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Supplemental Material Appendices

A Formal Description of the Manski Framework

Let yj denote a variable measuring unit j’s outcomes of interest. We consider binary outcomes,

yj ∈ {0, 1}. These outcomes are affected by treatments, measured by variable t, so that yj(tj)

represents the assumption that the outcome experienced by j is a function of the treatment

received by j. Only one of many possible treatments, denoted z, is realized for each unit, so the

realized and observable outcome is yj(zj). The outcomes in the set {yj(tj), zj 6= tj} are not

observed. This unobservability is problematic because we would like to make inferences about

the function yj(tj). Instead, the observed data allow us to measure only the probability

distributions P[y|z = t] and P[z = t]. Manski (2011, 9) shows that if the unit’s treatment response

is a function only of the value of its own treatment and not of the treatment realized for any other

unit—the Individualistic Treatment Response (ITR) assumption—then the probability

distributions for the outcome functions can be identified in the region

H{P[y[tJ ]]} = [P[y|z = t]P[z = t] + δP[z 6= t], δ ∈ ∆Y ],

where tJ denotes the vector of treatment assignments over the entire population J and ∆Y denotes

the space of all probability distributions on y. The term δP[z 6= t], δ ∈ ∆Y , represents that the

outcome is unknown whenever the realized treatment is not the same as the potential treatment.

With binary outcomes the identification region for the potential outcome distribution under the

treatment t is an interval, [P[y|z = t]P[z = t],P[y|z = t]P[z = t] + P[z 6= t]]. ITR is a close

analogue to the stable unit treatment value assumption in the Rubin (1978, 1991) Causal Model.
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B Identification Bounds with Missing Treatment Data

Molinari (2010) extends Manski bounds to develop a procedure for identifying treatment effects

when treatment data are missing.1 The notation is the same as above, except Molinari introduces

a new variable, d, which is a binary variable equal to 1 if the treatment received by an unit is

observed, 0 otherwise. The analyst knows two distributions: P[d = 1], the probability that the

treatment is observed and P[z|y, d = 1], the conditional distribution of realized treatments given

realized outcomes and the observability of the realized treatment.

Given this setup, what can be learned about the ATE, P[y1 = 1]− P[y0 = 1]? Using the law of

total probability, the ATE can be decomposed as

P[y1 = 1]− P[y0 = 1] = (P[y1 = 1|d = 1]− P[y0 = 1|d = 1]) P[d = 1]

+ (P[y1 = 1|d = 0]− P[y0 = 1|d = 0]) P[d = 0]. (1)

Notice that (1) has two components, an observability of treatment component, [d = 1], and an

unobservability of treatment component, [d = 0]. Using again the law of total probability,

Molinari (citing Manski 1995, Chapter 2) identifies the sharp lower and upper bounds for the

observability component:

LBd=1
TE ≤ P[y1 = 1|d = 1]− P[y0 = 1|d = 1] ≤ UBd=1

TE , (2)

1Molinari’s method for treatment effect identification with missing treatment data assumes Individualistic Treat-
ment Response (ITR): the unit’s treatment response is a function only of the value of its own treatment and not of the
treatment realized for any other unit, which is a close analogue to the stable-unit-treatment-value-assumption (SUTVA)
in the Rubin (1978, 1991) Causal Model. Molinari assumes that each member j of a population has “a specific re-
sponse function yj(·) : T → Y mapping treatments t ∈ T into outcomes” (Molinari, 2010, 83) and so focuses on
individualistic effects. Molinari’s method and the sensitivity tests we introduce may still be useful in the absence of
ITR if the data can be arranged so that an assessment of individualistic treatment effects is meaningful. In this case all
of P[y(tJ)] will not be identifiable.
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where

LBd=1
TE = P[y = 1|d = 1, z = 1]P[z = 1|d = 1]

− P[y = 1|d = 1, z = 0]P[z = 0|d = 1]− P[z = 1|d = 1] ,

UBd=1
TE = P[y = 1|d = 1, z = 1]P[z = 1|d = 1]

+ P[z = 0|d = 1]− P[y = 1|d = 1, z = 0]P[z = 0|d = 1].

These are simply Manski bounds for the data for which the treatment is observed.

