Table S1 presents the 21 studies included in the meta-analysis (columns "Study" and "Reference"), all 36 outcomes they have analyzed in total (columns "Out. ID" and "Outcome"), the inclusion cut-off that was originally set in the analysis of necessity (column "Incl. cut-off (orig.)"), the number of conditions they report to their readers (column "Conditions reported"), the number of all conditions found at the original cut-off (column "All conditions at original cut-off"), the number of all conditions found at the harmonized inclusion cut-off of 0.75 (column "All conditions at 0.75 inclusion"), the number of QCA models (column "QCA models"), and the number of models in each solution that show the CONSOL-effect (column "Models with CONSOL-Effect").

Table S1 Reanalysis of necessity tests and CONSOL-Effect for 36 outcomes across 21 published QCA studies

Study	Out. ID	Reference	Outcome	Incl. cut-off (orig.)	Conditions reported	All conditions at original cut-off	All conditions at 0.75 inclusion	QCA models	Models with CONSOL-Effect
1	1	Avdagic (2010)	SOCP (M1)	0.9	0	7	10	1	1
1	2		SOCP (M2)	0.9	0	6	10	4	4
1	3		SOCP (M3)	0.9	0	12	12	10	8
2	4	Bank, Richter, and Sunik (2015)	SURVIVAL	0.9	0	22	31	2	2
2	5		~SURVIVAL	0.9	0	34	23	12	12
3	6	Basedau and Richter (2014)	CWO	1.0	1	4	7	2	2
3	7		~CWO	1.0	0	5	16	1	1
4	8	Cebotari and Vink (2013)	PROTEST	0.9	1	24	26	1	1
4	9		~PROTEST	0.9	1	9	14	1	1
5	10	Da Roit and Weicht (2013)	MIGFAM	0.9	2	11	27	13	13
5	11		~MIGFAM	0.9	1	23	27	11	8
5	12		MIGFOR	0.9	4	26	51	11	8
5	13		~MIGFOR	0.9	0	37	43	13	13
6	14	Davidsson and Emmenegger (2013)	TWOTIER	0.9	1	3	6	2	1ª
7	15	Emmenegger (2011)	JSR	0.9	1	49	41	6	6
8	16	Epple, Gasser, Kersten, Nollert and Schief (2014)	D	0.9	1	17	18	1	1
8	17		~D	0.9	0	22	27	1	1

9	18	Fischer (2015)	DOM	0.9	0	4	8	1	1
10	19	Hamidov, Thiel and Zikos (2015)	MIC	0.9	0	2	4	b	b
11	20	Ishiyama and Batta (2012)	DPS	0.9	0	19	15	3	3
11	21		~DPS	0.9	0	11	10	3	3
12	22	Karlas (2012)	CONT	0.8	1	50	37	52	52
14	25	Lilliefeldt (2012)	BALANCE	0.9	0	253	103	c	c
14	26		~BALANCE	0.9	0	219	98	c	c
15	27	Mello (2012)	MP	? ^d	1	4	10	2	2
15	28		~MP	? ^d	0	9	20	1	1
16	29	Metelits (2009)	COERCE	0.8	1	2	2	1	1
17	30	Pahl-Wostl and Knieper (2014)	ADAP	0.9	1	15	19	4	4
17	31		~ADAP	0.9	0	21	14	1	1
18	32	Palm (2013)	IWS	0.9	0	9	10	10	10
18	33		~IWS	0.9	0	10	15	3	3
19	34	Park and Young (2015)	WM	0.95	0	23	21	4	4
20	35	Schneider and Makszin (2014)	LPI	?e	0	13	18	1	1
21	36	Thomann (2015)	PERF	0.9	0	50	31	4	4
21	37		~PERF	0.9	0	46	50	12	12
22	38	Verweij, Klijn, Edelenbos and Van Buuren (2013)	O	? ^d	0	5	5	1	1

^a no simplifying assumptions for one model; ^b saturated truth table; ^c number of models not derivable due to high complexity of PI chart; ^d not mentioned; ^e not mentioned, but assumed to have been 0.9.

