Supplementary Materials for "Retrospective Causal Inference with Machine Learning Ensembles: An Application to Anti-Recidivism Policies in Colombia"

Cyrus Samii, Laura Paler, and Sarah Zukmeran Daly

A. ESTIMATION AND INFERENCE DETAILS

Proposition 1 (Consistency). Suppose we have

- a random sample of size N of observations of O,
- bounded support for O,
- Assumptions 1-3, and
- $\hat{g}_{j}(\underline{a}_{i}|W_{i},A_{-ji})$ a consistent estimator of $\Pr[A_{j} = \underline{a}_{i}|W_{i},A_{-ji}]$.

Under such conditions, $\hat{\psi}_{j}^{IPW} - \psi_{j} \stackrel{p}{\rightarrow} 0$ as $N \rightarrow \infty$.

Proof. By Chebychev's inequality, consistency follows from asymptotic unbiasedness and variance converging to zero for the estimator (Lehmann, 1999, Thm. 2.1.1). By random sampling, Slutsky's theorem, consistency for $\hat{g}_j(\underline{a}_j|W_i, A_{-ji})$, and Assumption 1, as $N \to \infty$, $\hat{\psi}_j^{IPW}$ has the same convergence limit as

$$\bar{\psi}_{j}^{IPW} = \frac{1}{N} \sum_{i=1}^{N} \frac{I(A_{ji} = \underline{a}_{j})}{\Pr[A_{j} = \underline{a}_{j} | W_{i}, A_{-ji}]} Y_{i}(\underline{a}_{j}, A_{-j}) - \mathbb{E}[Y].$$

Then,

$$\begin{split} \mathbf{E}[\bar{\psi}_{j}^{IPW}] &= \frac{1}{N} \sum_{i=1}^{N} \mathbf{E}\left[\frac{\mathbf{E}[I(A_{ji} = \underline{a}_{j})|W_{i}, A_{-ji}]}{\Pr[A_{j} = \underline{a}_{j}|W_{i}, A_{-ji}]} \mathbf{E}[Y_{i}(\underline{a}_{j}, A_{-j})|W_{i}, A_{-ji}]\right] - \mathbf{E}[Y] \\ &= \mathbf{E}[Y(\underline{a}_{j}, A_{-j})] - \mathbf{E}[Y] = \psi_{j}, \end{split}$$

and so $\mathbb{E}[\hat{\psi}_{j}^{IPW} - \psi_{j}] \to 0$ as $N \to \infty$, establishing asymptotic unbiasedness. Next, by consistency for $\hat{g}_{j}(\underline{a}_{j}|W_{i},A_{-ji})$ and Slutsky's Theorem, $\operatorname{Var}[N\hat{\psi}_{j}^{IPW}]$ has the same limit as $\operatorname{Var}[N\bar{\psi}_{j}^{IPW}]$, and by random sampling and bounded support,

$$\frac{1}{N^2} \operatorname{Var}\left[N\bar{\psi}_j^{IPW}\right] = \frac{1}{N^2} \sum_{i=1}^N \operatorname{Var}\left[\frac{I(A_{ji} = \underline{a}_j)}{\Pr[A_j = \underline{a}_j | W_i, A_{-ji}]} Y_i(\underline{a}_j, A_{-j})\right] \le \frac{c^2}{N}$$

for some constant c, in which case $\operatorname{Var}[\hat{\psi}_i^{IPW}] \to 0$ as $N \to \infty$, establishing that the variance con-verges to zero.

To construct confidence intervals, we rely on well-known results for sieve-type IPW estimators (Hirano, Imbens and Ridder, 2003; Hubbard and Van der Laan, 2008). Define

$$D_{i,IPW} = \left(\frac{I(A_{ji} = \underline{a}_j)}{\hat{g}_j(\underline{a}_j | W_i, A_{-ji})} - 1\right) Y_i,$$

in which case $\hat{\psi}_{j}^{IPW} = \frac{1}{N} \sum_{i=1}^{N} D_{i,IPW}$. Suppose that $g_{j}(\underline{a}_{j}|W_{i},A_{-ji})$ parameterizes the true distribution for A_{j} , and $\hat{g}_{j}(\underline{a}_{j}|W_{i},A_{-ji})$ approaches the maximum likelihood estimate for $g_j(\underline{a}_j|W_i, A_{-ji})$. Then, $\hat{\psi}_{j,k}^{IPW}$ is asymptotically normal and the following estimator is conservative in expectation for the asymptotic variance:

$$\hat{V}(\hat{\psi}_{j,k}^{IPW}) = rac{v(D_{ki,IPW})}{N}$$

where the v(.) operator computes the sample variance. Define $\hat{S}_{IPW} = \sqrt{\hat{V}(\hat{\psi}_{j,k}^{IPW})}$. Then we have the following approximate $100\% * (1 - \alpha)$ Wald-type confidence interval for our estimate:

$$\hat{\psi}_{j,k}^{IPW} \pm z_{\alpha/2} \hat{S}_{IPW}.$$

We can modify the estimation and inference procedure to account for non-i.i.d. data. We have assumed that (W, A_{-ii}) is a sufficient conditioning set for causal identification and that the model for $g_i(.)$ is sufficient for characterizing counter-factual intervention probabilities conditional on (W, A_{-ii}) . For this reason, non-i.i.d. data on O do not require that we change anything about how we go about estimating \hat{g}_i . However, we will have to account for any systematic differences between our sample and target population in the distribution of (W, A_{-ji}) when computing $\hat{\psi}_{j,k}^{IPW}$. This estimator is consistent for $\psi_{j,k}^{IPW}$ only if it marginalizes over the (W, A_{-ji}) distribution in the population. The solution is to apply sampling weights that account for sample units' selection probabilities (Thompson, 2012, Ch. 6). When units' selection probabilities are known exactly based on a sampling design (as is the case in our application), we merely need to modify the expression for $\hat{\psi}_{j,k}^{IPW}$ to take the form of a survey weighted mean rather than a simple arithmetic mean. Our standard error and confidence interval estimates apply the usual survey corrections for clustering and stratification in sampling design (Thompson, 2012, Ch. 11-12).

B. DETAILS ON THE APPLICATION

Risk factor	Target variable in	Target variable description	Target variable	New variable	Hypothetical	Operationalization
	dataset		coding	definition	intervention	-
Economic	p136_emp_REC3	Employed 1 year after	0=unemployed,	int_emp: =	Unemployed are	int_emp: 0 to 1
welfare		demobilization	1=employed	p136_emp_REC3	made employed.	
Sense of	p145_atrisk_REC2	Felt secure 1 year after	0=no, 1=yes	int_secure: 0 if 1, 1 if	Insecure are made to	int_notatrisk: 0 to 1
security		demobilization		0	feel secure.	
Confidence in	p111_gov_promises	Confident 1 year after	1-10 scale, lower	int_confident: 0 if	Not confident are	int_confident: 0 to 1
government	_1year_REC1	demobilization that government	means less	<=5, 1 if >5	made to feel	
		would keep promises	confident		confident.	
Emotional	index_reint_psych_	Scale constructed from	Standardized	int_upbeat: 0 if >=	Psychologically	int_upbeat: 0 to 1
wellbeing	neg	variables measuring how	index (mean=0,	.5723912, 1 if	depressed are made to	
		psychologically upbeat 1 year	sd=1)	<.5723912 (75th	feel upbeat.	
		after demobilization		pctile)	-	
Horizontal	p150_know_excom	Of five closest acquaintances,	Count of 0 to 5	int_excompeers: 0 if 3	Those with more than	int_excompeers: 0 to
network	_REC1b	how many were excombatants 1		or 4, 1 if 1 or 2	half excombatant	1
relations with	_	year after demobilization			peers are made to	
excombatants					have less than half.	
Vertical	p66_sup1_talk_RE	How regularly respondent	1-4 scale, with 1	int_commander: 0 if 2,	Those who spoke to	int_commander: 0 to
network	C1	spoke to commander 1 year	meaning rarely,	3, or 4; 1 if 1	commander are made	1
relations with		after demobilization	and 4 often		to rarely speak to	
commanders					commander.	

Table 1: Risk factors and hypothetical interventions, details

Table 2: Workflow for estimating RIEs with ensemble

Step	Description	Files
1	Define hypothetical interventions and	Hypothetical-Interventions.xlsx
	construct intervention indicator vari-	COLOMBIA-STEP9-interventions.do
	ables; can be done in any software	
	package. (Done on each imputation-	
	completed dataset.)	
2a	Fit propensity score models for each	interv-pscore-1.R through interv-pscore-6.R
	intervention with the ensemble, using	
	cross-validated risk to generate opti-	
	mal weights for the different model	
	predictions; steps are automated with	
	the SuperLearner functions for R.	
	(Done on each imputation-completed	
	dataset.)	
2b	Generate predictions from propensity	interv-pscore-1.R through interv-pscore-6.R
	score models and attach to dataset.	
	Done using prediction functions in	
	the SuperLearner package for R.	
	(Done on each imputation-completed	
	dataset.)	
2c	Produce estimates of intervention ef-	interv-pscore-1.R through interv-pscore-6.R
	fects, incorporating survey sampling	
	adjustments; can be done with any	
	survey estimation software, such as	
	the survey package in R. (Done on	
	each imputation-completed dataset,	
	and then RIE estimates from the	
	imputation-completed datasets were	
	combined to obtain the final esti-	
	mates.)	
3	Summarize results.	int-results-graph.R
		int-results-balance-tables.R
		int-results-performance-metrics.R

REFERENCES

- Hirano, Keisuke, Guido W. Imbens and Geert Ridder. 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score." *Econometrica* 71(4):1161–1189.
- Hubbard, Alan E. and Mark J. Van der Laan. 2008. "Population Intervention Models in Causal Inference." *Biometrika* 95(1):35–47.
- Lehmann, Erich L. 1999. Elements of Large Sample Theory. New York, NY: Springer-Verlag.

Thompson, Steven K. 2012. Sampling, Third Edition. New York, NY: Wiley.