What Manski (1995) does not derive is the upper and lower bounds for the unobservable

component. The key probability is P[z = 1|d = 0], which cannot be derived from the data.

Without knowledge of P[z = 1|d = 0], Molinari states that the sharp bounds for

P[y1 = 1|d = 0]− P[y0 = 1|d = 0] are −1 ≤ P[y1 = 1|d = 0]− P[y0 = 1|d = 0] ≤ 1, which are

not informative. Using this result with equation (1), the sharp bounds for the treatment effect in

the absence of knowledge of P[z = 1|d = 0] are

LBTE ≤ P[y1 = 1]− P[y0 = 1] ≤ UBTE,

where

LBTE = −P[d = 0]− P[d = 1] (P[z = 1|d = 1]

+ P[y = 1|d = 1, z = 0]P[z = 0|d = 1]− P[y = 1|d = 1, z = 1]P[z = 1|d = 1]) ,

UBTE = P[d = 0] + P[d = 1] (P[z = 0|d = 1]

+ P[y = 1|d = 1, z = 1]P[z = 1|d = 1]− P[y = 1|d = 1, z = 0]P[z = 0|d = 1]) .
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C A Simple Example

To provide clear intuition for how Manski and Molinari bounds are calculated, consider Table 1.

For each unit A, B, C, D, and E, Table 1 reports its outcome and whether it received the treatment,

denoted 0 for control and 1 for treatment. Notice that units A and B received the treatment, units

C and D did not receive the treatment, and we are uncertain of the treatment status of unit E.

Table 2 presents the potential outcomes associated with Table 1. As Table 2 shows, we cannot

observe the control outcome for the treated units and we cannot observe the treated outcome for

the control units.2 Missing treatment data are especially pernicious: we are unable to assign the

outcome for unit E to either the treatment or control case.

Unit Treatment Outcome
A 1 0
B 1 1
C 0 0
D 0 1
E ? 0

Table 1: Simple Example

Treatment Control Treatment Smallest Largest
Unit Status Outcome Outcome Effect Effect

A 1 ? 0 −1 0
B 1 ? 1 0 1
C 0 0 ? 0 1
D 0 1 ? −1 0
E ? ? ? −1 1

Table 2: Simple Example: Potential Outcomes

Manski and Molinari bounds fill in the missing potential outcomes (each “?” in Table 2) with

the most extreme possible values. For example, since unit A received the treatment and had an

observed outcome of 0, then the largest positive effect the treatment can have on unit A is 0.

However, it is possible that the treatment could have a negative effect (size = −1), meaning that
2This is known as “the fundamental problem of causal inference” (Holland, 1986)
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in the control case unit A has an outcome of 1, but in case of treatment the outcome is 0. Since

unit B is in the treatment group and has an observed outcome of 1, the treatment effect must be

either 0 or 1. In other words, the treatment obviously does not eliminate the outcome of 1, but the

outcome might have been 1 even without the treatment. Unit C is in the control group and the

outcome is zero. It is possible that receiving the treatment will either cause the outcome to be 1 or

it will not (the outcome will remain 0). Unit D is also in the control group and the outcome is 1.

The treatment will either have no effect (as the outcome is already 1) or it will eliminate the effect

(the outcome will become 0, meaning the effect is −1). For unit E, the treatment effect could be

either −1, 0 or 1 since we have no information on the potential outcomes.

We may now compute both Manski and Molinari bounds. To compute bounds for the average

treatment effect, we need only compute the averages of the smallest and largest possible effects.

Manski bounds do so only for units for which the treatment is observed: in this case, units A

through D. Referring to Table 2, the ATE for units with observed treatment data can be no smaller

than (−1 + 0 + 0− 1)/4 = −1/2 and no larger than (0 + 1 + 1 + 0)/4 = 1/2. Unlike Manski

bounds, Molinari bounds are computed for the full population. Here the ATE can be no smaller

than (−1 + 0 + 0− 1− 1)/5 = −3/5 and no larger than (0 + 1 + 1 + 0 + 1)/5 = 3/5. These

constitute the lower and upper bounds on the ATE respectively. Molinari bounds thus permit us to

draw inferences about causal effects for the full population.
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D Derivation of MTR Sensitivity Analysis

