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1 Univariate Examples and Definitions

Consider a small political field experiment in which you will assign a campaign message

in four precincts, two predominantly Democratic and two predominantly Republican. To

prevent your preconceptions from influencing the experiment, you decide to randomize the

two available campaign messages (say, A and B) to the precincts. You know that precinct

partisanship is likely to strongly affect voters’ responses to the campaign messages. You

randomly select two precincts to assign message A to, and both Democratic precincts are

chosen. What do you do? If you proceed, you will be unable to untangle the effects of

partisanship from that of the campaign messages. Better design could have prevented this

problem. By simply sorting the precincts by partisanship then randomizing one Democratic

and one Republican precinct to each message, the experiment could generate more useful

information. This pre-randomization sorting of units, blocking, can easily incorporate many

variables, whether discrete or continuous, and confers several statistical and political ad-
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Unit X T YT YC Unit X T YT YC

1 2 ?
block 1

{ 1 2 1 1
2 2 ? 2 2 0 3
3 4 ?

block 2
{ 3 4 1 4

4 3 ? −→ 6 4 0 6
5 3 ?

block 3
{ 4 3 1 9

6 4 ? 5 3 0 7
7 10 ? 7 10 ?

Table 1: Typical Blocking Problem and Solution. Prior to treatment assignment (left table),
units may be blocked to any other unit using covariate X. In right table, units are exact-
blocked to other units, then treatment is randomized within blocks.

vantages in real experiments. Here, we demonstrate some of these advantages, providing

additional examples to accompany our primary paper, Moore (2012a).

The timing of random assignment differentiates experimental blocking from a similar

procedure, observational matching.1 Consider the simple univariate case in Table 1. The

columns of the table represent unit identification numbers, values of the background covariate

X, an as-yet unknown vector of treatment assignments (1 for treatment, 0 for control), and

the unobserved potential outcomes for each unit (YT for outcomes under treatment, YC

for those under control). The fact that only one of treatment or control can be assigned

to each unit, and thus only one of YT or YC can be observed for each unit is known as

the “fundamental problem of causal inference” (Holland, 1986). On the Table’s left, the

treatment has not yet been assigned.

Blocking on X would pair Unit 1 to Unit 2, Unit 3 to Unit 6, and Unit 4 to Unit 5.

1While some literature uses “matching” to denote the experimental procedure, “blocking” draws a clearer
distinction between pre- and post-assignment procedures. In several statistical schools, such as under the
Neyman-Rubin Causal Model (Rubin, 1974, 1978), “matching” usually refers explicitly to the practice of pair-
ing observational treatment units with controls. We advocate using “blocking” to denote the pre-assignment
procedure, and “matching” to refer to the post-assignment procedure of grouping already-treated units
with similar control units. In some fields, pre-assignment blocking is considered a special case of “match-
ing”, which may occur among all units before assignment (“nonbipartite matching”) or only after treatment
between already-treated units and control units (“bipartite matching”). Using “matching” to represent pre-
assignment procedures appears especially common in biostatistics and public health, while the experimental
design literature in statistics prefers “blocking”. Other authors use “stratification” to denote a similar set
of design procedures (Donner, 1998), though this can create confusion with “stratification” from survey
sampling, where researchers usually do not control the assignment mechanism.
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Unit X T YT YC Unit X T YT YC

1 2 1 1
match 1

{ 1 2 1 1
2 2 1 3 4 3 0 9
3 4 1 4

match 2
{ 2 2 1 3

4 3 0 9 −→ 5 3 0 7
5 3 0 7

match 3
{ 3 4 1 4

6 4 0 6 6 4 0 6
7 10 0 8 7 10 0 8

Table 2: Typical “Matching” Problem and Solution. After treatment assignment, treatment
units are matched to control units using covariate X. Bracketed rows denote reasonable
matched pairs. Match 3 is an “exact match”, but match 1 and match 2 are inexact.

