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A Proof of Relative Efficiency of Oracle Estimator and

OLS.

Proof: Denote as XS the submatrix of X for which βk 6= 0 and the Gram matrix for X as

lim
N→∞

1

N

N∑
i=1

X>i Xi = ΣX (1)

and in block-partition form

ΣX =

ΣSS ΣSS{

Σ>
SS{ ΣS{S{

 (2)

ΣX is invertible, since the least squares estimate exists and is unique. Since ΣX is invertible, every

square submatrix of ΣX is also invertible.

The asymptotic relative efficiency of the least squares estimate and Oracle estimate is then

lim
N→∞

σ2

N
Tr {Σ−1}

σ2

N
Tr
{

Σ−1
SS

} =
Tr {Σ−1}
Tr
{

Σ−1
SS

} (3)

By the block inverse partition formula,

Tr
(
Σ−1
X

)
= Tr


ΣSS ΣSS{

Σ>
SS{ ΣS{S{

−1 (4)

= Tr

{(
ΣSS − ΣSS{Σ−1

S{S{Σ
>
SS{

)−1
}

+ Tr

{(
ΣS{S{ − Σ>

SS{Σ
−1
S{S{ΣSS{

)−1
}

(5)

Consider the first summand inside the parentheses on the r.h.s. and apply Morrison-Woodbury-

Sherman(
ΣSS − ΣSS{Σ−1

S{S{Σ
>
SS{

)−1

= Σ−1
SS + Σ−1

SSΣSS{

(
ΣS{S{ − Σ>

SS{Σ
−1
SSΣSS{

)−1
Σ>
SS{Σ

−1
SS (6)

By Cauchy-Schwarz, the term ΣS{S{ − Σ>
SS{Σ

−1
SS is positive semi-definite, see e.g. Tripathi (1999,

esp. the last line of the proof of Theorem 1.1.). By symmetry, we get an analogous result for the

second summand in side the trace operator,
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This gives

Tr
(
Σ−1
X

)
= Tr

(
Σ−1
SS

)
+ Tr

(
Σ−1
S{S{

)
+ (7)

Tr
(

Σ−1
SSΣSS{

(
ΣS{S{ − Σ>

SS{Σ
−1
SSΣSS{

)−1
Σ>
SS{Σ

−1
SS

)
+

Tr
(

Σ−1
S{S{Σ

>
SS{

(
ΣSS − ΣSS{Σ−1

S{S{Σ
>
SS{

)−1
ΣSS{Σ−1

S{S{

)
≥ Tr

(
Σ−1
SS

)
(8)

and therefore an estimator with the Oracle Property is asymptotically more efficient than least

squares.

To establish when equality holds, if X = XS, then clearly the asymptotic relative efficiency is

1. For only if, the inequality above is an equality only when Tr
(

Σ−1
S{S{

)
= 0, which is not possible

unless X = XS.

B Preliminaries

We offer three sets of preliminary results . First, we show that the weights, ŵk, and magnitude of

|β̂k| are inversely related. Second, we formally differentiate between “large” and “small” estimates.

This will help us derive bounds on ŵk. Third, we provide a bound on λ̂. Note that we refer to the

kth order statistic of vector a as a(k), where a(1) is the smallest element of a.

B.1 Inverse relationship between weights and effect size.

Proposition 1

∂ŵk

∂|β̂k|
= −λ̂

√
1̂

σ2
Var(wk|·) < 0. (9)

Derivation: The weights are calculated as

ŵk = E(wk|·) =

∫∞
w=0

we
−wγ̂−λ̂w

√
1̂
σ2
|β̂k|

dw∫∞
w=0

e
−wγ̂−λ̂w

√
1̂
σ2
|β̂k|

dw

. (10)
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Denote as A = e
−wγ̂−λ̂w

√
1̂
σ2
|β̂k|

. Then,

∂ŵk

∂|β̂k|
=
−
∫∞
w=0

Adw ×
∫∞
w=0

w2λ̂

√
1̂
σ2Adw +

∫∞
w=0

wAdw
∫∞
w=0

wλ̂

√
1̂
σ2Adw(∫∞

w=0
Adw

)2 (11)

= −λ̂

√
1̂

σ2

{∫∞
w=0

w2Adw∫∞
w=0

Adw
−
(∫∞

w=0
wAdw∫∞

w=0
Adw

)2
}

(12)

= −λ̂

√
1̂

σ2
Var(wk|·) (13)

where moving the derivative under the integral in the first line is allowed by the monotone conver-

gence theorem.

