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A. PRECINCT-LEVEL DISTRIBUTIONS OF VOTE-SHARES

Let 0 < N be the number of voters in a precinct, let 0 < T ≤ N denote the number

of voters who turn out to vote and let 0 < V ≤ T denote the number of votes for a

given candidate/party. Finally, let R = V/T denote the proportion of votes for the

given candidate/party and let G = {(T, V ) | V ≤ T} denote the sample space.

Proposition 1 (Jointly uniform case). Assume that Pr{(T, V ) = (t, v)} = 1/|G| for
all (t, v) ∈ G. For any irreducible fraction k/m ∈ (0, 1),

Pr

{
R =

k

m

}
=

2bN/mc
N(N + 1)

,
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where bxc denotes the largest integer smaller than x.

Proof. The random variable R = k/m, if and only if V = ka and T = ma for

some a ∈ {1, 2, ...}. Since T ≤ N , a ≤ bN/mc. R = k/m for each (T, V ) =

{k/m, 2k/2m, ..., bN/mck/bN/mcm}; hence, there are bN/mc pairs of (T, V ) ∈ G
yielding R = k/m. Since each pair (T, V ) is equally likely, Pr{R = k/m} =

bN/mc/|G|. Given that |{1, ..., N}×{1, ..., N}| = N2, we have |G| = (N2+N)/2.

Proposition 2 (Conditionally uniform case). Assume that Pr{T = t} = 1/N for all

t and Pr{V = v|T = t} = 1/t. For any irreducible fraction k/m ∈ (0, 1),

Pr

{
R =

k

m

}
=

1

Nm

bN/mc∑
a=1

1

a
,

where bxc denotes the largest integer smaller than x.

Proof. The random variable R = k/m, if and only if V = ka and T = ma for some

a ∈ {1, 2, ...}. Since T ≤ N , a ≤ bN/mc; hence,

Pr

{
R =

k

m

}
=

bN/mc∑
a=1

Pr{T = ma ∩ V = ka}, (1)

=

bN/mc∑
a=1

Pr{V = ka|T = ma}Pr{T = ma}, (2)

=

bN/mc∑
a=1

1

ma

1

N
=

1

Nm

bN/mc∑
a=1

1

a
. (3)

Proposition 3 (Mixture of binomials). Assume that

T ∼ Binomial (N, pt), (4)

V |T = t ∼ Binomial (t, pv). (5)
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For any irreducible fraction k/m ∈ (0, 1),

Pr

{
R =

k

m

}
=

bN/mc∑
a=1

N !(1− pt)N

(N −ma)!(ma− ka)!ka!

[
pt(1− pv)

1− pt

]ma[
pv

1− pv

]ka
,

where bxc denotes the largest integer smaller than x.

Proof. The random variable R = k/m, if and only if V = ka and T = ma for some

a ∈ {1, 2, ...}. Since T ≤ N , a ≤ bN/mc; hence,

Pr

{
R =

k

m

}
=

bN/mc∑
a=1

Pr{T = ma ∩ V = ka}, (6)

=

bN/mc∑
a=1

Pr{V = ka|T = ma}Pr{T = ma}, (7)

=

bN/mc∑
a=1

(
N

ma

)
pma
t (1− pt)N−ma

(
ma

ka

)
pkav (1− pv)ma−ka, (8)

which simplifies to the desired equation.

Figure 1 shows precinct-level distributions under four different generative models.

First, is the conditionally uniform model where T ∼ Uniform{1, ..., n} and V ∼
Uniform{0, ..., t}. Second is the binomial model with the expected turnout equal

to .5n and the expected support equal to .59t, so that the expected vote-share of

the party is 0.59. Third, the generative model where the turnout and support are

drawn from the beta-binomial distributions, with the probability success for being

0.5 for turnout and 0.59 for support. Fourth, the turnout and support are drawn

from the hypergeometric distributions. Both of the hypergeometric distributions are

parameterized so that the expected vote-share is 0.59. In all cases number of voters

in the precinct is set to 1000 (n = 1000). We see that in all three cases where

3



the expected vote-share of the party is 0.59 (figures 2-4), the largest mass in the

probability distribution is at 0.6.

0.0 0.2 0.4 0.6 0.8 1.0

Conditionally uniform

0.55 0.60 0.65

Binomial

0.50 0.55 0.60 0.65

Beta−Binomial

0.56 0.57 0.58 0.59 0.60 0.61 0.62

Hypergeometric

Figure 1: Precinct-level distributions of vote-shares under four different generative
models.
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B. POPULATION-LEVEL DISTRIBUTIONS OF VOTE-SHARES

Consider the binomial mixtures model, where we allow the turnout rates t∗ and

support rates v∗ to vary across electoral units. For each unit i = 1, ..., N , we have

ti ∼ Binomial(ni, t
∗
i ),

vi ∼ Binomial(ti, v
∗
i ),

t∗i ∼ Pt∗ ,

v∗i ∼ Pv∗ .