LBυ = ω{−P[d = 0|tMTR = 0]− P[d = 1|tMTR = 0](P[z = 1|d = 1, tMTR = 0]

+ P[y = 1|d = 1, z = 0, tMTR = 0]P[z = 0|d = 1, tMTR = 0]

− P[y = 1|d = 1, z = 1, tMTR = 0]P[z = 1|d = 1, tMTR = 0])}

= −P[d = 0|tMTR = 0]ω − P[d = 1|tMTR = 0]P[z = 1|d = 1, tMTR = 0]ω

− P[d = 1|tMTR = 0]P[y = 1|d = 1, z = 0, tMTR = 0]P[z = 0|d = 1, tMTR = 0]ω

+ P[d = 1|tMTR = 0]P[y = 1|d = 1, z = 1, tMTR = 0]P[z = 1|d = 1, tMTR = 0]ω

= −P[d = 0 ∩ tMTR = 0]− P[z = 1 ∩ d = 1 ∩ tMTR = 0]

− P[y = 1 ∩ d = 1 ∩ z = 0 ∩ tMTR = 0] + P[y = 1 ∩ d = 1 ∩ z = 1 ∩ tMTR = 0]

= −P[d = 0 ∩ tMTR = 0]

− P[y = 1 ∩ z = 1 ∩ d = 1 ∩ tMTR = 0]− P[y = 0 ∩ z = 1 ∩ d = 1 ∩ tMTR = 0]

− P[y = 1 ∩ d = 1 ∩ z = 0 ∩ tMTR = 0] + P[y = 1 ∩ d = 1 ∩ z = 1 ∩ tMTR = 0]

= −P[d = 0 ∩ tMTR = 0]

− P[y = 0 ∩ z = 1 ∩ d = 1 ∩ tMTR = 0]− P[y = 1 ∩ d = 1 ∩ z = 0 ∩ tMTR = 0]

= −(υ1ξ1 + υ3ξ3 + υ4ξ4) ,

6



E Derivation of MTS Sensitivity Analysis

For parsimony of notation, we omit explicitly representing that all results are conditional on

ω = 0.

UBθ = ζ{P[d = 0 | tMTS = 0] + (P[z = 0 | d = 1, tMTS = 0]

+ P[y = 1 | d = 1, z = 1, tMTS = 0]P[z = 1 | d = 1, tMTS = 0]

− P[y = 1 | d = 1, z = 0, tMTS = 0]P[z = 0 | d = 1, tMTS = 0])

× P[d = 1 | tMTS = 0]}

+ (1− ζ){(P[y = 1 | d = 1, z = 1, tMTS = 1]

− P[y = 1 | d = 1, z = 0, tMTS = 1])P[d = 1 | tMTS = 1] + P[d = 0 | tMTS = 1]}

= κ1 + κ2

κ1 = P[tMTS = 0]{P[d = 0|tMTS = 0] + (P[z = 0|d = 1, tMTS = 0]

+ P[y = 1|d = 1, z = 1, tMTS = 0]× P[z = 1|d = 1, tMTS = 0]

− P[y = 1|d = 1, z = 0, tMTS = 0]× P[z = 0|d = 1, tMTS = 0])

× P[d = 1|tMTS = 0]}

= P[d = 0 ∩ tMTS = 0] + (P[z = 0|d = 1, tMTS = 0]

+ P[y = 1|d = 1, z = 1, tMTS = 0]× P[z = 1|d = 1, tMTS = 0]

− P[y = 1|d = 1, z = 0, tMTS = 0]× P[z = 0|d = 1, tMTS = 0])

× P[d = 1 ∩ tMTS = 0]

= P[d = 0 ∩ tMTS = 0] + P[z = 0 ∩ d = 1 ∩ tMTS = 0]

+ P[y = 1 ∩ d = 1 ∩ z = 1 ∩ tMTS = 0]− P[y = 1 ∩ d = 1 ∩ z = 0 ∩ tMTS = 0]
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= P[d = 0 ∩ tMTS = 0]

+ P[y = 1 ∩ d = 1 ∩ z = 0 ∩ tMTS = 0] + P[y = 0 ∩ d = 1 ∩ z = 0 ∩ tMTS = 0]

+ P[y = 1 ∩ d = 1 ∩ z = 1 ∩ tMTS = 0]− P[y = 1 ∩ d = 1 ∩ z = 0 ∩ tMTS = 0]

= θ1ξ1 + θ5ξ5 + θ2ξ2.