This result allows us to associate the largest weight, ŵ(K) with the smallest estimate, β̂(1), the

second largest weight with the second smallest estimate, and so on. In general, weight ŵ(k) is

associated with |β̂|(K−k+1)

B.2 Separating large and small weights and effect estimates.

We next distinguish between weights near zero from weights close to the maximal value γ̂. This is

our equivalent of either assuming the estimates are “well-separated” (Belloni and Chernozhukov,

2013), or separating “relevant” from “irrelevant” effects (Buhlmann and van de Geer, 2013). The

key difference is that these authors separate large and small “true” effects, whereas we separate large

and small estimated effects. As is common in the literature, our bounds will be more informative

the better we can distinguish between zero- and non-zero effect estimates.

We separate the weights into two groups. In the kernel for Pr(wk|·), the numerator in Equation

10, is approximately exponential for large |βk|, small wk, and is approximately constant for |βk| ≈ 0,

wk large. Define as

pk(C1, C2) = max

{
Pr

(
ŵk >

C1 log(Ŝ)

λσ̂|β̂k|

)
,Pr

(
ŵk < C2γ̂

)}
; C1 > 0, 0 < C2 < 1 (14)

where the first inequality allows us to bound with some high probability small weights from above

and the second, larger weights from below. We use this distinction to differentiate between weights

tending to zero (the lefthand set) and those tending to the maximum (the righthand set).

Ŝ =

k : Pr

ŵk > C1 log
(∣∣Ŝ∣∣)

λσ̂|β̂k|

 < Pr
(
ŵk < C2γ̂

) . (15)
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The log(|Ŝ|) term on the left comes from using the union bound applied to {pk}Kk=1 and a subex-

ponential (rather than subgaussian) bound applied to each value pk, as the kernel is approximately

exponential in this range. Define

Pr(max(pk) > C3 log(K)) = pw(C1, C2, C3). (16)

such that, with probablity at least pw(C1, C2, C3), the weights can be bounded by one of the bounds

above, i.e. is either “small” or “large.”

Lastly, denote as C1 the value that satisfies

Pr

(
ŵk >

C1 log(|Ŝ|)
λ̂σ̂|β̂k|

)
= Pr

(
ŵk ≤

C1

λ̂σ̂|β̂k| log(|Ŝ|)

)
(17)

which will give us a lower bound on all ŵk with probability at least pw(C1, C2, C3).

B.3 Bounding the tuning parameter λ̂.

Given the results above, we can bound λ̂. For the Oracle results below, we need to bound λ̂ from

below, though we note that a similar bound of the same order of N,K can be found using the

strategy below.

As λ2|· ∼ Γ(
√
NK, 1

2

∑K
k=1 τ̂

2
k + ρ), this gives

λ̂2 =

√
NK

1
2

∑K
k=1 τ̂

2
k + ρ

. (18)

Change of variables gives λ|· ∼ generalizedGamma
(

2× (1
2

∑K
k=1 τ̂

2
k + ρ)−1/2, 2

√
NK, 2

)
, which

gives the estimate

λ̂ =
Γ̃(
√
NK + 1/2)/Γ̃(

√
NK)√

1
2

∑K
k=1 τ̂

2
k + ρ

(19)

with Γ̃() the Gamma function. Note λ̂2 ≥ (λ̂)2 and if
√
NK > 1, then Γ(3/2)2(λ̂)2 = 4

π
(λ̂)2 > λ̂2.