The distribution of the irreducible fractions across the population of electoral units

for the binomial case can be computed as follows:

Pr
{
R =

k

m

}
=

∫
v∗

∫
t∗

bn/mc∑
a=1

n!(1− t∗)n

(n−ma)!(ma− ka)!ka!

[
t∗(1− v∗)

1− t∗

]ma[
v∗

1− v∗

]ka
dPt∗dPv∗

For given distribution Pt∗ and Pv∗ , the above integral can be evaluated using

Monte Carlo methods. Identical computations can be performed for generative

precinct-level models other than the binomial (e.g., beta-binomial, uniform).

To study the behavior of the population-level distributions of vote-shares, Figure

2 shows four such distributions for different levels of over-dispersion in the generative

precinct-level distributions. The turnout and support are drawn from beta-binomial

distributions with means given by t∗i and v∗i , respectively. In all cases, we assume that

t∗i ∼ Beta(2, 2) and v∗i ∼ Beta(2, 1) (this roughly approximates the case where the

average turnout is 50% and the average support for the party is 66%). The number

of voters in each precinct is drawn from the uniform distribution on {500, ..., 1500}.
Across the four figures, I very the degree of over-dispersion in the generative dis-

tributions. When there is no over-dispersion, we have the standard binomial model.

We see that the population-level distributions are spiky even without over-dispersion
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Population distribution (50,000 precincts)  
 Overdispersion = 0
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Population distribution (50,000 precincts)  
 Overdispersion = 0.1
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Population distribution (50,000 precincts)  
 Overdispersion = 0.2
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Population distribution (50,000 precincts)  
 Overdispersion = 0.5
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Figure 2: Population-level distributions of vote-shares, when precinct-level turnout
and votes follow the binomial distribution and the binomial probabilities across the
population follow beta distributions.

in the generative distributions (first figure). However, as the over-dispersion in the

generative distributions increases, the mass points at low fractions become more and

more prominent. Remarkably, the data were simulated so that the expected vote-

6



share across the precincts is 0.6, but we see the largest mass spikes at 0.5 for even

mildly over-dispersed data.

C. ESTIMATING LATENT DENSITIES

The latent turnout rates {t∗i }Ni=1 and the latent support rates {v∗i }Ni=1 are drawn in-

dependently from distributions Pt∗ and Pv∗ , respectively. We approximate the latter

continuous distributions with a finite mixture of beta distributions. The complete

model for the data at hand is, for each i = 1, ..., N ,

Ti|ni ∼ Binomial(ni, t
∗
i ) (9)

Vi|ti ∼ Binomial(ti, v
∗
i ) (10)

t∗i ∼
Lt∑
`=1

π`Beta
(
θ
(t)
`

)
(11)

v∗i ∼
Lv∑
`=1

π`Beta
(
θ
(v)
`

)
, (12)

where θ
(t)
` = (θ

(t)
1 , θ

(t)
2 )` represents the two shape parameters of the beta distribution

of the turnout rates for the mixture component `. Conditionally on the observation

i belonging to the mixture component `, we can specify the marginal distributions

and turnout (which do not belong on the unknown parameters t∗i and v∗i ), for all

` = 1, ..., L,

Ti|ni, i ∈ ` ∼ Beta-Binomial
(
ni;θ

(t)
`

)
(13)

Vi|ti, i ∈ ` ∼ Beta-Binomial
(
ti;θ

(v)
`

)
. (14)

The stochastic process in the above model allows the population of precincts to

be heterogeneous in terms of the distributions from which their latent turnout and
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support rates are drawn. Note that although the parameters {t∗i }Ni=1 and {v∗i }Ni=1

can be estimated, we do not need them as all the necessary information about the

population distribution is contained in the hyper-parameters θ
(t)
` for ` = 1, ..., Lt and

θ
(v)
` for ` = 1, ..., Lv.

The population hyper-parameters can be estimated relatively straightforwardly

using the Expectation-Maximization (EM) algorithm (Casella and Berger, 2002, Ch.

7). However, the initial values for the EM algorithm have to be chosen judiciously.

The following initialization routine works very well. Since the target of the estimation

is the latent distributions of turnout and support rates, a good starting point is to

select the starting values for the negative binomial parameters θ and the component

weights π1, ..., πL, which minimize the square distance between the kernel density

estimate of the latent distribution (which will not be smooth) and the smooth density

approximated via the mixtures of beta distributions model above. Formally, let

PL(x;θ,π) denote the density parameterized by the beta-mixture model with L

components and evaluated at point x. The initial values are found by solving

min
θ,π

1

K

K∑
i=1

(
f̂h(xi)− PL(xi;θ,π)

)2
,

subject to
∑L

`=1 π` = 1.

