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A Textual data and spatial models: The need for a measure-
ment model with dynamics

The reconstruction of political positions from political texts usually starts with the identification
of semantic or grammatical tokens and proceeds with classifying these tokens into politically
relevant categories and concludes with counting the occurrence of these political categories.
These tokens may be words or they may be sentences or quasi-sentences. With regards to the
next step, one can further distinguish between approaches that classify these token into more
broader categories of political content, and approaches that leave the tokens, in this case usually
words, as they are, without further classification. The result of this preparation is a set of counts
or percentages, where the counts refer to the number tokens that correspond to the categories
of classification or the number of tokens themselves while the percentages correspond to the
number of tokens within the respective categories relative to the total number of tokens present
in the text.

When such counts or percentages of political categories are obtained one has not yet arrived
at positions in a political space. In spatial models of politics, the usual assumption is that actors
have positions or ideal points in a uni-dimensional or multidimensional Euclidean space and
that the choice of a particular option or the support for a particular policy depends on the
distance between the actor’s ideal point and the location of the option or policy in the political
space. Positions in a Euclidean space are in general represented by coordinate values with
respect to a particular coordinate system, where these values can be positive, negative or zero,
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depending of the location of the position relative to the origin of the coordinate system. Counts
and percentages of coding categories or words, as they result from a quantitative preparation of a
political text, are always non-negative, hence there is no simple match or linear relation between
these counts or percentages and positions in a political space.

This problem can be illustrated by the example of the general left-right index (also known
as the RiLe index) provided by Comparative Manifesto Project (CMP) (Budge et al. 2001;
Klingemann et al. 2006; Volkens et al. 2010), which is now widely used to examine the causes
and consequences of parties positions that they take in their electoral platforms. This left-right
index is constructed based on 26 of the 56 coding categories used by the CMP. Of these 26
categories 13 are classified as “left” while another 13 categories are classified as “right”. The left-
right index for each electoral platform covered by the CMP is then constructed by summing
all percentages referring to the “left” categories and summing all the percentages referring to
the “right” categories and then by subtracting the sum of “left” percentages from the sum of
“right” percentages. The resulting index thus attains both positive and negative values which
are interpreted by the CMP researchers as coordinate values on a left-right political axis. If N
is the total number of quasi-sentences of an electoral platform, L is the total number of quasi-
sentences that fall into one of the coding categories interpreted as “leftist” and R is the total
number of quasi-sentences that fall into one of the coding categories interpreted as “rightist”
then the RiLe index is constructed as

RiLe = 100R − L
N

(1)

where themultiplication by 100 reflects the fact that the RiLe index is a difference in percentages.
While this index is simple and straightforward, it circumvents rather than solves the problem of
the absence of a direct relation between locations in a Euclidean space and counts/percentages
of coding categories and thus has three major limitations.

The first limitation is that this index requires the political space to be uni-dimensional: That
is, if a party is liberal or leftist in terms of economic policy it will also be liberal or leftist in
terms of social policy. The second limitation is that this index rests on the implicit assumption
that there is no real variation among “leftist” categories and among the “rightist” categories in
terms of the location on the left-right axis. The third limitation is that it does not make use of
the particular structure of the data: Left-right scores for each electoral platform are computed in
isolation, without making use of the fact that several of the platforms covered in the data come
from the same party and that there is a temporal order in the platforms published by the same
party.1

It is hard to check empirically whether the first limitation is really a serious one. A principal
components analysis or factor analysis is not appropriate for this kind of data, because the

1Klingemann et al. (2006) use some a time series technique to discuss the reliability of the scores, but this does
not yetmean that the construction of the scores themselves was designed to take into account the pooled time-series
structure of the data.
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relations among percentages from a given total are typically non-linear. Nevertheless, various
authors have attempted to use PCA or factor analysis to check the dimensionality of the CMP
data (e.g. Budge et al. 1987; Gabel and Huber 2000). Yet the results of a PCA are barely useful.
For example, a replication of Gabel and Huber’s principal components analysis leads to no less
than 20 components with eigenvalues larger than unity. The first component, on which Gabel
and Huber base their “vanilla scores” (Gabel and Huber 2000), captures just 5.07 per cent of the
total variance.

An alternative use of the CMP data, which posits the existence of two substantially different
left-right dimensions, an economic one and a social one, was proposed by Laver and Garry
(2000) (see also Benoit and Laver 2006).2 They also devise a way to account for variations in
the salience of these two dimensions in electoral platforms by forming a relative proportional
difference: If L is the frequency of all (quasi-)sentences together that refer to “leftist” categories
and R is the frequency of all (quasi-)sentences that refer to “rightist” categories then their
salience-corrected economic left-right index is defined as

LRLG = R − L
R + L

. (2)

Probably as a reaction to the criticism brougth forward against the idea of a single overarch-
ing left-right dimension, recent editions of the CMP data set (Klingemann et al. 2006; Volkens
et al. 2010) now also contain some domain specific left-right indices, notably a PlanEco and a
FreeMarket index which are both variants of an index of a economic left-right dimension. That
is, they are also constructed according to equation (1), yet withR and L defined differently. While
these indices allow for the possibility of several political dimensions specific for particular pol-
icy areas, they do not allow to separate parties’ positions within a policy area from the salience
of the policy area. One could expect that they are even stronger affected by a variation in the
salience of a policy area than the overarching RiLe index, which can be seen as a summary of
left-right positions in several policy areas.

Laver and Garry’s (2000) approach was further developed by Lowe, Benoit, Mikhaylov, and
Laver (2011), who, in order to address the basic problem of non-linearity, form the (stabilized)
log-odds of the “leftist” sum L and the “rightist” sum R:

LRLBML = ln R + .5
L + .5

= ln(R + .5) − ln(L + .5) (3)

Yet both Laver and Garry’s (2000) and Lowe et al.’s (2011) approaches do not address the second
limitation: When a CMP category is considered for either of the two political dimensions, its
location on it is either categorically on the left or on the right. Again, there is no variation in the
“left-ness” or “right-ness” of particular coding categories.

2Laver andGarry (2000) also propose a different coding scheme that usesmore explicitly confrontational coding
categories.
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Approaches that address the problem of non-linearity and overcome the first two limitations
by allowing for a multidimensional political space and for variation in the location of the coding
categories have been put forward by van der Brug (2001) and Elff (2009). Van der Brug (2001)
uses non-metric multidimensional scaling to reconstruct parties positions from their electoral
platforms while Elff (2009) uses metric multidimensional unfolding of the log-transformed
counts of theCMP categories. Both approaches are essentially exploratory in nature and thus not
well-suited to test hypotheses. Van der Brug’s (2001) method of reconstructing parties’ position
also fails to make sure that coordinate axes obtained from the MDS of electoral platforms from
different countries or to different points in time have the same interpretation.

Slapin andProksch’s (2008)Wordfish approach, thoughbased on counts ofwords rather than
on counts of broader coding categories, has a formal structure similar to Elff’s (2009) unfolding
approach in that it involves a logarithmic relation between parties positions or their distances to
the locations of policies and observable counts. In Slapin and Proksch (2008) this logarithmic
relation is motivated by an explicit probability model in which the counts are assumed to have
a Poisson distribution. This model takes the following form (in the notation consistent with the
article)

ln μi jt = λjt + ψi + αibjt (4)

where λjt is a fixed effect for the total length of the political text published by actor j at time
t, ψi is a fixed effect for the total number of counts in which the semantic token (i.e. word) i
occurs in all texts covered, αi is a “weight” that expresses what direction of the political space
is represented by the token i and in what strength, and bjt is the position of the actor j at time
t in the political space. Yet their model is limited in so far as it allows only for positions on a
single political dimension and, like all the other approaches discussed previously, that it does
not make use of the pooled time-series structure of the data. Furthermore, the Wordfish model
is not a truly spatial model. The word parameters and position parameters of this model can be
interpreted as their “sensitivities” with respect to the axis of the political space, but not as spatial
locations (Lowe 2008).

The usefulness of a measurement model linking positions to non-metric data is demon-
strated by theNominate approach for the reconstruction of legislators’ ideal points from roll-call
data (Poole and Rosenthal 1985). The observed data for the Nominate approach is binary: the
Yea or Nay vote of each legislator on a bill proposed in the House of Representatives or Senate.
In the original version of the Nominate model it is assumed that (1) either option, Yea or Nay, of
the vote for a bill proposed at time t is representable by a location αit in a political space (where
i = 1 for Yea and i = 0 for Nay) (2) that each legislator has a constant ideal point β j in the same
political space, and (3) the probability that a legislator votes Yea or Nay is determined by the
distance between their ideal point and the locations of the to alternatives. More specifically, the
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relation between the vote probabilities, the ideal point and the locations of the alternatives is
given by

ln
Pr(Vjt = 1)
Pr(Vjt = 0) = η (∣∣α1t − β j∣∣) − η (∣∣α0t − β j∣∣) (5)

or equivalently

Pr(Vjt = 1) = exp (η (∣∣α1t − β j∣∣))
exp (η (∣∣α1t − β j∣∣)) + exp (η (∣∣α0t − β j∣∣)) (6)

where Vjt is the vote cast by legislator j in the role call at time t, ∣∣αit − β j∣∣ is the Euclidean
distance between the location of the alternative i (i = 0, 1) and the ideal point of legislator j,
and η is a function that is monotonously decreasing. In the original formulation this function
was defined as η(x) = exp (−1

2ω2x2) for constant ω (Poole and Rosenthal 1985).
Clinton et al. (2004) use a model that differs from equation (5) in that the right-hand side

of their model equation does not contain an exponential function and that the left-hand side
specifies a probit-link rather than a logit link, which allows them to arrive at the simpler model
equation (in a notation adapted to this article):

Φ−1(Pr(Vjt = 1)) = κ′1tb j − κ2t , (7)

where
κ1t = 2(α1t − α0t) and κ2t = (α′1tα1t − α′0tα0t) (8)

Clinton et al. (2004) consider cases where both the number of legislators and and the number
of roll-call votes are large (i.e. if several sessions of the US Congress are considered). For both
theoretical as practical reasons, they use a Bayesian approach at recovering the positions b j and
the parameters κ1t and κ2t and hence α0t and α1t. For both the positions of the legislators b j and
the transformed location parameters κ1t and κ2t they use a multivariate distribution as a prior, a
relatively flat prior for κ1t and κ2t (with a variance value of 25) and a somewhat informative prior
for the positions of the legislators b j (with a variance equal to unity formost legislators except for
those whose positions they need to fix for purposes of model identification). It is important to
state here how Clinton et al.’s Bayesian approach differs from the marginal likelihood/empirical
Bayes treatment of the positions of political actors proposed in this article. In Clinton et al.
(2004) the parameters of the prior distribution of the are fixed in advanced to pre-determined
values, while in the context of the approach taken in this article, the parameters of the prior
distribution of the positions are estimated from the observed data.