Lastly,

1/τ 2
k |· ∼ InvGaussian

(
λwkσ/|βk|, w2

kλ
2
)
⇒ (20)

K∑
k=1

τ̂ 2
k =

K∑
k=1

|β̂k|
λ̂ŵkσ̂

+
1

λ̂2ŵ2
k

(21)
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and we use the bound

K∑
k=1

τ̂ 2
k ≤
|Ŝ| × |β̂(K)|
λ̂ŵ(1)σ̂

+
|Ŝ|

(λ̂)2ŵ2
(1)

+

(
K − |Ŝ|

)
|β̂|(K−|Ŝ|−1)

λ̂ŵ(K−|Ŝ|−1)σ̂
+

(
K − |Ŝ|

)
(λ̂)2ŵ2

(K−|Ŝ|−1)

(22)

≤
|Ŝ|β̂2

(K)

C1 log(Ŝ)
+
|Ŝ|σ̂2β̂2

k

C2
1 log(Ŝ)2

+

(
K − |Ŝ|

)
|β̂|(K−|Ŝ|−1)

λ̂C2γ̂σ̂
+

(
K − |Ŝ|

)
(λ̂)2C2

2 γ̂
2 (23)

=
|Ŝ|β̂2

(K)

(
C1 log(Ŝ) + σ̂2

)
C2

1 log(Ŝ)2
+

(
K − |Ŝ|

)
|β̂|(K−|Ŝ|−1)

λ̂C2γ̂σ̂
+

(
K − |Ŝ|

)
(λ̂)2C2

2 γ̂
2 (24)

The first line follows from the inverse relationship between |β̂k| and ŵk; the second comes from the

lower bounds on ŵk in Ŝ and Ŝ{. The third line is just simplifying.

Combining inequalities gives

4

π
(λ̂)2 ≥ λ̂2 =

√
NK

1
2

∑K
k=1 τ̂

2
k + ρ

(25)

⇒ (λ̂)2 ≥ π

4
×

√
NK

|Ŝ|β̂2
(K)(C1 log(Ŝ)+σ̂2)

2C2
1 log(Ŝ)2

+
(K−|Ŝ|)|β̂|(K−|Ŝ|−1)

2λ̂C2γ̂σ̂
+

(K−|Ŝ|)
2(λ̂)2C2

2 γ̂
2 + ρ

(26)

⇒ λ̂ ≥ π

4
×

√
NK

λ̂|Ŝ|β̂2
(K)(C1 log(Ŝ)+σ̂2)
2C2

1 log(Ŝ)2
+

(K−|Ŝ|)|β̂|(K−|Ŝ|−1)

2C2γ̂σ̂
+

(K−|Ŝ|)
2λ̂C2

2 γ̂
2 + ρλ̂

(27)

where the second line comes from substituting from Inequality 24 and the third from multiplying

both sides by 1/λ̂. Cross-multiplying gives a quadratic equation in λ̂ of the form ã(λ̂)2 + b̃λ̂+ c̃ > 0

where1

ã =
|Ŝ|β̂2

(K)

(
C1 log(Ŝ) + σ̂2

)
2C2

1 log(Ŝ)2
+ ρ (28)

b̃ =

(
K − |Ŝ|

)
|β̂|(K−|Ŝ|−1)

2C2γ̂σ̂
(29)

c̃ = −

π
4

√
NK −

(
K − |Ŝ|

)
2C2

2 γ̂
2

 . (30)

1We use the convention 0 log 0 = 0
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The quadratic equation gives

λ̂ ≥
−

(K−|Ŝ|)|β̂|(K−|Ŝ|−1)

2C2γ̂σ̂
+

√{
(K−|Ŝ|)|β̂|(K−|Ŝ|−1)

2C2γ̂σ̂

}2

+ 4

{
λ̂|Ŝ|β̂2

(K)(C1 log(Ŝ)+σ̂2)
2C2

1 log(Ŝ)2
+ ρ

}
×
{
π
4

√
NK − (K−|Ŝ|)

2C2
2 γ̂

2

}
2
|Ŝ|β̂2

(K)(C1 log(Ŝ)+σ̂2)
2C2

1 log(Ŝ)2
+ 2ρ

(31)

which, for growing N and K, is of order N1/4K1/2 by the bound in 31.