Then, we perform random allocation within each block. The right side of Table 1 shows

the blocks bracketed, and column T shows one possible randomization. Within each blocked

pair, one unit is assigned to treatment, one to control. One estimate of the average treatment

effect using exact one-to-one blocking simply takes the mean of the differences between the

treatment outcome and the control outcome within each block. Estimates of the treatment

effect depend on decisions like whether to exclude or include Unit 7, whose covariate value

(and perhaps potential outcomes) differs greatly from those of Units 1 through 6. If X

measures family sizes, for example, Unit 7’s value is well outside the {2, 3, 4} set defined

by the other units, and may represent a family with significantly different preferences and

constraints than the others.

By contrast, the matching problem occurs after treatment has been assigned. For ex-

ample, an observational researcher might encounter the first three units of the left panel

of Table 1 already treated and the last four untreated. Table 2 displays such a scenario;

the left side of Table 2 is similar to that of Table 1, but the researcher has not been able

to control the treatment assigned to the units. Observational matching then might create

the three pairs in the right panel of Table 2. Here an advantage of a well-designed exper-

iment over observational research is evident – these observational units could not produce

the well-balanced experiment shown in the right panel of Table 1.
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Balance

Complete randomization balances experimental data in expectation, but blocking before

assignment often constitutes an improvement. Assume that each unit has a single observed

covariate value, Xi. Then X̄T = 1
n

∑
i∈{Ii=1,Ti=1}Xi and X̄C = 1

n

∑
i∈{Ii=1,Ti=0}Xi are the

simple means of the covariate in the treatment and control groups, respectively. Although

covariate balance denotes identical multivariate distributions, we take a conventional first

step and focus on univariate mean balance. Let the covariate imbalance between treatment

and control groups be M ≡ |X̄T − X̄C |; higher values indicate more imbalance.

Given a set of units with background measures, an experimenter may choose to block

or not to block prior to random assignment. If the experimenter blocks, then a particular

blocking algorithm must be selected, yielding particular blocks. After a particular blocking

has been implemented, randomization assigns treatment and control to one unit in each

block. Given the obtained blocking, the particular assignment obtained may create more or

less covariate imbalance.

In Table 1, the exact blocking promotes perfect covariate balance, and all randomizations

will yield the same value on the covariate imbalance measure, M = 0. However, for different

arrangements of units into blocks, and of randomizations after blocking, this will not always

be the case. For example, a suboptimal blocking might pair units 1 and 4, 2 and 5, and 3 and

6. In this case, the measure of covariate imbalance would be greater than zero, indicating

worse imbalance: M ≡
∣∣X̄T − X̄C

∣∣ =
∣∣∣∑3

i=1 Xi

3
−

∑6
i=4 Xi

3

∣∣∣ = 2
3
.

Assume there are 20 units taking unique X values from 1 to 20 such that the unit

numbered 1 has covariate value 1, the unit numbered 2 has covariate value 2, etc. (i.e.,

Xi = i). Under an unblocked design, the worst possible random assignment of 10 units to

treatment and 10 units to control would assign the set of units including Xi ∈ {1, ..., 10}

to (say) control, and the set including Xi ∈ {11, ..., 20} to treatment. Then, the covariate

imbalance measure would be
∣∣X̄T − X̄C

∣∣ =
∣∣∣∑20

i=11 Xi

10
−

∑10
i=1 Xi

10

∣∣∣ = 10.

If instead we block on Xi, we may do very well, we may do very poorly. The worst
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possible pairwise blocking will create pairs (1, 20), (2, 19), . . . , (10, 11). The worst possible

randomization then might assign the low value in each pair control and the high value in

each pair treatment, replicating the pairs and assignments in the worst randomization under

an unblocked design above. Combining the worst possible blocking with the worst possible

randomization yields an imbalance measure of M = 10, and does no worse than the worst

possible unblocked design. The best possible randomization for this poor blocking would

alternate, roughly assigning the low value of one pair to control, the low value of the next

pair to treatment, etc. This combination of the worst possible blocking and the best possible

randomization yields an imbalance measure of M = 0.