Martin andQuinn (2002) extendClinton et al.’s (2004) approach by a dynamic component in
the prior distribution of the positions of the actors, in the case of the application of their model,
to the positions of judges in the US Supreme Court. Consequently, the ideal points b jt gain a
time index as well. While Clinton et al. (2004) consider an informative prior for the positions
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that nevertheless rests on the assumption of serial independence, the prior distribution used by
Martin and Quinn (2002) takes into account that the positions of the same actors at different
times may be serially correlated and evolve over time in a manner described by

b jt = Γb jt−1 + u jt (9)

where Γ is a matrix of auto-regression coefficients, which is the same as equation (5) in the
article, with a prior distribution of the initial distribution as described by equation (4) in the
article. Martin and Quinn assume the innovations u jt of the ideal points to have a normal
distribution and also treat the locations ait as unobserved data with a normal distribution.
However, in contrast to the marginal likelihood/empirical Bayes approach taken in this article,
Martin andQuinnhave to fix the values of the variance of the initial positions Σ0 and the variance
of the positional innovations Σ1 to specific values in order to make their Bayesian analysis of the
development of Justices’ political positions feasible.

Themodels of Poole and Rosenthal (1985) andMartin and Quinn (2002) exhibit some of the
features a measurement model should have that allows the reconstruction of political positions
from coded political texts: (1) Unlike in the index construction of the RiLe index by the principal
investigators of the Comparative Manifesto Project and their variations proposed by Laver and
Garry (2000) and Lowe et al. (2011), the policy options are not simply categorized as “left” and
“right”, but may have varying locations in the political space. (2) The models of Poole and
Rosenthal (1985) and Martin and Quinn (2002) specify a plausible link between locations in
an Euclidean space and observed data that non-metric. (3) Martin and Quinn (2002) specify a
dynamic state-space model for the ideal points. Nevertheless, these models cannot be used for
reconstruction of positions of political actors from coded political texts without modifications.

On the one hand, in models from the Nominate lineage the observations there are always
only two relevant locations of policy options, one for the Yea alternative and one for the Nay
alternative. In political texts there are often numerous categories that are relevant for the
reconstruction of political positions, whichmaymake this task in this respectmore complicated.
On the other hand, while roll-call votes typically deal with a different topic at each point in time,
categories used for coding political texts are constant over time, however fine-grained they are.
That is, the task of reconstructing political positions becomes simpler in another respect. Finally,
since the observations are not just binary choices but counts (or percentages obtained from these
counts), each observation is able to provide much more information about political positions
than in the case of roll-call votes. This is why the model proposed in the article does not have
the restriction to a single dimension as the original Nominate model and why it is also possible
to estimate the variance parameters in Σ0 and Σ1 from empirical data instead of setting them to
fixed values as in Martin and Quinn (2002).
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B Details on the Estimation Method

Below various aspects of the algorithm to obtain estimates of the dynamic state-space model
to obtain predictions of political positions based on an estimated model are presented. These
methods are implemented in R (R Development Core Team 2011) with some extensions in C++
with the help of the Rcpp and RcppArmadillo packages (Eddelbuettel and François 2011; Francois
et al. 2011). The software implementing the methods is available for download on the Political
Analysis dataverse (Elff 2012) and on the author’s Web site.

B.1 Marginal Maximum Likelihood and Expectation-Maximization

In the main article, a dynamic state-space model was introduced that considers as estimable
parameters only its temporally invariant aspects, such as the locations of political objectives and
the parameters of the distribution of the actors’ positions, whereas the positions themselves were
considered as unobserved data. The advantage of this is that the number of parameters stays
constant, even if more data becomes available, and that positions of political actors can even be
predicted out of the sample of political texts.

This approach means that the estimation of the model parameters becomes a missing data
problem (Little and Rubin 2002). To obtain maximum likelihood estimates of the parameters
of a model with missing data, one needs to construct the likelihood in a way that it does not
depend on the unobserved data. This marginal likelihood is constructed by “integrating out”
the unobserved data from the complete data likelihood (that depends on both observed and
unobserved data), which in the present case takes the form:

Lcpl(y, b;ψ) = J∏
j=0

Lcpl(y j , b j;ψ) = J∏
j=0

L(b j; β, Γ, Σ0, Σ1)
Tj∏
t=0

L(y jt ∣b jt ; α) (10)

where the vector y j is constructed by stacking all the observed data points y jt for party j, b j is
constructed analogously from the unobserved data points b jt , and the vector ψ is constructed
from all free parameters in the model. The corresponding log-likelihood than is:

ℓcpl(y, b;ψ) = J∑
j=0

ℓcpl(y j , b j;ψ) = J∑
j=0

ℓ(b j; β, Γ, Σ0, Σ1) +
Tj∑
t=0

ℓ(y jt ∣b jt ; α) (11)

where ℓcpl(y, b;ψ) = lnLcpl(y, b;ψ), ℓcpl(y j , b j;ψ) = lnLcpl(y j , b j;ψ), etc.
As was explained in the main text, the counts of policy emphases are assumed to follow a

multinomial distribution, conditional on the policy positions of the electoral platforms, which
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is further specified by the locations of the policy objectives as estimable parameters. This
conditional log-likelihood takes the form (where Δi jt = ∣∣αi − b jt ∣∣):

ℓ(y∣b; α) = J∑
j=1

ℓ(y j∣b j; α)

= ∑
j
c(y j) + J∑

j=1

Tj∑
t=0

∑
i
mi jt ln πi jt

=∑
j
c(y j) + J∑

j=1

Tj∑
t=0

∑
i
mi jt

exp (−1
2Δ2

i jt)
∑h exp (−1

2Δ2
h jt)

= ∑
j
c(y j) − J∑

j=1

Tj∑
t=0

∑
i
mi jt

1
2
(αi − b jt)′(αi − b jt)

− J∑
j=1

Tj∑
t=0

ln(∑
h
exp(−1

2
(αi − b jt)′(αi − b jt))) .

(12)

The assumptions about the dynamics positions of a party j at times t = 0, . . . , Tj lead to a
multivariate normal distribution with a density the logarithm of which is:

ℓ(b; β, Γ, Σ0, Σ1) = J∑
j=1

ℓ(b j; β, Γ, Σ0, Σ1)
= −D

2
ln(2π) J∑

j=1
(Tj + 1) − J

2
ln ∣Σ0∣ − J∑

j=1

Tj

2
ln ∣Σ1∣

− 1
2

J∑
j=1
(b j0 − β)′Σ−10 (b j0 − β)

− 1
2

J∑
j=1

Tj∑
t=1

β′(I − Γ)′Σ−11 (I − Γ)β

− J∑
j=1

Tj∑
t=1

β′(I − Γ)′Σ−11 (b jt − Γb jt−1)

− 1
2

J∑
j=1

Tj∑
t=1

(b jt − Γb jt−1)′Σ−11 (b jt − Γb jt−1)

(13)

There are a couple of constraints imposed on the parameters of the model. The matrices Σ0

and Σ1 have to be symmetric positive definite in order to qualify as variance-covariancematrices.
Further, the coordinates of the locations of the policy objectives sum to zero along each axis, and
some coordinates may be fixed to zero. Thus the elements in α, β, Γ, Σ0 and Σ1 can be conceived
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as re-parameterized such that they are functions of an (unrestricted) parameter vector ψ. As a
function of ψ, the complete-data log-likelihood takes the form

ℓcpl(y, b;ψ) = J∑
j=1

ℓcpl(y j , b j;ψ)
= J∑

j=1
ℓ(y j∣b j; α(ψ)) + J∑

j=1
ℓ(b j; β(ψ), Γ(ψ), Σ1(ψ), Σ1(ψ)).