C Variance Estimation

We sample from the approximate sampling distribution of the the LASSOplus estimator at each

Gibbs update:

βk1

(∣∣β̂spk ∣∣ ≥ λwkσsp
N − 1

)
(32)

≈ βkΦ

{∣∣∣∣∣∣β̂spk /σ̂ls∣∣− λwkσsp
σ̂ls × (N − 1)

∣∣∣∣} (33)

= βkΦ

{√
N − 1

∣∣∣∣∣∣β̂spk /σ∣∣− λwkσsp
σ × (N − 1)

∣∣∣∣} (34)

= g
(
βk, β̂

sp
k , σ, σsp, λ, wk

)
(35)

where Φ(a) is the cumulative distribution for a standard normal random variable and we approxi-

mate the standard error of the least squares coefficient as σ̂ls ≈ σ/
√
N − 1. Define

zk =
√
N − 1

∣∣∣∣∣∣β̂spk /σ∣∣− λwkσsp
σ × (N − 1)

∣∣∣∣ (36)

pk = Φ {zk} (37)

Define the vector of partial derivatives

∇g
(
βk, β̂

sp
k , σ, σsp, λ, wk

)
=

[
∂g(·)
∂βk

,
∂g(·)
∂β̂spk

,
∂g(·)
∂σ

,
∂g(·)
∂σsp

,
∂g(·)
∂λ

,
∂g(·)
∂wk

]>
(38)

=



pk

βk × φ(zk)×
√
N − 1/σ sgn(β̂spk )

βk × φ(zk)×
√
N − 1

(
−
∣∣β̂spk ∣∣
σ2 + λwkσsp

σ2×(N−1)

)
βk × φ(zk)×

√
N − 1× λwk

σ×(N−1)

βk × φ(zk)×
√
N − 1× wkσsp

σ×(N−1)

βk × φ(zk)×
√
N − 1× λσsp

σ×(N−1)


(39)
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and the 6× 6 matrix

V = diag
[
Var(βk),Var(β̂spk ),Var(σ),Var(σsp),Var(λ),Var(wk)

]
(40)

where we are assuming zero covariance between elements. All elements of V are calculated ana-

lytically from the variance of the conditional pseudoposterior densities except for Var(wk) which

is calculated from the approximate density used in the griddy Gibbs sampler. Our approximate

variance is then

σ̂2
j = ∇g>(·)V∇g(·) (41)

.

D EM Updates for LASSOplus-EM

For our EM implementation, we treat in βplus−EM and σ2 as parameters and the remaining param-

eters as “missing,” i.e. to be estimated. As we have already calculated the conditional posterior

densities for all parameters, the EM updates is straightforward.

Standardize Y and all columns of X to be mean-zero, sample variance one. Initialize ∀k : β̂k ←

uk with uk
i.i.d.∼ N (0, 0.01); σ̂2 ← ||Y −Xβ̂||22/N ; λ̂← 1; ŵk ← 1.

At each given step, the most current updates from the previous steps are used. To convergence,

• E-steps

1. ∀k : (̂1/τ 2
k )← λ̂ŵkσ̂/|β̂k|; τ̂ 2

k ← |β̂k|/(λ̂ŵkσ̂) + 1/(λ̂2ŵ2
k)

2. λ̂← Γ̃(
√
NK+1/2)/Γ̃(

√
NK)√

1
2

∑K
k=1 τ̂

2
k+ρ

; λ̂2 ←
√
NK

1
2

∑K
k=1 τ̂

2
k+ρ

with Γ̃() the gamma function.

3. ∀k: update ŵk via numerical integration using kernel Pr(wk|·) ∝ e
−wγ̂−λ̂w

√
1̂
σ2
|β̂k|

4. Update γ̂ via numerical integration using kernel Pr(γ|·) ∝ γe−
∑K
k=1 ŵ

γ
k−γ

• M-Steps

• σ̂2 ←
∑N
i=1(Yi−X>i β̂)2+

∑K
k=1(β̂k)2× 1̂

τ2
k

N+K
; 1̂
σ2 ← N+K−2∑N

i=1(Yi−X>i β̂)2+
∑K
k=1(β̂k)2× 1̂

τ2
k

• Conditional M -steps: ∀k : β̂k ←
∑N
i=1Xik(Yi−

∑
k′ 6=kXik′ β̂k′ )

(N−1)+ 1̂

τ2
k

where it is understood that at update

k̃, updated estimates of
{
β̂1, β̂2, . . . , β̂k̃−1

}
are used.
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LASSOplus updates:

• σ̂2
sp ←←

∑N
i=1(Yi−X>i β̂)2+

∑K
k=1(β̂k)2× 1̂

τ2
k√

N+K

• β̂plusk ← β̂k1
(∣∣∑N

i=1Xik(Yi −
∑

k′ 6=kXik′ β̂k′)
∣∣ > λ̂ŵk

√
σ̂2
sp

)

E Independence between Adjusted Higher-Order Terms and

Lower-Order Terms

We prove first that, under the residualized construction, the least squares coefficient on the a higher-

order interaction term is uncorrelated with the coefficients on lower-order terms. By this means,

the effect of the higher-order term does not vary with its lower-order components, and hence can

be interpreted on its own. We then extend the result to the conditional pseudoposterior density of

the estimates.