κ2 = P[tMTS = 1]× {(P[y = 1|d = 1, z = 1, tMTS = 1]

− P[y = 1|d = 1, z = 0, tMTS = 1])× P[d = 1|tMTS = 1] + P[d = 0|tMTS = 1]}

= P[d = 0 ∩ tMTS = 1] + P[tMTS = 1]{P[y = 1|d = 1, z = 1, tMTS = 1]P[d = 1|tMTS = 1]

− P[y = 1|d = 1, z = 0, tMTS = 1]P[d = 1|tMTS = 1]}

= P[d = 0 ∩ tMTS = 1] + P[y = 1|d = 1, z = 1, tMTS = 1]P[d = 1|tMTS = 1]P[tMTS = 1]

− P[y = 1|d = 1, z = 0, tMTS = 1]P[d = 1|tMTS = 1]P[tMTS = 1]

Assume P[z = 1|d = 1, tMTS = 1],P[z = 0|d = 1, tMTS = 1] > 0.

κ2 = P[d = 0 ∩ tMTS = 1]

+ P[y = 1 ∩ d = 1 ∩ z = 1 ∩ tMTS = 1]/P[z = 1|d = 1, tMTS = 1]

− P[y = 1 ∩ d = 1 ∩ z = 0 ∩ tMTS = 1]/P[z = 0|d = 1, tMTS = 1]

= (1− θ1)× ξ1 + (1− θ2)× ξ2/P[z = 1|d = 1, tMTS = 1]

− (1− θ4)× ξ4/P[z = 0|d = 1, tMTS = 1]
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Now we derive P[z = 1|d = 1, tMTS = 1].

P[z = 1|d = 1, tMTS = 1] = P[z = 1 ∩ d = 1 ∩ tMTS = 1]/[P[d = 1 ∩ tMTS = 1]]

= (P[y = 1 ∩ z = 1 ∩ d = 1 ∩ tMTS = 1] + P[y = 0 ∩ z = 1 ∩ d = 1 ∩ tMTS = 1])/

(P[y = 1 ∩ z = 1 ∩ d = 1 ∩ tMTS = 1] + P[y = 1 ∩ z = 0 ∩ d = 1 ∩ tMTS = 1]

+ P[y = 0 ∩ z = 1 ∩ d = 1 ∩ tMTS = 1] + P[y = 0 ∩ z = 0 ∩ d = 1 ∩ tMTS = 1])

= [(1− θ2)ξ2 + (1− θ3)ξ3]/[(1− θ2)ξ2 + (1− θ3)ξ3 + (1− θ4)ξ4 + (1− θ5)ξ5]

Similarly,

P[z = 0|d = 1, tMTS = 1] = [(1− θ4)ξ4 + (1− θ5)ξ5]/

[(1− θ2)ξ2 + (1− θ3)ξ3 + (1− θ4)ξ4 + (1− θ5)ξ5]

Combining,

κ2 = (1− θ1)× ξ1 +

[
(1− θ2)× ξ2

[(1− θ2)ξ2 + (1− θ3)ξ3]
− (1− θ4)× ξ4

[(1− θ4)ξ4 + (1− θ5)ξ5]

]
× [(1− θ2)ξ2 + (1− θ3)ξ3 + (1− θ4)ξ4 + (1− θ5)ξ5].

The derivation is complete.
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F Sensitivity Analysis Figures with 100,000 Prior Draws
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Figure 1: Sensitivity Analysis for Effect of Immigrant Parent on Anti-immigrant policies, German
and Italian World Values Survey samples. Solid black lines represent boundaries of 100(1− α)%
confidence regions for expected values of bounds assuming uniform priors. Gray lines represent
boundaries of 100(1−α)% confidence regions for 95% posterior intervals assuming uniform priors.
100,000 draws from the prior used to simulate posterior distribution. 500 bootstrap replications
used to estimate boundaries for α = .05.
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