(14)

Inferences can of course only be drawn based on data actually observed. They have to be
based on the marginal likelihood or on the marginal log-likelihood

ℓobs(y;ψ) = J∑
j=1

ℓobs(y j;ψ) = J∑
j=1

lnLobs(y j;ψ)
= J∑

j=1
ln ∫

R
S j
Lcpl(y j , b j;ψ)d b j

= J∑
j=1

ln ∫
R

S j
exp (ℓcpl(y j , b j;ψ)d b j)

(15)

where the integral ranges over the Sj ∶= D(Tj + 1)-dimensional space RS j .
The gradient of the marginal or observed-data log-likelihood takes the form of a conditional

expectation given the observed data:

∂ℓobs(y;ψ)
∂ψ

= J∑
j=1

∂ℓobs(y j;ψ)
∂ψ

= J∑
j=1

∂
∂ψ

ln ∫
R

S j
Lcpl(y j , b j;ψ)d b j

= J∑
j=1
∫
R

S j

Lcpl(y j, b j;ψ)
Lobs(y j;ψ)

∂ℓcpl(y j , b j;ψ)
∂ψ

d b j

= J∑
j=1

Eψ ( ∂ℓcpl(y j , b j;ψ)
∂ψ

∣ y j)
(16)

This gradient can be interpreted as a posterior expectation of a function of b j with the distribu-
tion of the positions b j as a prior, because

∫
R

S j

Lcpl(y j , b j;ψ)
Lobs(y j;ψ)

∂ℓcpl(y j , b j;ψ)
∂ψ

d b j = ∫
R

S j f (y j∣b j;ψ) f (b j ;ψ) ∂ℓcpl(y j ,b j ;ψ)
∂ψ d b j

∫
R

S j f (y j∣b j;ψ) f (b j ;ψ), d b j
(17)

where
f (y j∣b j;ψ) = exp(ℓ(y j∣b j; α(ψ))) (18)

is the multinomial-distribution likelihood conditional on b j and

f (b j;ψ) = exp(ℓ(b j; β(ψ), Γ(ψ), Σ1(ψ), Σ1(ψ))) (19)
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is the prior distribution of b j.
The observed information, the negative of the Hessian matrix of the observed-data log-

likelihood takes the form of the difference between two matrices, the conditional expectation
of the complete-data information matrix and the conditional covariance matrix of the gradient,
where both expectations are formed conditional on the observed data:

Iobs(ψ) = −∂2ℓobs(y;ψ)
∂ψ∂ψ′

= − J∑
j=1
∫
R

S j

Lcpl(y j , b j;ψ)
Lobs(y j;ψ)

∂2ℓcpl(y j , b j;ψ)
∂ψ∂ψ′

d b j

− J∑
j=1
∫
R

S j

Lcpl(y j , b j;ψ)
Lobs(y j;ψ) (∂ℓcpl(y j , b j;ψ)

∂ψ
)(∂ℓcpl(y j, b j;ψ)

∂ψ
)
′

d b j

+ J∑
j=1

(∂ℓobs(y j;ψ)
∂ψ

)(∂ℓobs(y j;ψ)
∂ψ

)
′

= J∑
j=1

Eψ (−∂2ℓcpl(y j , b j;ψ)
∂ψ∂ψ′

∣ y j)
− J∑

j=1
Covψ ( ∂ℓcpl(y j , b j;ψ)

∂ψ
,
∂ℓcpl(y j , b j;ψ)

∂ψ′
∣ y j)

= Eψ(Icpl(ψ)∣y j) − Imis(ψ)

(20)

where Icpl(ψ) usually is referred to as the complete-data information and Imis(ψ) as themissing
information (Little and Rubin 2002: 177).

The usual method for computing maximum-likelihood estimates of models involving miss-
ing data is an EMalgorithm (Dempster et al. 1977; Little andRubin 2002). Such an EMalgorithm
is iterative and involves steps of the following form: Letψ(s) be the current approximation of the
maximum likelihood estimate at iteration s of the algorithm, then the following expectation is
computed based on ψ(s) and conditional the observed data y j – this is the “E-step”:

Q(ψ;ψ(s)) = ∑
j
E (ℓcpl(y j , b j;ψ)∣ y j;ψ(s)) = ∑

j

∫ Lcpl(y j , b j;ψ(s))ℓcpl(y j , b j;ψ)d b j

∫ Lcpl(y j , b j;ψ(s))d b j
(21)

Holding ψ(s) fixed, the updated approximation of the maximum likelihood estimate ψ(s+1)

is identified as the value of ψ that maximizes Q(ψ;ψ(s)). This is the “M-step”. The EM
algorithm will repeat these steps until some criterion of convergence is attained, for example
that ∣∣ψ(s+1)−ψ(s)∣∣ < є or ∣∣Q(ψ(s+1);ψ(s))−Q(ψ(s);ψ(s))∣∣ < є for a small positive number є, e.g.,
є = 10−7.
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Thismaximization stepwill itself be conducted iteratively, so that the structure of such anEM
algorithm is that of an iterative procedure nested in a iterative procedure. These inner iterations
involve the gradient of the Q-function

∂Q(ψ;ψ(s))
∂ψ

=∑
j
E( ∂ℓcpl(y j , b j;ψ)

∂ψ
∣ y j;ψ(s)) (22)

and the Hessian
∂2Q(ψ;ψ(s))

∂ψ∂ψ′
=∑

j
E( ∂2ℓcpl(y j , b j;ψ)

∂ψ∂ψ′
∣ y j;ψ(s)) (23)

It is easy to see that the gradient of the observed-data log-likelihood and the gradient of
the Q-function coincide at ψ = ψ̂ = ψ(∞), which is the main motivation of the EM algorithm.
However, the Hessian of the observed-data log-likelihood and the Hessian of the Q-function
are different, with the former being more complicated and, but more importantly, involving a
difference between two matrices. So while one could argue that the availability of a Hessian
allows for a direct Newton-Raphson algorithm, such an algorithm can be expected to be
unstable, because theHessian can become positive semi-definite, which will lead to a divergence
of the algorithm. In contrast, if appropriately constructed, EM-steps will always lead to an
increase in the observed-data log-likelihood function (Dempster et al. 1977; Little and Rubin
2002: 172).

B.2 Monte Carlo Methods

The marginal likelihoods, log-likelihoods and their derivatives involve integrals that are mul-
tidimensional and do not have a analytical solution. Therefore, they need to be approximated,
using quadrature or Monte Carlo techniques. Whatever technique one uses, the approximation
of such an integral takes the form

∫
R

S j
Lcpl(y j , b j;ψ)g(b j)d b j ≈ R∑

r=1
w∗(r)j g(b∗(r)j ) (24)

where b∗(r)j are quadrature points or random vectors and w∗(r)j are weights specific for the
numerical integration technique.

If one uses a Monte Carlo approximation with samples from a distribution with a density
proportional to Lcpl(y j, b j;ψ) then the weights would simply be w∗(r)j = Kj/R, where Kj is the
normalizing constant Kj = ∫

R
S j Lcpl(y j , b j;ψ)d b j. Since such samples are not readily available,

the article uses importance sampling, where the random vectors b∗(r)j are generated from a
distribution that is similar in shape to Lcpl(y j , b j;ψ) (Robert and Casella 2004: 92).
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The first step to find determine an importance sampling strategy is a change of variables
of integration: Let b̃ j be the value of b j that maximizes Lcpl(y j , b j;ψ) and also its logarithm
ℓcpl(y j , b j;ψ). Let further

K̃ j = − ∂2ℓcpl(y j , b j;ψ)
∂b j∂b′j

∣
b j=b̃ j

(25)

the negative Hessian of the complete-data log-likelihood for b j evaluated at b j = b̃ j. Now using
the substitution b j = b̃ j + K̃−

1
2

j v j ⇔ K̃
1
2
j (b j − b̃ j) = v j, where K̃

− 1
2

j is the inverse of the Cholesky
factor of K̃ j, the first step is completed by the change of variables:

∫
R

S j
Lcpl(y j , b j;ψ)g(b j)d b j = ∫

R
S j
Lcpl(y j , b̃ j + K̃−

1
2

j v j;ψ)g(b̃ j + K̃−
1
2

j v j)∣K̃ j∣− 1
2 d v j (26)

The next step is to make use of the “importance sampling fundamental identity” (Robert and
Casella 2004: 92) to determine the Monte Carlo approximation:

∫
R

S j
Lcpl(y j , b j;ψ)g(b j)d b j = ∫

R
S j

Lcpl(y j , b̃ j + K̃−
1
2

j v j;ψ)g(b̃ j + K̃−
1
2

j v j)
∣K̃ j∣ 12 fpro(v j) fpro(v j)d v j

≈ R∑
r=1

Lcpl(y j , b̃ j + K̃−
1
2

j v∗(r)j ;ψ)
R∣K̃ j∣ 12 fpro(v∗(r)j ) g(b̃ j + K̃−

1
2

j v∗(r)j )
(27)

so that in equation (24)

b∗(r)j = b̃ j + K̃−
1
2

j v∗(r)j and w∗(r)j = Lcpl(y j , b̃ j + K̃−
1
2

j v∗(r)j ;ψ)
R∣K̃ j∣ 12 fpro(v∗(r)j )

where fpro() is the density function of the distribution from which the random vectors v∗(r)j

are sampled. This proposal distribution should be chosen such that its tails are heavy enough
so that the importance weights w∗(r)j are bounded and the Law of Large Numbers applies to
the approximation (24). Following Booth and Hobert (1999), the article employs a standard
multivariate Student distribution with Fj = 7 ⋅ Sj degrees of freedom, where Sj = D(Tj +1). That
is, the resulting random vectors b∗(r)j come frommultivariate Student distributionwith mean b̃ j

and scale matrix K̃−1j .
The computationofmaximum likelihood estimates and of test statistics requires expectations

of some functions g(b j) of unobserved data (the parties’ political positions) conditional on ob-
served data y j (the emphases of policy objectives in political texts, such as electoral manifestos).
Using the methods explained in this section these conditional expectations are approximated as

E(g(b j)∣y j) = ∫
R

S j Lcpl(y j , b j;ψ)g(b j)d b j

∫
R

S j Lcpl(y j , b j;ψ)d b j
≈ ∑R

r=1w
∗(r)
j g(b∗(r)j )

∑R
r=1w

∗(r)
j

(28)
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While importance samplingmay be suitable to approximatemarginal likelihoods and condi-
tional expectations, this method is less suitable to obtain quantiles of the posterior distribution
that one may want for the construction of prediction intervals. For this, one needs to generate
unweighted samples from the posterior distribution of the positions

f (b j∣y j;ψ) = Lcpl(y j , b j;ψ)
∫ Lcpl(y j , b j;ψ)d b j

. (29)

For this an accept-reject samplingmethod (Robert andCasella 2004: 41) is better suited, because
then importance weights are not needed.

