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1 Literature

There is a large and old literature on experimental design in statistics, going back at least
to [Smith| (1918)), and receiving broader attention since Kiefer and Wolfowitz| (1959) and
related contributions. A good general introduction to the theory of experimental design can
be found in |Cox and Reid| (2000)); a formal treatment of the theory of optimal design is given
by Shah and Sinha/ (1989). The fact that deterministic designs might be optimal in the
presence of covariates was noted by Atkinson (1982) in the context of a parametric model
and sequential experimental design. Some general discussions on the role of randomization
in experiments took place a few decades ago, see in particular Stone| (1969)), Kempthorne
(1977), and |[Rubin| (1978). The role of covariates in the analysis of experiments is also
discussed by Imai et al.| (2008).

Morgan and Rubin (2012) argue that experimenters should re-randomize until satis-
factory covariate balance is achieved. Their argument is similar in spirit to ours. Moore
(2012) makes an argument for blocking making use of the rich set of baseline covariates
often available in field experiments. I very much agree with this argument; one way to think
of the present paper is that it provides a formal foundation for this argument and takes
it to its logical conclusion. Simultaneous treatment assignment to all units is not always
feasible, particularly in settings where participants arrive sequentially. Such settings are
discussed by Moore and Moore (2013)); sequential design is not considered in the present
paper. Bruhn and McKenzie| (2009) have studied the relative variance of estimators under
various designs using simulations.

In contrast to most of the literature on optimal design, the perspective taken in this
paper is nonparametric, while allowing for continuous covariates. Here we draw on the
extensive literature on inference on average treatment effects under unconfoundedness, as
reviewed in [Imbens| (2004). Part of this paper takes a nonparametric Bayesian perspective,
considering (Gaussian) process priors for conditional expectations of potential outcomes.
This follows a long tradition in the literatures on spline estimation (cf. [Wahba, [1990), on
“Kriging” in Geostatistics (cf. Matheron, (1973} |[Yakowitz and Szidarovszky, 1985), and in
the more recent machine learning literature (cf. Williams and Rasmussen) 2006)). For a gen-

eral introduction to Bayesian methods with a focus on their decision theoretic motivation,



see Robert| (2007)). (O’Hagan and Kingman| (1978)) considered Gaussian process priors in the
context of experimental design, taking an approach similar to ours but without allowing
for covariates. A forceful argument for a Bayesian perspective on experimental design has
been made by Berry| (2006).

A few examples of experiments from the recent political science literature were men-
tioned in the introduction. Additional examples abound. Bolsen et al. (2014) sent messages
on water conservation to a random set of individuals in Florida to study differential effects
by voting behavior. Michelitch| (2015) study whether taxi fare bargaining is affected by
differences in ethnicity and/or political affiliation between driver and customer in Ghana.
Further examples can be found in |Gerber et al. (2014)); Hanmer et al.| (2014)); McClendon
(2014); Nyhan and Reifler| (2014)); [Paler| (2013).

2 Alternative optimization methods

In addition to the the re-randomization approach described in the main paper, there exist
alternative, more sophisticated methods of optimization, of course, and there is an extensive
literature discussing algorithms for discrete optimization problems such as ours. One such
set of procedures, called greedy algorithms, is based on local search. The idea is to start
from some assignment d°, and search over a set of “neighboring” assignments that only
differ in a few components to find the best assignment among those. This best assignment
is labeled d' and is used as the starting point for a new local search. The procedure is left
to run until a local optimum is found or timeout is reached.

A variation on greedy algorithms is so-called simulated annealing. This is one of the
most popular algorithms for discrete optimization and was introduced by |[Kirkpatrick et al.
(1983)). The algorithm uses noisy perturbations to a greedy search, to avoid getting stuck
in a local minimum. The noise is reduced in later iterations so the algorithm converges.

We have implemented versions of each of these, and Matlab code is available as part of
this online supplement. In practice it appears that re-randomization performs quite well,

and might be preferred by practitioners on account of its simplicity.



3 How to choose a prior

In this section we will discuss some common approaches to choosing prior moments for f.
Further background can be found in Williams and Rasmussen| (2006, chapters 2 and 4), as
well as [Wahba| (1990, chapter 1).

We discuss three classes of priors: (i) Linear models, (ii) priors with a squared expo-
nential covariance kernel, and (iii) priors which combine a general covariance kernel with a
linear model where the prior is non-informative about the coefficients of the linear model.
We finally discuss how to choose F[o?] given a prior for f, based on the expected share of

variation in potential outcomes explained by the observed covariates.

Linear models

For an appropriate definition of X; which might include interactions, powers, transforma-

tions etc., assume that

Vi = X5
B(5YX] =0
Var(57X) = X
Var(e?| X, %) = o?1.