Denote the N ×1 vector of outcomes Y , N ×L matrix of lower-order terms Xlower and vector of

mean-zero, equivariant errors ε. Define as Xinter = [Xinter]i =
∏

1≤l′≤L xil′ , the elementwise product

of the lower-order terms. Assume [Xlower|Xinter] is full rank. Using parameters {β0, ~βl, βinter}, define

the model, with ~βl an L× 1 vector and the others scalars, as

Y = Xlower
~βl +Xinterβinter + ε. (42)

Define the matrices

X = [Xlower|Xinter] (43)

Mlower = IL − (Xlower)(X
>
lowerXlower)

−1X>lower (44)

X̃inter = MlowerXinter (45)

Xadjust = [Xlower|X̃inter] (46)

The vector X̃inter is the residualized interaction term described in the text, giving parameterization

Y = Xlower
~̃
βl + X̃interβ̃inter + ε (47)

where the error vector ε, stays unchanged since the two parameterizations differ only by a linear

transformation of the covariates.
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The covariance of the least squares estimates in the first parameterization is proportional to the

inverse of the cross product of the design matrix. Using the block-partition matrix formula gives

(X>X)−1 =

(X>lowerXlower) X>lowerXinter

X>interXlower X>interXinter

−1

(48)

=

(X>lowerXlower − 1
c0

X>lowerXinterX
>
interXlower

)−1

− 1
c0

(X>lowerXlower)
−1X>lowerXinter

− 1
c0
X>interXlower(X

>
lowerXlower)

−1 1
c0

 (49)

with the constant c0 = X>interXinter −X>interXlower(X
>
lowerXlower)

−1X>lowerXinter. This implies

Cov(β̂inter, β̂k) ∝ −
[

1

c0

(X>lowerXlower)
−1X>lowerXinter

]
j

for j ∈ {1, 2, . . . , L} (50)

In general, this covariance will not be zero, suggesting that under the normal parameterization the

effect of the interaction term varies with movements in its lower order terms. Repeating the same

exercise with a model parameterized in terms of X̃inter gives

Cov

(̂̃
βinter,

̂̃
βk

)
∝ −

[
1

c0

(X>lowerXlower)
−1X>lowerX̃inter

]
j

(51)

= −
[

1

c0

(X>lowerXlower)
−1X>lowerMlowerXinter

]
j

(52)

= 0 for j ∈ {1, 2, . . . , L} (53)

Therefore, under the parameterization with residualized interaction terms, the marginal effect of

each interaction term is uncorrelated with that of its lower order terms. To extend to the mul-

tivariate case, assume the full design matrix of all effects is full-rank, and all other effects have

been partialed out. The case of K > N requires an assumption similar to the restricted eigenvalue

assumption (Bickel, Ritov and Tsybakov, 2009), that all submatrices of size L+ 2 are full rank and

all components of the submatrices not in X are linearly independent of X. Partialing out out with

respect to the other covariates in either case leaves the results unchanged.

Next, we show the result holds for the conditional pseudoposterior density under a conditional

independent normal prior, as with the augmented LASSOplus. Assume [~β>l , βinter]
> ∼ N (0L+1, D)

with D an (L+ 1)× (L+ 1) diagonal matrix with positive entries along the diagonal. In this case,

the conditional posterior of [~β>l , βinter]
> under a normal likelihood takes the form

Pr([~β>l , βinter]
>|·) ∼ N (A−1X>Y, σ2A−1) (54)
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with A = X>X +D. Carrying through the same derivation as above gives the posterior covariance

between βL+1, the parameter on the interaction term, and βk, 1 ≤ j ≤ L, as

A−1
j,L+1 ∝ −

[
1

c′0
(X>lowerXlower +D1:L,1:L)−1X>lowerXinter

]
j

for j ∈ {1, 2, . . . , L} (55)

which will not be 0, in general. In this case, the constant c′0 = (Xinter + DL+1,L+1)>(Xinter +

DL+1,L+1)−X>interXlower(X
>
lowerXlower +D1:L,1:L)−1X>lowerXinter.