This accept-reject sampling method rests, firstly, on the fact that the posterior distribution
is proportional to Lcpl(y j , b j; ψ̂) and, secondly, on the simple identity

Lcpl(y j , b j; ψ̂) = Lcpl(y j , b j; ψ̂) fpro(K̃
1
2
j (b j − b̃ j))

fpro(K̃ 1
2
j (b j − b̃ j)) . (30)

Thus to obtain random vectors b∗∗j from the posterior distribution one generates random
vectors v∗j from a proposal distributionwith density fpro(v j), and accepts each candidate random
vector b∗j = b̃ j + K̃−

1
2

j v∗j to the sample with probability

p∗j = Lcpl(y j , b̃ j + K̃−
1
2

j v∗j ; ψ̂)
Cj fpro(v∗j ) (31)

and rejects itwith probability 1−p∗j , whereCj is a number chosen such that p∗j ≤ 1 is assured. This
accept/reject step is achieved by generating a random number u∗j from the uniform distribution
to accompany each candidate vector. The candidate vector is then accepted if u∗j ≤ p∗j and
rejected if u∗j > p∗j (Robert and Casella 2004: 40).

The literature on accept-reject sampling does not provide a simple method to choose the
normalizing constant Cj. So in the implementation of this algorithm for the article it is chosen
adaptively, starting with 1.5 times the maximum value of Lcpl(y j , b̃ j + K̃−

1
2

j v∗j ; ψ̂)/ fpro(v∗j ) from
an initial sample. Whenever one of the values of p∗j (call it p

†
j ) happens to be larger than one,

the accept-reject sampling process is restarted with a new Cj equal to 1.5p†j times the old Cj.

B.3 TheMCEM Algorithm

Like the marginal log-likelihood and its derivatives the Q-function and its derivatives involve
multidimensional analytically intractable integrals. Fortunately, theMonte Carlo approximation
techniques discussed in the previous section of this appendix are applicable to the Q-function
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and its derivatives as well. The Monte Carlo approximation Q∗(ψ;ψ(s)) of the Q-function
Q(ψ;ψ(s)) takes the form

Q∗(ψ;ψ(s)) = ∑R
r=1w

∗(r;s)
j ℓcpl(y j , b∗(r;s)j ;ψ)
∑R

r=1w
∗(r;s)
j

= R∑
r=1

w̃(r;s)j ℓcpl(y j , b∗(r;s)j ;ψ). (32)

with w̃(r;s)j = w∗(r;s)j /∑R
r=1w

∗(r;s)
j . The gradient and Hessian also take form of weighted sums:

∂Q∗(ψ;ψ(s))
∂ψ

= ∑
j

R∑
r=1

w̃(r;s)j

∂ℓcpl(y j , b∗(r;s)j ;ψ)
∂ψ

∂2Q∗(ψ;ψ(s))
∂ψ∂ψ′

= ∑
j

R∑
r=1

w̃(r;s)j

∂2ℓcpl(y j , b∗(r;s)j ;ψ)
∂ψ∂ψ′

(33)

Consequently, the M-step of the MCEM algorithm consists in maximizing a complete data log-
likelihood, where the missing data are “filled in” and weighed based on importance sampling.
The complete data log-likelihood and its derivatives have a relatively simple structure, so that the
M-step can be conducted using a more or less straightforward Newton-Raphson (e.g. Agresti
2002: 143) or Fisher-Scoring (e.g. Agresti 2002: 145) algorithm.3

Crucial for the unbiasedness of estimates obtained fromaMCEMalgorithm is that theMonte
Carlo error is not too large, that is, that theMonteCarlo Sample size is not too small. Earlier steps
of the MCEM algorithm are relatively large so that a relatively small Monte Carlo sample size is
sufficient in the earlier iterations. The more the algorithm advances, the smaller the step sizes
become, and the larger is the danger that improvements are “swamped” by Monte Carlo error.
It is therefore important to assess the Monte Carlo error at each step of the MCEM algorithm
and to increase the sample size if necessary. Fortunately, the elements b∗(r;s)j of the Monte Carlo
samples are independent and identically distributed, so that the assessment of the Monte Carlo
error is relatively straightforward. Themethod to assess theMonte Carlo error used in the article
follows Caffo et al. (2005).4

Following Caffo et al. (2005) the MCEM algorithm employed in the article starts with
a small Monte Carlo sample size, which is automatically increased if the improvement of
approximate the Q-function achieved in step s of the EM algorithm, denoted by Λ(s) =
Q∗(ψ(s+1);ψ(s)) − Q∗(ψ(s);ψ(s)), is “statistically insignificant”. That is, if the ratio z(s) =
Λ(s)/SE(Λ(s)) is smaller than the 1 − α/2 quantile of the standard normal distribution (where
the conventional significance level α = 0.05 is applied here) then the new sample size is
Rnew = (3/2)Rold.

3The Hessian for the policy objective location parameter vector α involves a difference between matrices again.
Therefore a simplified version of the Hessian is used (its expectation under the current estimates of ψ), which leads
to a Fisher-Scoring algorithm. Had the model been linear in α as in generalized linear models with canonical link,
Newton-Raphson and Fisher Scoring algorithms would have been identical (McCullagh and Nelder 1989: 42)

4For another approach at gauging the Monte Carlo error in MCEM algorithms, see Booth and Hobert (1999)
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TheMCEM algorithm proceeds as follows:

1. Starting values for ψ are obtained and the iteration counter is set s ← 1.

2. While the algorithm has not converged, the following steps iterated:

2.a For the current parameter vector ψ(s), for each unit j R random vectors b∗(s,1)j ,
. . . , b∗(s,R)j are generated together with corresponding weights w∗(s,1)j , . . . ,w∗(s,R)j ,
needed to compute approximations Q∗(ψ;ψ(s)) of the Q-function and approxi-
mations of its derivatives. (This is the “E-step” of the MCEM algorithm)

2.b Based on the random vectors and weights computed in the previous step, the (ap-
proximate) Q-function is maximized for ψ and the maximizing value is accepted
as updated estimate ψ(s+1) .

2.c Λ(s) = Q∗(ψ(s+1);ψ(s)) − Q∗(ψ(s);ψ(s)) and its standard error SE(Λ(s)) are
computed.

If Λ(s)/SE(Λ(s)) < z1−α/2
(where z1−α/2 is the 1− α/2 quantile of the standard normal distribution), it is
concluded that the improvement Λ(s) is not statistical significant. The Monte
Carlo sample size adjusted R ← R + R/2 and the algorithm goes back to step
a.

Else if Λ(s) < є
(where є is a small positive number, e.g. 10−7) theMCEMalgorithm is stopped
and ψ(s+1) is declared as the maximum likelihood estimate ψ̂.

2.d Thealgorithmhas not yet converged and the next iteration is started with s ← s+1.
3. TheMCEMagorithmhas converged, the randomvectors b∗(s,1)j , . . . , b∗(s,R)j with correspond-

ing weightsw∗(s,1)j , . . . ,w∗(s,R)j are used to compute the observed-data Hessian ∂2ℓobs(y;ψ)
∂ψ∂ψ′ , and

the standard errors for the estimate ψ̂.

The generation of the random vectors and the computation importance weights is not com-
pletely trivial and will be therefore described in the following. Suppose the MCEM algorithm
is in iteration s, then the generation of the random vectors b∗(r;s)j and importance weights to
approximate the Q-function at this iteration takes the following steps:

For each unit (i.e. party) j do:

1. For the current value ψ(s) of the parameter vector, compute the value b̃(s)j of the
latent data vector that maximizes the complete data log-likelihood and compute the
curvature (matrix of second derivatives) K̃ j,s of the complete-data log-likelihood at
this maximum.

2. Generate R (Tj + 1)D-dimensional random vectors v∗(1)j , . . . , v∗(R)j from a standard
multivariate t-distribution with Fj degrees of freedom.
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3. Compute R random vectors b∗(r;s)j = K̃−
1
2

j,s v
∗(r)
j + b̃(s)j .