On the other hand, the best possible blocking would create pairs (1, 2), (3, 4), . . .. Condi-

tional on this blocking, the best possible randomization would roughly alternate, assigning

the low value of one pair to control, the low value of the next pair to treatment, etc., pro-

ducing M = 0. The worst possible assignment randomization would assign the low value in

each pair control and the high value in each pair treatment. The worst assignment would

then yield a covariate imbalance measure of only M = 1. Blocking and randomization are

thus nearly symmetric tools for achieving covariate balance: the best blocking and the worst

randomization yield about the same level of imbalance as the worst blocking and the best

randomization. If the randomization is unlucky, good blocking successfully limits imbalance,

and even bad blocking does at least as well as no blocking at all.

Combining the best possible blocking with the best possible randomization yields an

imbalance measure of 0. Thus, even under the best blocking, we slightly prefer fortuitous

randomizations that create balance to randomizations that limit balance. Under an un-

blocked design, the best possible randomization produces the same level of imbalance as

under the best blocked design. However, this best randomization is much rarer in unblocked

designs. There are 20!
10!10!

= 184,756 different combinations of 10 treatment and 10 control

units possible. However, under no blocking, fewer than 3% of these combinations yield a

covariate imbalance measure of M = 0, compared to 25% of the assignments under the best
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Covariate Imbalance

0 2 4 6 8 10

0
1

2
3

4

D
en

si
ty

0 2 4 6 8 10

0
1

2
3

4

0 2 4 6 8 10

0
1

2
3

4

Best, 1024

Worst, 1024
No, 185k

Figure 1: Distributions of Imbalance for Best, Worst, and No Blocking. For each blocking, a
histogram represents all possible levels of covariate imbalance. The worst blocking does no
worse than no blocking. The best blocking strongly limits the likely imbalance. Numbers in
Figure indicate how many possible randomizations exist under that blocking.

blocking. Only about 25% of the unblocked assignments yield M < 1, the worst value under

the best blocking. Every randomization under the best blocking produces better balance

than the average unblocked design.

Figure 1 shows the distribution of all possible levels of imbalance in this 20-unit experi-

ment. As blocking procedures improve upon the worst possible one, the blue histogram will

become more like the red one and even under the worst possible assignment randomization,

blocking will yield better covariate balance on average than the unblocked design. As Fig-

ure 1 shows, reasonable blocking can powerfully limit covariate imbalance, while even poor

blocking is not worse than an unblocked design.
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Efficiency

Assume that the treatment effect for each unit in Table 1 is exactly zero, and thus that the

missing potential outcome for each unit is equal to the observed one. Then, the causal effect

for each unit is zero, and the true average causal effect is zero. Considering every possible

permutation of three treatment, three control units, the standard deviation of the possible

estimates of that mean is about 2.43 under random allocation, but only about 1.23 under

exact blocking. This represents a substantial improvement of about 49%.

Monte Carlo results confirm the improved efficiency of blocking over random allocation.

In a series of simulations varying the number of experimental units (50 or 500), covariates

(2 or 6), the linearity of the outcome model in the covariates, the size of the treatment effect

relative to the model coefficients, and the adjustment set (none, half, or all of the covariates),

blocking produces more efficient estimates of the treatment effect. Comparing the simple

unadjusted difference in mean treatment effect estimates from one set of 3200 random as-

signments, the difference between the 95th and 5th percentiles of the sampling distribution

averages 76% larger under complete randomization than under blocking. For regression-

adjusted estimates, the difference is 14% larger on average under complete randomization

than under blocking. We show similar results in the applications of our article.

A Block-Level Effect

In Table 1, the administrator of Unit 1 could derive a local causal estimate of Y1T − Y2C =

1− 3 = −2 from the block containing Units 1 and 2. The administrator would then expect

that this estimate has as little error as that from any other block, since all included units

are exact-blocked.
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Limited Resources

The data from Table 2 provides an example of how blocking can inform resource allocations

in a study. If the first three units were forced to be paired with the next three and resources

only existed to implement treatment in one block, then exact blocked Units 3 and 6 would

provide an estimate of the treatment effect with less error due to covariate imbalance than

either of the other blocks, in both of which M = 1.

