522

(3.04)
N 3049 3049 3049 3049

Polynomial models of Republican vote share in the full, nationwide sample. Flood severity
is captured by linear, quadratic and cubic terms. In some specifications, covariates are
also allowed to enter as polynomial terms.
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Figure A.2: Estimated effects of flooding on Republican vote share at varying levels of
flood severity, based on polynomial regression models (Table A.2).
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F. Synthetic Control Models

As discussed in the primary manuscript, we check the robustness of our empirical results

using the synthetic control method. In the manuscript, we report the results of one iter-

ation of this strategy, in which we restrict the sample to southern counties and construct

the donor pool for county i as the 100 most closely-matched non-treated, non-contiguous

southern counties in terms of pre-treatment vote share (1896-1924). To ensure that our

synthetic control results are not sensitive to specific modeling choices, we expanded our

analysis in five ways. First, we expanded the analysis to a full nationwide sample. Sec-

ond, we employed an alternative metric for trimming the donor pool, by selecting the

counties most closely matched to treated county i in terms of both percent black and

percent Protestant; third, we used a larger donor pool (500 control counties) rather than

the 100 reported in the manuscript. We repeated this expansion to 500 control counties

for models trimmed on the basis of pre-treatment vote share and for models trimmed

on the basis of pct. black and pct. Protestant. Fourth, we estimated an extremely

conservative model, in which the donor pool was restricted to counties that bordered

flooded counties. In the absence of treatment, these counties have the most prima facie

validity as a control group. This model is extremely conservative, however, because we

expect treatment spillovers to influence Republican vote share in adjacent counties; by

restricting the donor pool to these adjacent counties, we expect these models to be biased

toward a null effect. Fifth, we estimated a slightly less conservative model, in which we

restrict the donor pool to counties in flooded states (i.e. states that experienced flooding

in at least one county), but do not include contiguous counties in the donor pool.

In the interest of brevity, we report point estimates from each set of model runs in

Table A.9. This table also includes p-values derived using the process described in Sec-

tion B. We also report the results of each run as a set of two time-series graphs. In each

run, the first graph shows Republican two-party vote share in the treated and synthetic

control units over time; the second graph shows the difference between the treatment

group and synthetic control group over time. In the most extreme case, Donor Pool #1
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using southern cases only (Figure A.3), we estimate a nearly 20 percentage point decline

in support for Herbert Hoover. In the most conservative case, Donor Pool #5 using

both southern and northern cases (Figure A.13), we estimate a decline of 4.09 percent-

age points, a substantively large effect.10 We summarize treatment effect estimates and

p-values across model specifications in Table A.9.

Donor Pool Descriptions

-Donor Pool 1: The donor pool for each treated county i is composed of the 100 counties

most closely matched to county i in terms of pre-treatment vote share from 1896-1924

(mean of squared differences).

-Donor Pool 2: The 100 counties most closely matched to county i in terms of percent

black and percent Protestant.

-Donor Pool 3: The 500 counties most closely matched to county i in terms of pre-

treatment vote share.

-Donor Pool 4: The 500 counties most closely matched to county i in terms of percent

black and percent Protestant.

-Donor Pool 5: All contiguous-to-flooding counties, i.e. counties which touched a

county that was flooded.

-Donor Pool 6: All non-flooded, non-contiguous counties in flooded states, i.e. counties

in states that were flooded except those counties that were, themselves, flooded or which

were contiguous to a flooded county.

Finally, to study the heterogeneity in treatment effects in our synthetic control results,

we plot each treated units’ treatment effect against flood severity. As Figure A.15 shows,

our treatment effect estimates are generally stable across severity levels; contrary to the

linear models reported earlier, there does not appear to be systematically diminishing or

increasing treatment effects at higher levels of flooding.

10This case is arguably too conservative, as we expect cross-county spillover effects. As we show in
Table A.2, contiguous counties also experienced a decline in support for Hoover. Spillovers are theoret-
ically plausible based on local economic impacts or familial ties that cross county borders. Therefore,
our 4.09 point estimate should be considered a lower bound on the likely treatment effect.
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Table A.9: Treatment Effect Estimates Across Samples and Specifications

Treatment ADH Fisher
Effect P-Value P-Value

Southern Sample
Donor Pool #1 -19.77 < 0.0001 < 0.0001
Donor Pool #2 -12.02 < 0.0001 < 0.0001
Donor Pool #3 -16.34 < 0.0001 < 0.0001
Donor Pool #4 -15.95 < 0.0001 < 0.0001
Donor Pool #5 -5.29 < 0.0001 < 0.0001
Donor Pool #6 -9.91 < 0.0001 < 0.0001