4. Compute R importance weights wj,s,r = Lcpl(y j , b∗(r;s)j ;ψ(s))
∣K̃ j,s ∣ fT (v∗(r)j ) .

B.4 Details of the M-step

Note that the gradient of the complete-data log-likelihood with respect to α can be written as

∂ℓcpl
∂α

=∑
j
∑
t
∑
i

∂ηi jt

∂α ∑
h

∂
∂ηi jt

mhjt ln πhjt

=∑
j
∑
t
∑
i

∂ηi jt

∂α
(mijt − njtπi jt)

= ∑
j
X′α, jr j = X′αr

(34)

where
πi jt = exp(ηi jt)

∑h exp(ηhjt) and ηi jt = −1
2
(αi − b jt)′(αi − b jt), (35)

∂ ln πhjt

∂ηi jt
= ∂
∂ηi jt

(ηhjt − ln∑
k
exp(ηkjt)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − πi jt if h = i

− πi jt if h ≠ i,
(36)

∂ηi jt

∂α
=
⎡⎢⎢⎢⎢⎢⎢⎣

∂ηi jt
∂α1⋮
∂ηi jt
∂αI

⎤⎥⎥⎥⎥⎥⎥⎦
∂ηi jt

∂αh
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
b jt − αi if h = i

0 if h ≠ i,
(37)

Xα =
⎡⎢⎢⎢⎢⎢⎢⎣

Xα,1

⋮
Xα,J

⎤⎥⎥⎥⎥⎥⎥⎦
Xα, j =

⎡⎢⎢⎢⎢⎢⎢⎣

Xα, j0

⋮
Xα, jTj

⎤⎥⎥⎥⎥⎥⎥⎦
Xα, jt =

⎡⎢⎢⎢⎢⎢⎢⎣

∂η1 jt
∂α′⋮
∂ηI jt
∂α′

⎤⎥⎥⎥⎥⎥⎥⎦
(38)

r =
⎡⎢⎢⎢⎢⎢⎢⎣

r1
⋮
rJ

⎤⎥⎥⎥⎥⎥⎥⎦
r j =

⎡⎢⎢⎢⎢⎢⎢⎣

r j0
⋮

r jTj

⎤⎥⎥⎥⎥⎥⎥⎦
r jt =

⎡⎢⎢⎢⎢⎢⎢⎣

m1 jt − njtπ1 jt

⋮
mIjt − njtπIjt

⎤⎥⎥⎥⎥⎥⎥⎦
(39)

Further

∂2ℓcpl
∂α∂α′

= ∂
∂α′∑j ∑

i

∂ηi jt

∂α
(mijt − njtπi jt)

= ∑
j
∑
t
∑
i

∂2ηi jt

∂α∂α
(mijt − njtπi jt) −∑

j
∑
t
n jt ∑

i
∑
h

∂πhjt

∂ηi jt

∂ηi jt

∂α
∂ηi jt

∂α

(40)
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−E( ∂2ℓcpl
∂α∂α′

) = ∑
j
∑
t
n jt ∑

i
∑
h

∂πhjt

∂ηi jt

∂ηhjt

∂α
∂ηi jt

∂α′

= ∑
j
∑
t
n jt (∑

i
πi jt

∂ηi jt

∂α
∂ηi jt

∂α
−∑

i
∑
h
πhjtπi jt

∂ηi jt

∂α
∂ηi jt

∂α′
)

= ∑
j
∑
t
X′α, jtWjtXα, jt =∑

j
X′α, jWjXα, j = X′αWXα

(41)

W =
⎡⎢⎢⎢⎢⎢⎢⎣

W1

⋱
WJ

⎤⎥⎥⎥⎥⎥⎥⎦
Wj =

⎡⎢⎢⎢⎢⎢⎢⎣

Wj0

⋱
WjTj

⎤⎥⎥⎥⎥⎥⎥⎦
(42)

Wjt = njt

⎡⎢⎢⎢⎢⎢⎢⎣

π1 jt

⋱
πIjt

⎤⎥⎥⎥⎥⎥⎥⎦
− njt

⎡⎢⎢⎢⎢⎢⎢⎣

π1 jtπ1 jt . . . π1 jtπIjt

⋮ ⋮
πIjt π1 jt . . . πIjtπIjt

⎤⎥⎥⎥⎥⎥⎥⎦
(43)

Earlier it was stated that maximizing the likelihood for α subject to linear restrictions of the
form Tα = t can be achieved by maximizing the likelihood for ϕ with α = r +Qϕ, where r and
Q are constructed from t and T . Note that

∂α′
∂ϕ

= Q′ (44)

and consequently
∂ℓcpl
∂ϕ

= ∂α′
∂ϕ

∂ℓcpl
∂α

= Q′X′αr (45)

and
−E( ∂2ℓcpl

∂ϕ∂ϕ′
) = −∂α′

∂ϕ
E( ∂2ℓcpl

∂α∂α′
) ∂α
∂ϕ′

= Q′X′αWXαQ (46)

With Xϕ = XαQ the Fisher scoring iteration (with complete data) take the form:

ϕ(s+1) = ϕ(s) + (X′ϕWXϕ)−1X′ϕr (47)

where Xϕ,W , and r are evaluated at ϕ = ϕ(s).
The complete-data Fisher scoring algorithm can now easily adapted to theM-step of the EM-

algorithm. Let X∗(r;s)α, j denote the matrix of derivatives Xα, j evaluated at b j = b∗(r;s)j , where b∗(r;s)j

is the the r-th sampled value of the position vector in the s-th iteration of the EM algorithm, that
is,

X∗(r;s)α, j = Xα, j ∣b j=b
∗(r;s)
j

and X∗(r;s)ϕ, j = X∗(r;s)α, j Q (48)

Further, let
r∗(r;s)j = r j∣b j=b

∗(r;s)
j

and r̃(r;s)j = w̃(r;s)j r∗(r;s)j (49)
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where w̃(r;s)j are the normalized importance weights introduced above, and let

W∗(r;s)
j = Wj∣b j=b

∗(r;s)
j

and W̃(r;s)
j = w̃(r;s)j W∗(r;s)

j . (50)

Now with

X∗(r;s)ϕ =
⎡⎢⎢⎢⎢⎢⎢⎣

X∗(r;s)ϕ,1⋮
X∗(r;s)ϕ,J

⎤⎥⎥⎥⎥⎥⎥⎦
W̃(r;s) =

⎡⎢⎢⎢⎢⎢⎢⎣

W̃(r;s)
1 ⋱

W̃(r;s)
J

⎤⎥⎥⎥⎥⎥⎥⎦
r̃(r;s) =

⎡⎢⎢⎢⎢⎢⎢⎣

r̃(r;s)1⋮
r̃(r;s)J

⎤⎥⎥⎥⎥⎥⎥⎦
(51)

the gradient and the expected information matrix with respect to ϕ of the Monte Carlo approx-
imation to the Q-function take the form

∂Q∗(ψ;ψ(s))
∂ϕ

=∑
r
X∗(r;s)′ϕ r̃(r;s) (52)

and
−E(∂2Q∗(ψ;ψ(s))

∂ϕ∂ϕ′
) =∑

r
X∗(r;s)′ϕ W̃(r;s)X∗(r;s)ϕ , (53)

so that the q-th inner iteration of the s-th M-step of the Monte Carlo EM algorithm takes the
form

ϕ(q+1;s) = ϕ(q;s) + (∑
r
X∗(q,r;s)′ϕ W̃(q,r;s)X∗(q,r;s)ϕ )

−1

∑
r
X∗(q,r;s)′ϕ r̃(q,r;s) (54)

where X∗(q,r;s)ϕ denotes X∗(r;s)ϕ evaluated with ϕ = ϕ(q;s), etc.
Note that the complete-data log-likelihood of the positions (see equation (13)) can be written

as
ℓ(b;ψ) = −D

2
ln(2π)∑

j
(Tj + 1) + J

2
ln ∣Θ0∣ +∑

j

Tj

2
ln ∣Θ1∣

− J
2
β′Θ0β −∑

j

Tj

2
β′(I − Γ)′Θ1(I − Γ)β

+∑
j

1
2
β′Θ0b j0 +∑

j

1
2
β′(I − Γ)′Θ1(s j2 − Γs j1)

+∑
j

1
2
b′j0Θ0β +∑

j

1
2
(s j2 − Γs j1)′Θ1(I − Γ)β

−∑
j

1
2
tr(Θ0S j0) −∑

j

1
2
tr(Θ1(S j22 − ΓS j12 − S j21Γ′ + ΓS j11Γ′))

(55)

where Θ0 = Σ−10 , Θ0 = Σ−10 s j1 = ∑t b jt−1, s j2 = ∑t b jt , S j22 = ∑t b jtb′jt , S j12 = ∑t b jt−1b′jt , and
S j11 = ∑t b jt−1b′jt−1. Taking derivatives for θ0 = vecΘ0 and θ1 = vecΘ1 leads to

∂ℓ(b;ψ)
∂θ0

= J
2
vec Σ0 − 1

2
vec

⎛
⎝∑j S j0 −∑

j
βb′j0 −∑

j
b j0β′ + Jββ′

⎞
⎠ (56)
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and
∂ℓ(b;ψ)
∂θ1

=∑
j

Tj

2
vec Σ1 −∑

j

1
2
vec (S j22 − ΓS j12 − S j21Γ′ + ΓS j11Γ′)

+∑
j

1
2
vec ((I − Γ)β(s j2 − Γs j1)′ + (s j2 − Γs j1)β′(I − Γ)′)

−∑
j

Tj

2
vec ((I − Γ)ββ′(I − Γ)′)

(57)

It is therefore possible to find, for any given values of β and Γ, values of Σ0 and Σ1 that
maximize Q∗(ψ;ψ(s)) by

Σ(s)0 (β) = 1
J
(S̄(s)0 − βs̄(s)′0 − s̄(s)0 β′) + ββ′ (58)

and
Σ(s)1 (β, Γ) = 1

∑ j Tj
(V̄ (s) − (I − Γ)β(s̄(s)2 − Γs̄(s)1 )′ + (s̄(s)2 − Γs̄(s)1 )β′(I − Γ)′)

+ (I − Γ)ββ′(I − Γ)′
(59)

where S̄(s)0 = ∑ j∑r w̃
(r;s)
j S∗(r;s)j0 , s̄(s)0 = ∑ j∑r w̃

(r;s)
j b∗(r;s)j0 , s̄(s)1 = ∑ j∑r w̃

(r;s)
j s∗(r;s)j1 , s̄(s)2 =

∑ j∑r w̃
(r;s)
j s∗(r;s)j2 , and V̄ (s) = ∑ j∑r w̃

(r;s)
j (S∗(r;s)j22 − ΓS∗(r;s)j12 − S∗(r;s)j21 Γ′ + ΓS∗(r;s)j11 Γ′), where S∗(r;s)j0

is S j0 evaluated with b j = b∗(r;s)j , etc.
The derivative of the complete-data log-likelihood for β is