In our previous notation, we have f(X;,d) = X;3% This implies C(z1,22) = 7} - X - T2,
and thus
C=X¥:X.

In this setup, the posterior expectation of 3¢ is given by the solution to the penalized

regression

~ 1 .
B =argmin — 3 7 (V' = X[50° + |57l

i O
B i:Di=d

where [|34]|3 = % - X - 7. The solution to this penalized regressio is given by

B\d — (Xd/Xd + 0_22;1)_1 Xd/Yd,

IThis type of regression is also known as “ridge regression,” and the method of penalization is called

“Tikhonov regularization” in some contexts (cf. |Carrasco et al.l 2007)).
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where as before X¢ and Y denote the appropriate submatrix and vector. This implies
N 1 -1
Var(8? — 81X, D) = (—2Xd’Xd + zgl) :
o

We get, finally, that the posterior expectation of the conditional average treatment
effect is given by
F-X (7 -7,

where X = 1 3 X, implying

_x. (Var@l — BYX, D) + Var(B° — 8YX, D)) X

=0 X ((Xl'Xl +0255") 7+ (XUX0 4+ 022[;1)‘1) X ()

This is the objective function we want to minimize through choice of the design D, which
enters this expression through the matrices
XX =3 "1(D; = d)X;X].
i
Note also that the “non-informative” limit Zgl — 0 has a particularly nice interpretation

here: it implies that the B\d and thus B are given by simple OLS regression. The risk in

this case is equal to the standard OLS variance of 3 .

Squared exponential covariance function

A common choice of prior in the machine learning literature (cf. |Williams and Rasmussen,

2006) is defined by the covariance kernel

1
Clon.az) = exp (=l = aal?). )

where ||.|| is some appropriately defined norm measuring the distance between covariate
vectors. The parameter [ determines the length scale of the process.

This prior does not restrict functional form and can accommodate any shape of f?. In
this sense it is a nonparametric prior. One attractive feature of the squared exponential

covariance kernel is that is puts all its mass on smooth functions, in the sense that f¢



is infinitely mean-square differentiable. A function is mean-square differentiable if the
normalized differences of f converge in L? to some function df(x)/dz,

fte)—fx) e 0f(x)
el 7 o

as ||e]] — 0, cf. Williams and Rasmussen| (2006}, p81). Infinite mean square differentiability
holds for all processes that have a covariance kernel C' which is infinitely differentiable
around points where x; = x,.

The length scale [, and more generally the norm ||x; — x2||, determines the smoothness
of the process, where larger length scales correspond to smoother processes. One measure
of smoothness are the expected number of “upcrossings” at 0, i.e., the expected number
of times the process crosses 0 from below in the interval [0,1]. For a one-dimensional
process with squared exponential kernel, this number equals 1/(2xl), cf. again Williams

and Rasmussen| (2006}, p81).

Noninformativeness

Researchers might rightly be concerned if experimental estimates for parameters such as
average treatment effects are driven by prior information. This suggests to consider priors
which are “non-informative” about the parameters of interest, while at the same time
using our prior assumptions about smoothness of the underlying functions fd. One way
to formalize such non-informativeness is to consider limit cases where the prior variance
for the parameter of interest goes to infinity, and to use the corresponding limit estimators
and implied objective functions for experimental design.

In particular, given a covariance kernel K¢ for a stochastic process ¢g? as well as a subset

2And note that any nonparametric estimation method has to use assumptions about smoothness!



of regressors x1, consider the process

Cov(g" (1), 9" (w2)

) = K(z1,22)
Var(8%X) = Azﬁ
)

Var(e?| X, g4

gL gt Le

For this process we get

C!= K+ A X{5sX{",

where the superscript d again denotes the appropriate submatrices. We will be interested

in particular in the case A — 0o, where the prior over 3¢ becomes non-informative. Let

7 =15 (X)), T =g+ X A% K2 = K+ 61, and K = Cov(Y?, 3| X, D) ]

Theorem 1 (BLP and MSE for partially non-informative priors)
—~ . ~1
For this model, the best linear predictor 3 is equal to Bos = f . — f up to a remainder of
order O(1/X) as A — oo, given X, D and Y, where
=~d — o~ . ~
Joo = KB + KK (V! = XTBL) 3)

and
/’B\go _ (Xd’Kg’_le)_l Xd/K;i,—lyd‘ (4)
For any X\, we have

— —=d —
' =Te=7"-K K} (g+¢)
— (X —K'K2X) - (XYESTIXD T XYY g+ €)

3Results somewhat similar to the following theorem have been shown by O’Hagan and Kingman| (1978),

as well as by [Wahba/ (1990, p19).



and

R(d, Bl X) = Var(F' — T |X) + Var(7° — T |X) (5)

where

- 50 —dy 7 prd—177d
Var(f — fo|X) = Var(g") - K K, K
<~ 7d _ _ -1 =~ 5= -
+ (X -KKJ7'X) - (X'KP'XY) T (X -KK)7'X). (6)

Proof: All moments in this proof implicitly condition on X and D. To show the first
claim, let hY = X3¢, so that Y¢ = g%+ h?+¢? and Var(Y?) = Var(g9) + Var(h?) + Var(e?).
The best linear predictor for 7d is given by

~d

f = Cov(fd, Y% Var(y?)~ly
= COV(Ed, Y Var(Y) ™'Y + Cov(g?, Y?) Var(Y4)~1y?