Full Sample
Donor Pool #1 -15.46 < 0.0001 < 0.0001
Donor Pool #2 -9.88 < 0.0001 < 0.0001
Donor Pool #3 -12.12 < 0.0001 < 0.0001
Donor Pool #4 -11.72 < 0.0001 < 0.0001
Donor Pool #5 -4.09 < 0.0001 < 0.0001
Donor Pool #6 -8.21 < 0.0001 < 0.0001

Treatment effects, estimated using the synthetic control method, across samples and
donor pool specifications. Southern sample n = 95; full sample n = 130.
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Figure A.3: Top panel: treated and synthetic control units’ Republican two-party vote
share, 1896-1936. Bottom panel: the difference between treated and synthetic control
units’ Republican vote share, 1896-1936. The sample is restricted to southern counties,
and the donor pool consists of the closest 100 matches to county i in terms of pre-
treatment vote share. 25



Figure A.4: Top panel: treated and synthetic control units’ Republican two-party vote
share, 1896-1936. Bottom panel: the difference between treated and synthetic control
units’ Republican vote share, 1896-1936. The sample is restricted to southern counties,
and the donor pool consists of the closest 100 matches to county i in terms of black and
Protestant populations. 26



Figure A.5: Top panel: treated and synthetic control units’ Republican two-party vote
share, 1896-1936. Bottom panel: the difference between treated and synthetic control
units’ Republican vote share, 1896-1936. The sample is restricted to southern counties,
and the donor pool consists of the closest 500 matches to county i in terms of pre-
treatment vote share. 27



Figure A.6: Top panel: treated and synthetic control units’ Republican two-party vote
share, 1896-1936. Bottom panel: the difference between treated and synthetic control
units’ Republican vote share, 1896-1936. The sample is restricted to southern counties,
and the donor pool consists of the closest 500 matches to county i in terms of black and
Protestant populations. 28



Figure A.7: Top panel: treated and synthetic control units’ Republican two-party vote
share, 1896-1936. Bottom panel: the difference between treated and synthetic control
units’ Republican vote share, 1896-1936. The sample is restricted to southern counties,
and the donor pool consists of flood-adjacent counties (i.e. counties contiguous to a
flooded county). 29



Figure A.8: Top panel: treated and synthetic control units’ Republican two-party vote
share, 1896-1936. Bottom panel: the difference between treated and synthetic control
units’ Republican vote share, 1896-1936. The sample is restricted to southern coun-
ties, and the donor pool consists of non-flooded, non-contiguous counties in states that
experienced flooding. 30



Figure A.9: Top panel: treated and synthetic control units’ Republican two-party vote
share, 1896-1936. Bottom panel: the difference between treated and synthetic control
units’ Republican vote share, 1896-1936. The sample consists of all US counties, and the
donor pool consists of the closest 100 matches to county i in terms of pre-treatment vote
share. 31



Figure A.10: Top panel: treated and synthetic control units’ Republican two-party vote
share, 1896-1936. Bottom panel: the difference between treated and synthetic control
units’ Republican vote share, 1896-1936. The sample consists of all US counties, and
the donor pool consists of the closest 100 matches to county i in terms of black and
Protestant populations. 32



Figure A.11: Top panel: treated and synthetic control units’ Republican two-party vote
share, 1896-1936. Bottom panel: the difference between treated and synthetic control
units’ Republican vote share, 1896-1936. The sample consists of all US counties, and the
donor pool consists of the closest 500 matches to county i in terms of pre-treatment vote
share. 33



Figure A.12: Top panel: treated and synthetic control units’ Republican two-party vote
share, 1896-1936. Bottom panel: the difference between treated and synthetic control
units’ Republican vote share, 1896-1936. The sample consists of all US counties, and
the donor pool consists of the closest 500 matches to county i in terms of black and
Protestant populations. 34



Figure A.13: Top panel: treated and synthetic control units’ Republican two-party vote
share, 1896-1936. Bottom panel: the difference between treated and synthetic control
units’ Republican vote share, 1896-1936. The sample consists of all US counties, and
the donor pool consists of flood-adjacent counties (i.e. counties contiguous to a flooded
county). 35



Figure A.14: Top panel: treated and synthetic control units’ Republican two-party vote
share, 1896-1936. Bottom panel: the difference between treated and synthetic control
units’ Republican vote share, 1896-1936. The sample consists of all US counties, and the
donor pool consists of non-flooded, non-contiguous counties in states that experienced
flooding. 36



Figure A.15: Heterogeneous treatment effects, generated from synthetic control models
under varied donor pool and sample selection criteria. Results based on a restricted
sample appear in the left panels; results based on a full nationwide sample appear on
the right. Results from different donor pools are arranged from top to bottom. In each
panel, we plot unit-specific treatment effects against flood severity and illustrate the
relationship between them with a locally-weighted regression line. In most cases, there
does not appear to be any specific relationship between flood severity and treatment effect
magnitude.
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G. Placebo Test - 1924 Election

One possible threat to inference in our study arises from time-varying heterogeneity. In

the regression models that we report, this would manifest in treatment and control groups

that do not share parallel trends in Republican vote share under the counterfactual.