∂ℓ(b;ψ)
∂β

=∑
j
Θ0(b j0 − β) −∑

j
Tj(I − Γ)′Θ1(I − Γ)β + (I − Γ)′Θ1∑

j
(s j2 − Γs j1) (60)

and its derivative for γ = vec Γ is

∂ℓ(b;ψ)
∂γ

= I ⊗Θ1∑
j
vec (U j21 − ΓU j11) (61)

where U j11 = S j11 − βs′j1 − s j1β′ + Tjββ′ and U j21 = S j21 − βs′j1 − s j2β′ + Tjββ′. It is obvious that
there is no closed-form solution for the roots of these gradients. Therefore, as part of theM-step
of the EM algorithm the following objective function

Q∗(β, Γ;ψ(s)) = − J
2
ln ∣Σ(s)0 (β)∣ − ∑ j Tj

2
ln ∣Σ(s)1 (β, Γ)∣

− J
2
β′ (Σ(s)0 (β))−1β + β′ (Σ(s)0 (β))−1s̄(s)0

− ∑ j Tj

2
β′(I − Γ)′ (Σ(s)1 (β, Γ))−1(I − Γ)β

+ β′(I − Γ)′ (Σ(s)1 (β, Γ))−1(s̄(s)2 − Γs̄(s)1 )
− 1
2
tr((Σ(s)0 (β))−1S̄(s)0 ) − 1

2
tr ((Σ(s)1 (β, Γ))−1V̄ (s))

(62)
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is maximized numerically for β and Γ, which is the part of the Q∗-function that depends on
these parameters.

B.5 Constructing the Proposal Distribution

Following Booth and Hobert (1999) and Caffo et al. (2005), both the importance sampler
and the accept-reject sampler employed for Monte Carlo approximations rest on a Laplace
approximation of the posterior distribution of the unobserved data. This Laplace approximation
can be constructed as follows: Note that the contribution to the complete data log-likelihood
dependent on b j can be expressed as:

ℓcpl(y j , b j;ψ) = ℓ(y j∣b j; α(ψ)) + 1
2
ln ∣Ω j∣ − 1

2
(b j − β j)′Ω j(b j − β j) (63)

where β j is constructed by stacking the parameter vector β such that it is conformable with b j

and

Ω j =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I −Γ
I −Γ

⋱ ⋱
I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ−10
Σ−11 ⋱

Σ−11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
−Γ I

⋱ ⋱
−Γ I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(64)

because the determinant of Ω j equals the determinant of the middle factor constructed of Σ0

and Σ1. To wit, the outer factors constructed of an identity matrix and Γ are triangular and have
a determinant equal to unity.

The first derivative of this contribution to the complete-data log-likelihood is

∂ℓcpl(y j , b j;ψ)
∂b j

= Z′jr j −Ω j(b j − β j) (65)

while the negative Hessian is

−∂2ℓcpl(y j , b j;ψ)
∂b j∂b′j

= Z′jWjZ j +Ω j (66)

where
∂ηi jt

∂b j
= αi − b jt (67)

Z j =
⎡⎢⎢⎢⎢⎢⎢⎣

Z j0

⋱
Z jTj

⎤⎥⎥⎥⎥⎥⎥⎦
Z jt =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂η1 jt
∂b′jt⋮
∂ηI jt
∂b′jt

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (68)
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Note that the negative Hessian is equal to the expected information given the parameter values
and b j because

∑
i

∂2ηi jt

∂b jt ∂b′jt
(mijt − njtπi jt) = 0, (69)

since
∂2η1 jt
∂b jt∂b′jt

= ⋯ = ∂2ηIjt

∂b jt∂b′jt
= ID (70)

and
∑
i
(mijt − njtπi jt) = 0. (71)

This leads to the following Newton-Raphson iterations to find b̃ j to maximize ℓcpl(y j , b j;ψ)
for b j:

b(s+1)j = b(s)j + (Z′jWjZ j +Ω j)−1 (Z′jr j −Ω j(b(s)j − β j)) . (72)

In much of the literature on state-space models (for an overview, see Harvey 1991) Kalman
filtering and smoothing steps have been used instead of performing the above Newton-Raphson
steps. Kalman filtering and smoothing in combination are an iterative procedure to compute the
right-hand side of equation (72), which makes use of the known structure of Z′jWjZ j + Ω j and
thus has the computational advantage of avoiding the storage of the potentially large matrices
Z j and Ω j. Nowadays there are software libraries available, such as the Matrix package of R
(Bates and Maechler 2010), that handle computation with sparse matrices such Z j and Ω j in a
way that is efficient both computational terms and in terms of memory requirement.5 Thus it is
now possible to compute the matrix expression on the right-hand side of equation (72) directly.

Once the value b̃ j of b j maximizing the complete-data log-likelihood is found, the scaling
matrix K̃ j needed for the proposal distribution can be obtained as

K̃ j = Z′jWjZ j∣b j=b̃ j
+Ω j . (73)

B.6 Standard Errors

After convergence of theMCEM algorithm, standard errors for the parameters of the model can
be computed from the square-root of the diagonal of

(Iobs(ψ))−1 = (Eψ(Icpl(ψ)∣y j) − Imis(ψ))−1 . (74)
5Sparse matrices are matrices most elements of which are zero. Linear algebra packages handle such matrices

efficiently, for example, by storing only their non-zero elements. A specialized package such as Bates and Maechler
(2010) can also efficiently compute the inverse of sparse symmetric matrix with the help of a sparse version of the
Cholesky decomposition.
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A Monte Carlo approximation of Imis(ψ) can be obtained from the gradients described in the
previous section. What remains to be shown is how to obtain a Monte Carlo approximation of
Eψ(Icpl(ψ)∣y j). This approximation is

−E ∂2Q∗(ψ̂; ψ̂)
∂ψ∂ψ′

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E ∂2Q∗(ψ̂;ψ̂)
∂ϕ∂ϕ′−E ∂2Q∗(ψ̂;ψ̂)

∂β∂β′−E ∂2Q∗(ψ̂;ψ̂)
∂γ∂γ′ −E ∂2Q∗(ψ̂;ψ̂)

∂σ0∂σ ′0−E ∂2Q∗(ψ̂;ψ̂)
∂σ1∂σ ′1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(75)

with
−E ∂2Q∗(ψ̂; ψ̂)

∂ϕ∂ϕ′
= ∑

r
X∗(q,r;s)′ϕ W̃(q,r;s)X∗(q,r;s)ϕ , (76)

−E ∂2Q∗(ψ̂; ψ̂)
∂β∂β′

= ∑
j
Σ−10 +∑

j
Tj(I − Γ)′Σ−11 (I − Γ) (77)

−E ∂2Q∗(ψ̂; ψ̂)
∂γ∂γ′

= Ū11 ⊗ Σ−11 , (78)

−E ∂2Q∗(ψ̂; ψ̂)
∂σ0∂σ ′0

= JΣ−10 ⊗ Σ−10 , (79)

and
−E ∂2Q∗(ψ̂; ψ̂)

∂σ1∂σ ′1
= ∑ j Tj

2
Σ−11 ⊗ Σ−11 , (80)

where further Ū11 = ∑ j∑r w̃
(r)
j (S∗(r)j11 − βs∗(r)′j1 − s∗(r)j1 β′ + Tjββ′). It should be noted here that

the matrix in equation (75) has its block-diagonal structure because all “cross-derivatives”, like
∂2Q∗(ψ̂;ψ̂)

∂β∂γ′ etc., have a vanishing expectation.

B.7 Identifying Constraints on the Location Parameters

In themain text, two issues in the identification of spatial models were discussed. Unless further
constraints are imposed on the location parameters, these models are not identified with respect
to translation, rotation, and reflection, that is, to any linear transformation that preserves the
distance between pairs of points. It is stated that linear constraints on the location parameters
make such models identified with respect to rotation and translation.

In the following it is shown how linear constraints can be implemented in an iterative algo-
rithmwithout augmenting the objective function with Lagrangemultipliers, but by constructing
a unique mapping between the space of linearly constrained parameters and a space of uncon-
strained parameters with a reduced dimension.

The linear restrictions take the form

Tα = t (81)
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where T is a (p × q) matrix with p ≤ I ⋅ D rows and q = I ⋅ D columns and t is a q-dimensional
vector. If the first D rows of T are equal to 1′I ⊗ I(D×D), and the first D elements of t are equal
to zero, where 1I is an I-dimensional vector with all elements equal to unity and I(D×D) is the
(D×D) identity matrix, then this corresponds to the restriction that∑i αi = 0. If the remaining
rows of T are equal to some of the rows of a (p× p) identity matrix and the remaining elements
of t also are zero, then this means that some of the elements of α are restricted to equal zero.