Straightforward algebra shows that
Var(Y?) ™! = (Var(¢?) + Var(ed))_1 (I — Var(h?) Var(Y*)™")
so that

Cov(g?, Y¥) Var(Y) Y =
Cov(g?,Y?) (Var(g?) + Var(ed)y1 (Y? = Cov(h®,Y*) Var(Y?)"'Y?) .

This proves the decomposition

~d

f=XB+ KK (v = X{BY),
where h? = X f@d is given by
1 -1

nd dr 7-d,—1 yd d—1 dr 7-d,—1

5_<XKy X+XZB) XYKyTY.
This is the penalized GLS estimator. To see this latter equality, note that after pre-
multiplying X and Y by Kg’_l/ 2, this model satisfies the assumptions of the linear model

~d ~ _ ~d

considered above. The limiting estimators f__ and 3% as well as the form of fd — foo DOW

follow immediately.



It remains to derive R(d, EOO|X). From the model where we had Y = g4 + ¢? we know
that
Var(g¢ — ?dKj”l(g +¢)) = Var(g?) — KdKj”IFd.

We furthermore know, by the properties of best linear predictors, that

Cov(g? = K'K* (g +e),(g+€)) = 0.

— =~d
These considerations and some algebra immediately yield Var( f t foo) O

Remark: Note that the limiting estimator of theorem [1| can be understood as penal-

ized regression, where the penalization corresponds to the seminorm
1P = min(f* = XB) - Ky - (f* = X“B). (7)
B

This is the squared Kg’_l norm of the projection of f¢ onto the orthocomplement of X¢

with respect to the K ! inner product.

Remark: Note also that the risk function R(d, EOOIX ) is given by the risk function

for the model without the term X3¢, plus a “correction term” of the form
(7 — FdKjv—lX) . (Xd/Kg’_le)_l (7 . Fng’_lX),

ford=1,2.

Choice of o2

2. A tractable way of doing so is

For all models considered above, we have to choose o
through picking the expected share of variation in the outcome data which is explained by

the covariates given 6, for a given treatment level. This share is given by

1
R =
1+ 0%/ Var(f4(X;)|X,0)’
so that
1— 2
o? = i Var(f4(X;)| X, 0).

RQ



Here Var(f4(X;)|X,0) = f¥M f?/n is the sample variance of f? with M defined as the

projection matrix M = I —ee’/n and e = (1,...,1)’. This implies
EVar(f4(X,)|X,0)|X] = Eltr(f"Mf*/n)|X] = tr(M - E[f*f*|X])/n
=tr(M-C)/n = (trC —€'C/n)/n.

This suggests picking o2 corresponding to the prior beliefs regarding R?, i.e.,

1— R?
R2

0 =E [ ] (trC — ¢T/n)/n.

For the case of stationary covariance functions this simplifies further, since in that case
tr(C)/n = Cj; for all i. Note also that this formula remains unchanged if we make the prior

: : —d
non-informative about f .

We conclude this section by summarizing our suggested prior.

Suggested prior

1. Normalize the variance of all covariates to 1.

2. Let K(z1,%2) = exp (—1||z1 — 22|?) where ||.|| is the Euclidian norm.
3. Take 0% = 1212 . (tr K — ¢'K /n)/n, based on your best guess for R?.
4. Consider the non-informative limit, w.r.t. Var(3?), of the model

Vit = 5"+ g'(X0) + €,
where ¢? is distributed according to the covariance kernel K.
According to theorem [I], this prior implies a best linear predictor for 5 of
B = B A KKy (Y = eBl) - KUK (Y — e),) (8)

where

Bgo = (e’Kg’*le)fl e’K;l’*le. 9)
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is a weighted average of the observations for treatment d. The expected mean squared

error equals
Var(8|X, D,Y) = Var(g'|X) + Var("|X) - K K 'K - K'K) K"
J— -1 _
+(1-K'Ky o) ((KFe) (1=K Ky ley

+(1-K°KOe) - (K0 e) ™ (1 - KK ey (10)

Possible modifications:

1. Change the length scale for variables that are expected to have a more nonlinear

impact by multiplying these variables by 2.

2. Make the prior non-informative about the slopes of some or all covariates; cf.

theorem [l
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