This is a real possibility, given the nature of the area flooded: compared to southern

control counties, flooded counties in the south have larger black populations and are

less Protestant. As we note in the main manuscript, Hoover was alleged to be against

segregation, and his opponent was the first Catholic nominated on a major-party ticket.

Both of these characteristics of the 1928 election make the flooded counties—at least those

in the south—less likely to support Hoover. A larger black population would motivate

white voters to support Smith, out of fear that Hoover would support desegregation and

undermine their positions of political and economic power. A less Protestant population,

meanwhile, would mean that the anti-Smith backlash among Protestants would be less

pronounced, resulting in less support for Hoover. Thus, even in the absence of a flood in

1927, we would expect Hoover to do particularly poorly in treated counties.

We control for both characteristics of the treated counties explicitly in our regres-

sion models, by including the percent black from the 1920 US Census, and the percent

Protestant from the 1926 Census of Religious Bodies. In a difference-in-differences frame-

work, our identifying assumption is that—conditional on observed covariates (percent

black, percent Protestant)—trends in Republican vote share in the treatment and control

groups are parellel under the counterfactual. Naturally, we cannot assess this assumption

directly; researchers often check the plausibility of the parallel trends assumption by plot-

ting each group’s pre-treatment trends in the outcome variable. If pre-treatment trends

in the treatment and control groups are roughly parallel, it strengthens our confidence in

inferences drawn from standard difference-in-differences models. Using this metric, the

parallel trends assumption does not appear to hold: as Figure A.16 shows, pre-treatment

trends in the treatment and control groups do not mirror each other very closely.11

11Note that this approach ignores the “conditional on observed covariates” qualifier mentioned
previously—thus, any claims based on plotting trends in this way should be considered tentative.
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Figure A.16: Trends in Republican two-party vote share across flooded (treated) and
non-flooded (control) counties in the south. Pre-treatment (1896-1924) trends do not
match well, suggesting that the parallel trends assumption is violated.
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Concern regarding the parallel trends assumption—or time-varying heterogeneity—

motivated our use of the synthetic control method. Under assumptions briefly outlined

in the manuscript—and described in much greater detail in Abadie, Diamond and Hain-

mueller (2010)—the synthetic control method identifies unit-specific treatment effects

even in cases of time-varying heterogeneity between treatment and control units. We

conceptualize this approach slightly differently, thinking of the synthetic control method

as a type of data pre-processing analogous to matching (Ho et al. 2007), which makes

the assumption of no time-varying heterogeneity more plausible. In essence, we trim

the control group using the synthetic control algorithm to ensure that the remaining

control units very closely match the treated group. The idea mimics studies that use

cross-sectional matching methods prior to difference-in-differences estimation (see, e.g.,

Ladd and Lenz 2009) but improves upon them by using a much more robust approach to

matching.12

However one views the synthetic control approach when applied to multiple treated

units, we expect treatment effects from the 1927 flood to manifest only in the 1928

elections and—to the extent that there are residual effects—in elections that follow. If

we observe non-zero treatment effects prior to the 1928 election when using the synthetic

control method, it would raise concerns about our empirical strategy. For instance, if we

observe a negative “treatment effect” in 1924, it suggests that our negative treatment

effect estimates for 1928 could be a function of time-varying heterogeneity unaccounted

for by the synthetic control approach.

To assess this possibility, we replicate our analysis of the 1928 election in the case of

1924. Specifically, we performed two sets of analysis, mirroring the analysis reported in

the main manuscript. First, we estimated a linear model of the form

vi1924 − vi1920 = β0 + αγi + θδi + µ,

which is precisely analogous to the main model in the manuscript and to the description in

12For a similar interpretation of the synthetic control method, see Heersink and Peterson (2016).
In practice we report the simple difference between treated and synthetic control units, because the
differences in effect estimates are trivial.
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Table A.10: Placebo Regression Models - 1924 Election

(1) (2)
Treat (binary) 0.555 -0.052

(1.04) (1.12)
Pct. Black 0.051***

(0.02)
Pct. Protestant 0.032

(0.03)
N 974 973

Linear models of vote share in flooded counties, in 1924. Placebo models use the 1927
Mississippi Flood to predict vote share at the county level in 1924.
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Section D of this Supplemental Appendix. γ is our treatment variable—in this context,

we focus on a binary treatment variable, rather than estimating a model allowing for

heterogeneous treatment effects across levels of flood severity. Second, we replicate our

synthetic control analysis, constructing synthetic control units for each flooded county

over the period 1896-1920.13

Recall that our regression-based estimate of the flood’s effect was -10.8 percentage

points in a sample restricted to southern counties; among the full sample, the magnitude

of our estimate declined to -5.5 percentage points, which was still significant at the 1%

level. In contrast, equivalent regression models applied to the 1924 election—as described

in the equation above—result in null results. In the southern sample, with control vari-

ables, our point estimate is -0.05 percentage points, with a p-value of approximately 0.96

and a confidence interval of [-2.26,2.15]. The full results of this model, and a sparse model

without control variables, are reported in Table A.10.