Considering the residualized interaction term instead of the standard term gives

A−1
j,L+1 ∝ −

[
1

c′0
(X>lowerXlower +D1:L,1:L)−1X>lowerX̃inter

]
j

= 0 for j ∈ {1, 2, . . . , L} (56)

F Alternative Estimators

For the LASSO and adaptive LASSO, we found the BIC statistic of Wang and Leng (2007) per-

formed poorly when K > N , sometimes including dozens of false positives. We instead use a

standard BIC statistic where we take the degrees of freedom as the number of non-zero coefficients

Zou, Hastie and Tibshirani (2007).

In terms of uncertainty estimates, we implement the approximate confidence intervals for the

LASSOplus. We use the posterior intervals for the horseshoe model. For the frequentist LASSO

and adaptive LASSO, we implement the perturbation method of Minnier, Tian and Cai (2011). For

p ∈ {1, 2, . . . , P} for some large P , the method requires fitting

β̂alasso,p(λ|w·, g·) = argmin
β

N∑
i=1

gpi (Yi −X>i β)2 + λ
K∑
k=1

wk|βk|; (57)

wk = 1/|β0
k| (58)

where the weights are gpi
i.i.d.∼ exp(1). For the LASSO, we simply take wk = 1 for all k. Minnier,

Tian and Cai (2011) prove that the set {β̂alasso,p(λ|w·, g·)}Pp=1 will achieve nominal coverage asymp-

totically, though the result does not hold for the LASSO. We fit the perturbation method to both

for comparison. We found the perturbation method performs better than the parametric bootstrap

suggested by Chatterjee and Lahiri (2011, 2013), so we do not present the results.

We next move on to the LASSO+OLS method of Belloni and Chernozhukov (2013), hereafter

BC.The empirical process approach selects the tuning parameter in order to bound 2 max
(
ε>X·k

)
with some high probability. BC note that, up to a scale parameter σ, the tuning parameter value can
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be simulated quite easily, and they define Λ(1−αsig|X) as the 1−αsig quantile of 2 max
(
ε>X·k/σb

)
for E(εi|Xi) = 0; Var(εi|Xi) = σ2

b as approximated through a simulation.

Second stage variable selection. Tuning λ in order to satisfy the Oracle Inequality will gen-

erally over-select effects. The reason is that the LASSO induces bias in the coefficient estimaates,

and that bias leaves a gap for irrelevant effects that are correlated with the relevant effects to be

drawn in and selected. Several methods in the empirical process framework have used the Oracle

Inequality-tuned LASSO to over-select covariates and then, in a second stage, select a subset of

these.

One way to do so is simply thresholding the LASSO estimates, so

β̂thresh = β̂L � 1
(∣∣β̂L∣∣ > τ

)
(59)

where the inequality and multiplication � are taken elementwise. A second option is to take then re-

run OLS on variables that survive the threshold. Define Xthresh as the submatrix of X corresponding

with elements of β̂thresh(τ) that are not zero. Then,

β̂thresh+OLS(τ) = (X>threshXthresh)
−1X>threshY. (60)

In the case Xthresh is rank-deficient, either ridge regression or partial least squares can be used (Liu

and Yu, 2013). The post LASSO OLS estimator is then β̂thresh+OLS(0), which is simply OLS used

on all selected LASSO covariates.

Belloni and Chernozhukov (2013) propose a different means of selecting a subset of relevant

effects and eliminating the first-stage LASSO bias. Denote Q(θ) = ||Y −Xθ||22. The select τ such

that

tγ = max
t≥0

Q
(
β̂thresh+OLS(τ)

)
−Q

(
β̂L
)
≤ γ (61)

for γ ≤ 0. Taking γ = 0 returns the sparsest OLS-reflated model that generates a lower residual

sum of squares than the LASSO estimator. We follow the suggestion of Belloni and Chernozhukov

(2013, expr 2.14) and take γ =
{
Q
(
β̂thresh+OLS(0)

)
−Q

(
β̂L
)}

/2 in the simulations.
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