For a given L, the EM algorithm is iterated from these initial values until the

correlation between the densities computed at two successive iterations is above 0.99.

Given the initialization procedure above, the EM algorithm typically converges in as

few as fives steps. The number of components L is chosen via the following procedure:

estimate the density functions for L = 1, 2, ... and stop when the Pearson correlation

between the density PL+1(xi;θ,π) estimated at points {x1, ..., xK} and PL(xi;θ,π)

is at least 0.99. Intuitively, this simply means that we stop increasing the complexity

of the underlying model when they yield highly similar density functions. For the

data analyzed here, most of the time the optimal L is between 1 and 3.
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D. CALIBRATING THE RKD ALGORITHM

When using the RKD algorithm, three parameters have to be preset – the number

of resamples (M), the size of the grid on which the kernel density is estimated (K),

and the bandwidth for kernel density estimation (h). The choice of these parameters

involves certain types of trade-offs.

When choosing the number of resamples M , there is a trade-off between how

‘conservative’ or ‘liberal’ the resulting estimates will be: a too small M will result in

too small estimates of fraud, whereas too large M might result in too small estimates

of fraud. Choosing the size of the grid results in a different type of trade-off between

the computational speed and precision of the resulting estimates. As the size of the

grid K increases, the estimates become more precise, but this also means that on

each iteration one has to estimate the density at many more points (and store the

estimates in memory to calculate the upper envelope across all samples). Finally,

choosing the bandwidth h is more straightforward: when the bandwidth is too large,

the density estimates will not have spikes and one will not be able to detect fraud.

Generally, at least for the kernel density estimation used here, reducing the size of h

does not cause an increase in the computation cost.

To calibrate parameters of the RKD algorithm, I used simulated data and varied

the three RKD parameters to see which combination yields accurate estimates while

retaining computational efficiency. The calibration exercise is conducted on two

synthetic datasets: the true amount of fraud is 1% and 3%, respectively.

The results are given in Table 1. We see that as long as the bandwidth parameter

is not too large (less than or equal to 0.001), we see very small differences between

the estimates. In all cases, the estimates are quote close to their true value and vary

only within few decimal points. Based on these results, I set M = 1000, K = 1001

and h = 0.001 in the analyses of the paper.
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resamples V2 V3 V4 V5

True level of fraud is 1 %

500 501 0.01 0.30 (0.07, 0.37)
500 501 0.001 0.88 (0.72, 0.95)
1000 1001 0.001 0.98 (0.91, 1.02)
2000 1001 1e-04 1.01 (0.95, 1.05)
1000 1001 1e-04 1.02 (0.94, 1.06)
1000 2001 1e-04 1.05 (1.01, 1.08)

True level of fraud is 3 %

500 501 0.01 1.99 (1.52, 2.43)
500 501 0.001 2.93 (2.91, 2.96)
1000 1001 0.001 3.02 (3.00, 3.05)
2000 1001 1e-04 2.95 (2.93, 2.99)
1000 1001 1e-04 2.97 (2.94, 3.05)
1000 2001 1e-04 2.99 (2.98, 3.02)

Table 1: RKD estimates of fraud with 95 percent credible intervals for different
estimation parameters.

E. SOFTWARE

The package spikes in R software (R Core Team, 2016) implements the RKD algo-

rithm. The main function in the package spiketest takes a data frame of election

results and returns the estimated level of fraud:

spikes(data, resamples = 1000, bw = 0.0001, grid = 1001)

The data frame data must consist of three columns named as follows: N (represent-

ing the number of voters), t (the number of people who turned out to vote), and v

(the number of people who supported the party whose vote-shares are being ana-

lyzed. The function spiketest is a wrapper function, implementing the two steps of

the algorithm: it estimates the densities of latent turnout and support rates and then

resamples data from the estimated densities and compares them with the density of
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the observed data.

The package also contains a function

confInt(out, boots = 100),

which estimates the credible intervals for the fraud estimate. It uses the Bayesian

approach (with flat priors) and samples the densities of turnout and support from the

poster and then executes the resampling procedure conditional on the draw from the

posterior. The parameter boots specifies the number of bootstraps from which the

credible intervals are estimated. Note that since each bootstrap requires to resample

the data M times, setting boots to a large number is computationally extremely

costly. The default value of 100 boots yields a fairly good estimate of the credible

interval, which does not change by much for a larger number of samples from the

posterior density. See description of the package on CRAN for further details.
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