Applying the synthetic control method, we estimate a placebo treatment effect on the

1924 election of 2.23 percentage points among treated counties in the south (n = 95)

and 1.05 percentage points among all treated counties (n = 130). These estimates have

p-values below 0.05 using either approach to statistical inference outlined in Section B,

13We replicate the analysis from the main manuscript, using Donor Pool #1, in which the set of donor
counties is trimmed on the basis of pre-treatment vote share. For additional details, see the discussion
in the previous section.
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though the p-values are much larger than those of our main results from 1928.

These findings provide suggestive evidence that time-varying heterogeneity cannot ac-

count for our large negative estimates of the flood’s impact on Hoover’s performance in

1928. In the placebo regression, we estimate a fairly precise null effect of the flood on

vote share in 1924. In the synthetic control models, our results in 1924 are statistically

significant but the point estimates are of much smaller magnitude than our estimates

for the 1928 election; importantly, they are also of the opposite sign. While reversion to

the mean could explain a portion of our estimated effect in 1928, the large differences in

magnitude from 1924 to 1928 mean that it cannot account for the full -19.8 percentage

point effect that we estimate.
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H. Turnout and Migration Effects as Alternative

Mechanisms

The primary contribution of our paper is to show the large negative effect of the 1927

Mississippi Flood on Herbert Hoover’s vote share, in affected counties, in the 1928 pres-

idential election. We interpret substantial negative estimates of the flood’s treatment

effect as evidence for the blind retrospection hypothesis, as voters apparently punished

the incumbent Republican party candidate for the misfortune they experienced from

flooding.

Two alternative mechanisms that would account for a decline in Hoover’s two-party

vote share center on turnout in, and out-migration from, flooded counties. Turnout could

account for a decline in support for Hoover if Hoover supporters were unable to reach

polling stations or chose not to turnout. Note that this would require a differential impact

of the flood on Hoover supporters’ ability or willingness to turn out, relative to Smith

supporters. Using data on county-level voter turnout, we explored the possibility that

turnout in flooded counties was dampened in 1928—we show trends in turnout between

treated and control counties over time in Figure A.17. In both the southern and the

full sample, we find no evidence that turnout in 1928 fell below the trend line in flooded

counties. In the full sample, for instance, voter turnout in non-flooded counties increased

by 4.92 points from 1924 to 1928. Meanwhile, in flooded counties, voter turnout increased

by 5.4 points over the same period. If turnout among Smith supporters in flooded counties

increased, or turnout among Hoover supporters decreased, or both, a turnout effect could

still explain our findings. However, we see little reason to expect Hoover supporters to be

differentially impacted by the flood in terms of voter turnout; moreover, the differential

effect would have to be dramatic to account for the magnitude of treatment effects that

we estimate.

The second possible mechanism concerns out-migration from flooded counties. If

Hoover supporters left flooded counties en masse between 1924 and 1928—either in re-

sponse to the flood or for other reasons—it could explain Hoover’s poor performance in

43



Figure A.17: Trends in voter turnout across flooded (treated) and non-flooded (control)
counties. The top panel shows turnout rates in the south only; the bottom panel utilizes
the full sample, including northern counties. Turnout rates do not appear to decrease in
treated counties in 1928.
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flooded counties. The period under consideration coincides with the Great Migration,

which shifted the concentration of black residents from the rural south to the urban

centers of the north. Based on population counts from the 1920 and 1930 censuses, how-

ever, we do not believe that an out-migration mechanism can explain our result. Among

southern counties, the population of flooded areas actually grew faster, on average, than

non-flooded areas over the period 1920-1930. Moreover, for out-migration to explain such

a sharp drop in support for Hoover, Hoover supporters would have to be much more likely

to leave flooded counties, and simultaneously no more likely to leave non-flooded coun-

ties, than Smith supporters. Theoretically, we find this possibility unlikely. Empirically,

the magnitude of differential out-migration that would be necessary are implausible: to

explain a 15 point decline in support for Hoover via out-migration alone, flooded counties

would have to lose roughly two-thirds of their Republican voters, while keeping all of their

Democratic voters.
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