If p = q and T is of full rank, then the linear restrictions are an fully determined linear
system and equation (81) has exactly one solution, namely T−1t. In that case, the spatial model
is identified, but the restriction are of course too strong to make the model useful for empirical
analysis. If p = q and T is not of full row rank or, equivalently, if it is of full row rank, but with
number of rows p < q, then the set of all solutions to equation (81) is a r-dimensional subset of
the parameter space (where r = q − p) the elements of which are of the form

α = T−t − (I(q×q) − T−T)ϕ∗ (82)

where T− is any generalized inverse of T (Harville 1997: 141, eq. 2.1). Now because I(q×q) − T−T
is singular, the vector ϕ∗ is not uniquely determined by α. The problem now is to construct a
mapping between the set of q-dimensional vectors α that satisfy the under-determined linear
system (81) and a space of r-dimensional vectors ϕ of the form

α = r +Qϕ. (83)

This construction rests on the (reduced-rank) QR decomposition

I(q×q) − T−T = QR (84)

where Q is a (q × r) matrix with orthogonal columns (that is Q′Q = I(r×r)) and R is a (r × q)
matrix formed of the first r rows of a (q × q) upper triangular matrix (Harville 1997: 66, 277).
Thus equation (82) can be rewritten as

α = T−t −QRϕ∗ (85)

If one sets
Rϕ∗ = ϕ (86)

and
r = T−t (87)

then equation (85) leads to equation (83).
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There are several ways to construct a generalized inverse of T (unless it is of full rank) and
equation (82) holds independently from the choice of the generalized inverse. If one chooses the
generalized inverse

T− = T ′(TT ′)−1 (88)

(note that if T has full row rank, then TT ′ is non-singular) and if one further notes that for each
ϕ one can find a ϕ∗ that satisfies (86) by setting

ϕ∗ = R′(RR′)−1ϕ (89)

it is easy to verify that α given by equation (83) satisfies equation (81):

Tα = T(r +Qϕ) = t + TQRϕ∗

= t + T(I(q×q) − T−T)ϕ∗ = t + (T − T)ϕ∗
= t

(90)

It is also worth noting that, since Q′Q = I(q×Q), equation (83) leads to

ϕ = Q′(α − r). (91)

so that for every q-dimensional vector α that satisfies equation (81) one can find exactly one
corresponding r-dimensional vector ϕ. Maximizing either the observed-data or complete-data
log-likelihood ℓ(α) for α subject to the constraints (81) is therefore equivalent to maximizing
ℓ(r +Qϕ) for ϕ without any constraints.

In the application of the dynamic state-space model to the space of economic policy, the
locations of the seven policy objectives in the one-dimensional space of economic policy are
elements of a location vector α with seven elements. If the restriction is posed that these
seven elements sum to zero then this leads to an unrestricted vector ϕ with six elements. This
corresponds to the fact that under the sum-to-zero constraints any of the seven elements of α
can be expressed as the negative of the sum of the remaining six elements.

With appropriate constraints (81) in place, a spatial model can be made identified with
respect to rotation and translation, but may remain unidentified with respect to reflection.
However, then it is only globally unidentified, not locally. That is, for any α and any reflection
matrix M (a diagonal matrix with elements at the diagonal either equal to 1 or −1) there is an є
(0 < є < ∣∣α∣∣) such thatMα is outside the є-neighborhoodof α (i.e. ∣∣Mα−α∣∣ > є). Consequently,
if for all updating steps of an iterative procedure to find a maximum likelihood estimate α̂

∣∣α(s) − α(s−1)∣∣ < ∣∣α∣∣, (92)

where α(s) is the approximate value of α̂ at the s-th iteration, the procedure can converge. That
is, if starting values are given that are close enough to the maximum likelihood value so that the
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sign of the elements of α(s) do not change as s → ∞, the signs of the elements of the starting
value α(0) determine the signs of the elements of α(∞) = α̂ and thus make the model identified
with respect to reflection.

In contrast, if a spatial model is unidentified with respect to rotation or translation, then it is
not only globally but also locally unidentified. To illustrate that for the case of non-identification
with respect to translation: For any α and any є > 0 there exists a c such that ∣∣(α + c) − α∣∣ < є
(it suffices that ∣∣c∣∣ < є). Local non-identification of α means that an iterative procedure to
find amaximum likelihood value α̂ cannot lead to convergence, hence the necessity to explicitly
implement restrictions such as those of equation (81).

B.8 Starting Values

Iterative procedures to compute ML estimates usually need starting values to proceed to their
first iteration. Unless the likelihood surface is globally concave, there is no guarantee that
iterations will converge to a global maximum. Rather, if “bad” starting values are provided, the
algorithmmay get stuck in a local, non-global maximum. Also, if starting values are far off those
value that maximize the likelihood, numerical instabilities may lead the iterative algorithm into
divergence. Therefore, a method to automatically obtain starting values that are already near the
maximum of the likelihood function is desirable. An example for this is the method proposed
by Nelder andWedderburn (1972) to obtain starting values for the Fisher-scoring procedure that
they discuss fitting generalized linear models (such as logit and probit models).

The method for generating starting values for the MCEM algorithm to find the maximum
marginal likelihood estimates for the model introduced in the article is the same method used
in Elff (2009) to obtain approximate estimates of the positions of political parties based on CMP
data. It rests on the idea that the counts that are used to represent the emphases of policy
objectives have expected values that are related to the distances between the locations of policy
objectives and the political positions expressed in political texts. Therefore one may obtain
approximate values of the distances Δi jt directly from the count data. From these approximate
distances one can obtain approximate locations of the policy objectives and approximate political
positions bymultidimensional metric unfolding. If the number of approximate distances is large
relative to the number of locations to be reconstructed, Schönemann’s algorithm can be used,
which only employs a finite number of linear algebra operations (Schönemann 1970).6

C Checking the Proposed Estimator with Simulated Data

It is well known from theoretical statistics that maximum likelihood estimators are, under suit-
able regularity conditions, consistent, asymptotically efficient, and asymptotically normal dis-

6This algorithm is implemented in the R package munfold (Elff 2010), available at the Comprehensive RArchive
Network.

25



Table 1: Parameter values of the model generating simulated data

Locations of objectives (α)

Objective 1 −1.0
Objective 2 −0.5
Objective 3 −0.1
Objective 4 0.1
Objective 5 0.5
Objective 6 1.0

Distribution of positions

Mean (β) 0.1
Auto-regression slope (Γ) 0.9
Variance
Between actors (Σ0) 1.0
Between time points (Σ1) 0.1

tributed. But these are properties that these estimators have only as the number of observations
approaches infinity. Therefore, there is in principle no guarantee that estimates obtained from
finite samples are in any way unbiased or “close enough” to the true parameter values. Therefore
this section reports results from a small simulation study. This simulation study can also be per-
ceived as a test case for the software implemented to compute the estimates. In this simulation
study, data were generated from a model with parameter values as shown in Table 1.

The simulation of data from this model involved two steps: In the first step time series of
political positions one hundred actors based on the settings of the values for α, β, Γ, Σ0, and Σ1

are generated. The lengths of the time series in the first step are also generated as random values
with a Poisson distributionwith mean parameter 10, so that the average length of the time series
is 10. In the second step emphasis counts are simulated frommultinomial distributions with cell
probabilities determined by the policy objective locations and the actor positions, as specified in
equation (3) of themain text. The denominators of themultinomial distributions are themselves
random numbers, generated from a Poisson distribution. There are two runs of the simulation
study. In the first run the mean parameter of the Poisson distribution is set to λ = 20 so that the
mean text length is 20. In the second run, the Poisson distribution parameter is set to λ = 2000.

Table 2 shows maximum likelihood estimates for the parameters of the model from which
the simulated data are generated. The estimates are all quite close to the true values (shown in
Table 1). In the simulation with λ = 2000 all the estimates do not depart from their “true” values
bymore than twice the standard error, with the exception of the auto-regression slope. The result
for the simulation with λ = 20 is almost the same, in addition only one of the estimates of the
location of the objectives departs from its “true” value bymore than twice its standard error (but
not much more than that).
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Table 2: Parameter estimates from the two runs of the simulation study—maximum likelihood
estimates with standard errors in parentheses.

Mean text size: λ = 20 λ = 2000

Locations of objectives: Estimate Std.Err. Estimate Std.Err.

Objective 1 −0.981 (0.024) −0.996 (0.002)
Objective 2 −0.506 (0.023) −0.499 (0.002)
Objective 3 −0.117 (0.021) −0.104 (0.002)
Objective 4 0.050 (0.021) 0.100 (0.002)
Objective 5 0.493 (0.022) 0.496 (0.002)
Objective 6 1.061 (0.027) 1.002 (0.003)
Distributions of positions: Estimate Std.Err. Estimate Std.Err.

Means 0.116 (0.074) 0.105 (0.073)
Auto-regression slope 0.882 (0.000) 0.885 (0.000)
Variances
Between actors 1.360 (0.210) 1.341 (0.190)
Between time points 0.104 (0.012) 0.103 (0.005)
Summary statistics:
Likelihood: −7744.5 −21031.6
Deviance: 4374.1 7480.1

Totals:
Number of actors: 100 100
Number of observations: 974 974
Sum of counts: 19293 1947627
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As discussed previously, the parameters of the model only describe how the positions of
political actors evolve, they do not describe the positions themselves. To reconstruct the
positions of the actors one needs to obtain predictions based on the model and the observed
data of counts recorded in the individual texts. This is illustrated by Figure 1, which compares
the (simulated) actors’ positions that were generated in the first stage of the simulation study
with posterior mean predictions from the model estimated under the condition of λ = 20.
The black lines in the figure represent the development of the actors “true” positions, while the
dark gray lines represent the posterior mean predictions from the estimated model. The lines
representing the point predictions are enclosed in 99 per cent prediction bands, which represent
the uncertainty about the predicted positions.

As an inspection of Figure 1 reveals, the point predictions about the actors’ position mainly
obviously follow their general dynamics. If the “true” positions of an actor move to the “center”
of the latent political space, so do the predicted positions and if they move away from the center,
so do the predicted positions. There are of course also departures of the predictions from the
true positions as one would expect from the limited information about the positions, present in
the observed counts that follow multinomial distributions with a denominator of about 20. Yet
in general, the “true” positions stay within the prediction bands most of the time.