2 Multivariate Examples

2.1 Robust Estimates of the Scaling Matrix

2.1.1 Blocks from Moore (2012a) Example

Tables 3, 4, and 5 display the blocks described in Section 4.2 of Moore (2012a).

Unit 1 Unit 2 Distance
1 15 4 0.18
2 9 7 0.37
3 13 5 0.37
4 18 10 0.43
5 17 3 0.44
6 14 11 0.50
7 20 1 0.65
8 16 2 0.95
9 12 6 1.32
10 19 8 2.12

Table 3: Blocks from Data excluding Outliers, using Non-Outlier-Resistant Covariate
Weighting Matrix.

2.1.2 Additional Example

Consider four data points that lie in a near-rectangle: A = (1, 1), B = (2, 1), C = (1, 4.1),

and D = (2, 4). In Mahalanobis distance, the closest unit to A is B, by a small margin. See
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Unit 1 Unit 2 Distance
1 15 4 0.18
2 13 5 0.37
3 9 7 0.42
4 18 10 0.46
5 17 3 0.50
6 14 11 0.59
7 20 1 0.76
8 16 2 1.03
9 12 6 1.56
10 19 8 2.18
11 22 21 13.43

Table 4: Blocks from Data including Outliers, using Outlier-Resistant Covariate Weighting
Matrix. All pairings identical to no outliers, non-resistant weighting above.

Table 6 for the exact values. Adding an outlier at (1, 100) means the y-variation in the first

four points becomes meaningless, and C is considered much closer to A. The outlier can also

leverage the covariation to make D closest to A. As this extreme outlier is unlikely to yield

a useful comparison to any of the other units, we consider this influence undesirable.

In contrast, the MCD and MVE estimates of the covariance matrix both generate the

original multivariate distances whether or not either of the outliers is included.

2.2 Increased Efficiency in the Presence of Causal Heterogeneity

In our paper, we show the increase in efficiency due to blocking for a constant treatment

effect. Here, we provide another example, demonstrating the same type of advantage in the

presence of unit heterogeneity in the causal effect that correlates with a covariate.

We assume a small experiment of twelve units, with a single covariate drawn from a

standard normal distribution for half the units and a normal centered at 10 for the other

half. We assume the outcome under control is just the covariate value, and the outcome

under treatment is twice the covariate value. Thus, the unit heterogeneity is large here, as

true treatment effects average around 1 for the units with smaller covariate values, versus

around 10 for the units with larger covariate values.
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Unit 1 Unit 2 Distance
1 17 15 0.12
2 9 7 0.24
3 19 13 0.25
4 14 11 0.28
5 10 1 0.33
6 12 3 0.45
7 4 2 0.58
8 20 18 0.69
9 8 5 1.45
10 22 6 2.24
11 21 16 3.64

Table 5: Blocks from Data including Outliers, using Non-Outlier-Resistant Covariate Weight-
ing Matrix. Only two pairings are identical to no outliers, non-resistant weighting above.

Distance from A
Scale Matx Points B C D

Cov A-D 1.73 1.76 2.45
Cov A-D + (1, 100) 2.00 0.08 2.03
Cov A-D + (20, 100) 1.72 1.01 0.74

MCD A-D 1.73 1.76 2.45
MCD A-D + (1, 100) 1.73 1.76 2.45
MCD A-D + (20, 100) 1.73 1.76 2.45

MVE A-D 1.73 1.76 2.45
MVE A-D + (1, 100) 1.73 1.76 2.45
MVE A-D + (20, 100) 1.73 1.76 2.45

Table 6: Example of consistent blocks in the presence of outliers under resistant estimates
of the covariate scaling matrix. Bold values denote unit closest to A.

We perform 1000 completely randomized, randomly allocated, and pair-blocked assign-

ments, and show the overall differences in means in Figure 2. Given the large treatment

heterogeneity, the blocked estimates gather much closer to the true sample treatment effect

than the completely randomized or randomly allocated estimates. As expected, across a

large number of randomizations, all three methods are unbiased on average.
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Figure 2: Example of increased efficiency from blocking in the presence of treatment ef-
fect heterogeneity correlated with a covariate. Vertical dashed line represents true average
treatment effect.
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