References

- Avdagic, Sabina. 2010. When are concerted reforms feasible? Explaining the emergence of social pacts in Western Europe. *Comparative Political Studies* 43(5):628-57.
- Bank, André, Thomas Richter, and Anna Sunik. 2015. Long-term monarchical survival in the Middle East: A configurational comparison, 1945-2012. *Democratization* 22(1):179-200.
- Basedau, Matthias, and Thomas Richter. 2014. Why do some oil exporters experience civil war but others do not? Investigating the conditional effects of oil. *European Political Science Review* 6(4):549-74.
- Cebotari, Victor, and Maarten P. Vink. 2013. A configurational analysis of ethnic protest in Europe. *International Journal of Comparative Sociology* 54(4):298-324.
- Da Roit, Barbara, and Bernhard Weicht. 2013. Migrant care work and care, migration and employment regimes: A fuzzy-set analysis. *Journal of European Social Policy* 23(5):469-486.
- Davidsson, Johan B., and Patrick Emmenegger. 2013. Defending the organisation, not the members: Unions and the reform of job security legislation in Western Europe. *European Journal of Political Research* 52(3):339-63.
- Emmenegger, Patrick. 2011. Job security regulations in Western Democracies: A fuzzy set analysis. *European Journal of Political Research* 50(3):336-64.
- Epple, Ruedi, Martin Gasser, Sarah Kersten, Michael Nollert, and Sebastian Schief. 2014. Institutions and gender time inequality: A fuzzy-set QCA of Swiss cantons. *Swiss Journal of Sociology* 40(2):259-78.
- Fischer, Manuel. 2015. Institutions and coalitions in policy processes: A cross-sectoral comparison. *Journal of Public Policy* 35(2):245-68.
- Hamidov, Ahmad, Andreas Thiel, and Dimitrios Zikos. 2015. Institutional design in transformation: A comparative study of local irrigation governance in Uzbekistan." *Environmental Science & Policy* 53(0):175-91.
- Ishiyama, John, and Anna Batta. 2012. The emergence of dominant political party systems in unrecognized states. *Communist and Post-Communist Studies* 45(1-2):123-30.
- Karlas, Jan. 2012. National parliamentary control of EU affairs: Institutional design after enlargement. *West European Politics* 35(5):1095-113.
- Lilliefeldt, Emelie. 2012. "Party and gender in Western Europe revisited: A fuzzy-set Qualitative Comparative Analysis of gender-balanced parliamentary parties. *Party Politics* 18(2):193-214.
- Mello, Patrick A. 2012. Parliamentary peace or partisan politics? Democracies' participation in the Iraq War. *Journal of International Relations and Development* 15(3):420-53.
- Metelits, Claire M. 2009. The consequences of rivalry: Explaining insurgent violence using fuzzy sets. *Political Research Quarterly* 62(4):673-84.

- Pahl-Wostl, Claudia, and Christian Knieper. 2014. The capacity of water governance to deal with the climate change adaptation challenge: Using fuzzy set Qualitative Comparative Analysis to distinguish between polycentric, fragmented and centralized regimes. *Global Environmental Change* 29:139-54.
- Palm, Trineke. 2013. Embedded in social cleavages: An explanation of the variation in timing of women's suffrage. *Scandinavian Political Studies* 36(1):1-22.
- Park, Sung H., and Kevin L. Young. 2015. Wage moderation in the public sector: The experiences of 11 EMU countries in the recent economic crisis, 2008–2010. *Economic and Industrial Democracy* 36(4):575-609.
- Schneider, Carsten Q., and Kristin Makszin. 2014. Forms of welfare capitalism and education-based participatory inequality. *Socio-Economic Review* 12(2):437-62.
- Verweij, Stefan, Erik-Hans Klijn, Jurian Edelenbos, and Arwin Van Buuren. 2013. What makes governance networks work? A fuzzy set Qualitative Comparative Analysis of 14 Dutch spatial planning projects. *Public Administration* 91(4):1035-55.