If there is an abundance of information about actors positions in political texts the match
between “true” and predicted positions is much closer, as Figure 2 makes clear. Here the
predictions are obtained from the model fit to simulated data with a mean text length of 2000
sentences. Figure 2 is constructed to contain, like the preceding one, lines representing “true”
positions, predicted positions, and 99 per cent prediction bands. However, the prediction bands
are so narrow that they cannot be distinguished from the lines presenting the true and predicted
positions. Furthermore, the lines of the true and the predicted positions also coincide in general.
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Figure 1: “True” positions and predictions from estimated model with mean text length 20
sentences, with 99 per cent prediction bands.
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Figure 2: “True” positions and predictions from estimated model with mean text length 2000
sentences, with 99 per cent prediction bands.
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D Extended and Supplementary Results

D.1 A Wald Test of Hypotheses on the Locations of CMP Economic Policy
Categories in the Policy Space

Many of the more traditional CMP-based indices of political positions group policy categories
into broader “leftist” and “rightist” categories, without allowing for a variation in their “left-ness”
or “right-ness”. Based on the method proposed in the article one now has maximum likelihood
estimates of the locations of economic policy categories on an economic left-right dimension,
so one can use likelihood-based inferential techniques to test whether such variations are
statistically significant. Table 3 shows the results of three Wald tests, one for the difference
between the mean locations of the interventionist and the laissez-faire objectives, a second one
for the equality of all interventionist objectives, and a third one for the the equality of all laissez-
faire objectives. All threeWald tests clearly lead to a rejection of the null hypothesis, that is, while
the difference between themean locations of the interventionist and the laissez-faire objectives is
statistically significant, so are the variations among the locations of the interventionist objectives
and among the locations of the laissez-faire objectives. That is, while one candistinguish between
objectives that have more interventionist locations and objectives that have more laissez-faire
locations, it is clear that these two groups of objectives do not form homogeneous blocks.
Thus the indices that rest on a simple dichotomy between economically “leftist” objectives and
economically “rightist” objectives, as they are often used in the literature, do not find support by
a suitable measurement model for political texts.

Table 3: Wald tests of hypotheses about the locations of policy objectives in the economic policy
space.

W df Pr(χ2 > W)
Mean difference between interventionist
and laissez-faire objectives 99393.6 1 0.000
Variation among interventionist objectives 27309.6 3 0.000
Variation among laissez-faire objectives 9460.5 2 0.000

Data source: TheManifesto Project
(Budge et al. 2001; Klingemann et al. 2006; Volkens et al. 2010).
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D.2 The Evolution of the Positions of West European Conservative and
Social Democratic Parties from the Perspective of Various Approaches

Figures 3 through 6 track the evolution ofmajor conservative and social democratic parties from
six countries fromWestern Europe: France, Germany, the Netherlands, Spain, Sweden, and the
United Kingdom. They allow to get an impression of how the method proposed in the article
performs in comparison to some other common approaches at the reconstruction of parties’
political positions based on data from the Comparative Manifestos Project.

Figure 3 shows the development of the parties as it appears based on the still widely used
general left-right index (RiLe) provided with the CMP data set. Figure 4 shows the development
of the parties based on the PlanEco index which is included in newer editions of the CMP data
set (Klingemann et al. 2006; Volkens et al. 2010). It is constructed from the difference between
the CMP variables ‘Economic orthodoxy” (Per414) and “Free enterprise” (Per401), which are
categorized as “rightist”, and the CMP variables “Controlled economy” (Per412), “Economic
planning” (Per404), and “Market regulation” (Per403), which are categorized as “leftist”. Figure 5
uses Lowe et al.’s (2011) LogPlanEco index, which employs the same variables as the PlanEco
index, but is based on equation (3) instead of (1). Figure 6 (which is identical to Figure 3 in
the main article and is only included in this appendix to ease the comparison) finally tracks the
development of the variables using posterior means predictions generated from the dynamic
state-space model introduced in the article.

Figures 3 through 5 are enhanced by 95% condidence intervals based on the bootstrap
method proposed by Benoit et al. (2009), to give an impression of the associated uncertainty.
Figure 6 shows prediction bands obtained from the simulated 2.5% and 97.5% quantiles of the
posterior distribution of the parties’ positions.

As Figure 3 shows, conservative and social democratic parties appear to converge in terms
of their left-right positions at least in four of the six countries, yet in German and Spain no clear
pattern of convergence can be discerned. The German parties even shows a slight tendency of
increasing polarisation. A notable feature of the dynamics of the parties’ positions according
to the RiLe index is its occasionally strong volatility. For example, the the CDU/CSU takes a
one-off tour into the radical right in the late 1950s, which seems to dwarf the moderation of the
SPD position in the early 1950s.

A look at Figure 4 leads to different conclusions about the evolution of some parties’
positions: Now one does not find a convergence between the two French parties, yet a more
clear pattern of convergence between the two Dutch parties. The German CDU/CSU now
shows fluctuations in its position that are larger than its typical distance towards the SPD. The
Swedish parties now show an even clearer pattern of convergence yet also a highly volatile
parallel movement during the later decades. Also notable are the extreme rightist but also highly
volatile positions of the Swedish conservatives in the 1950s and 1960s. In general, the positions
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appear much more volatile when measured using the PlanEco index, except for the Spanish and
British parties.

If one now considers the development of the parties from the perspective of the LogPlanEco
index one comes to different impressions and conclusions again. The movement of the social
democratic parties in Figure 5 appears more volatile than in Figure 3 and 4. On the other hand,
the positions of the Swedish conservatives look much less volatile until 2000, yet the leftward
movement of both Swedish parties after 2000 now looks much more pronounced. Finally, while
it does not seem to be very consequential for the apparent volatility of the two British parties
whether one uses the CMP Rile index or the CMP PlanEco index, the positions of the British
parties appear more volatile if the LogPlanEco index is used.

The posterior means predictions obtained from the dynamic state-space model introduced
by the article, shown in Figure 6, look considerably less volatile than positions reconstructed
from the LogPlanEco index. This applies especially to the positions of the French and Dutch
socialist parties, both German parties and both British parties. In contrast to Figures 3 through
5 one now also finds that the Spanish parties converge. On the other hand, the prediction bands
look, relative to the movements of the parties, wider in Figure 6 than in 5. Consequently, infer-
ences about policy shifts based on the method proposed in the article will be more conservative
than inferences based on the LogPlanEco index.
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Figure 3: A comparison of the evolution of the political positions of major conservative and
social democratic parties of Western Europe based on the CMP RiLe Index
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Note: The conservative parties considered here are the Gaullistes of France (in their various guises as RPR, UMP,
etc.), the CDU/CSU of Germany, the VVD of the Netherlands, the Popular Alliance/ Popular Party of Spain, the
Moderates of Sweden, and the Conservatives of the United Kingdom. The social democratic parties considered
are the Parti Socialiste of France, the SPD of Germany, the PvdA of the Netherlands, PSOE of Spain, the Socialist
Workers’ Party of Sweden, the Labour Party of the United Kingdom.
The dashed and solid lines connect the index values for the positions of the respectives parties on occasion of the
respective elections. The gray areas are 95% confidence bands based on the bootstrap method propsed by Benoit
et al. (2009).
Data source: TheManifesto Project (Budge et al. 2001; Klingemann et al. 2006; Volkens et al. 2010).
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Figure 4: A comparison of the evolution of the political positions of major conservative and
social democratic parties of Western Europe based on the CMP PlanEco Index
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Note: The conservative parties considered here are the Gaullistes of France (in their various guises as RPR, UMP,
etc.), the CDU/CSU of Germany, the VVD of the Netherlands, the Popular Alliance/ Popular Party of Spain, the
Moderates of Sweden, and the Conservatives of the United Kingdom. The social democratic parties considered
are the Parti Socialiste of France, the SPD of Germany, the PvdA of the Netherlands, PSOE of Spain, the Socialist
Workers’ Party of Sweden, the Labour Party of the United Kingdom.
The dashed and solid lines connect the index values for the positions of the respectives parties on occasion of the
respective elections. The gray areas are 95% confidence bands based on the bootstrap method propsed by Benoit
et al. (2009).
Data source: TheManifesto Project (Budge et al. 2001; Klingemann et al. 2006; Volkens et al. 2010).
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Figure 5: A comparison of the evolution of the political positions of major conservative and
social democratic parties of Western Europe based on Lowe et al.’s LogPlanEco Index
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etc.), the CDU/CSU of Germany, the VVD of the Netherlands, the Popular Alliance/ Popular Party of Spain, the
Moderates of Sweden, and the Conservatives of the United Kingdom. The social democratic parties considered
are the Parti Socialiste of France, the SPD of Germany, the PvdA of the Netherlands, PSOE of Spain, the Socialist
Workers’ Party of Sweden, the Labour Party of the United Kingdom.
The dashed and solid lines connect the index values for the positions of the respectives parties on occasion of the
respective elections. The gray areas are 95% confidence bands based on the bootstrap method propsed by Benoit
et al. (2009).
Data source: TheManifesto Project (Budge et al. 2001; Klingemann et al. 2006; Volkens et al. 2010).
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Figure 6: A comparison of the evolution of the political positions of major conservative and
social democratic parties of Western Europe based on the method proposed in the article.
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The dashed and solid lines connect the simuliated posterior expectations of the parties’ positions on occasion of the
respective elections. The gray areas are 95% prediction bands based on the simulated 2.5% and 97.5% quantiles of
the posterior distribution of the parties’ positions.
Data source: TheManifesto Project (Budge et al. 2001; Klingemann et al. 2006; Volkens et al. 2010).
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