

A. PROOFS

Proof of Proposition 1. For convenience, let 0 denote the last digit of s_1 . If the last digit of X is distributed uniformly, the difference in density with which different numerals occur must on average be zero. Formally,

$$\sum_{a=\frac{s_1}{b}}^{\frac{s_2-b}{b}} (f(ab + d_1) - f(ab + d_2)) = 0 \quad \forall d_1, d_2 \in \{0, \dots, b-1\}. \quad (\text{A1})$$

If g can be approximated linearly over consecutive intervals of size b , each starting at some $a \in \{\frac{s_1}{b}, \dots, \frac{s_2-b}{b}\}$, we have

$$g(ab + d) = g(ab) + k_a d, \text{ and so} \quad (\text{A2})$$

$$g(ab) + k_a b = g((a+1)b) \quad (\text{A3})$$

for any $d \in \{0, \dots, b-1\}$, with $g(ab)$ constant over the given interval and k_a denoting the linear coefficient for that interval.

From (1) and (A2) it follows that

$$\begin{aligned} f(ab + d) &= \int_{ab+d}^{ab+d+1} g(x) dx \\ &= \int_{ab}^{ab+1} g(x) dx + \int_{ab+1}^{ab+d+1} g(x) dx \\ &= f(ab) + (g(ab) + k_a x)|_{ab+1}^{ab+d+1} \\ &= f(ab) + k_a d. \end{aligned} \quad (\text{A4})$$

Using (A4), we can rewrite (A1) as

$$\begin{aligned} & \sum_{a=\frac{s_1}{b}}^{\frac{s_2-b}{b}} (f(ab) + k_a d_1 - f(ab) - k_a d_2) = 0, \text{ and hence} \\ & (d_1 - d_2) \sum_{a=\frac{s_1}{b}}^{\frac{s_2-b}{b}} k_a = 0. \end{aligned} \quad (\text{A5})$$

It now remains to be shown that $\sum_{a=\frac{s_1}{b}}^{\frac{s_2-b}{b}} k_a = 0$.

Recall from (A3) that we can write

$$g(s_2) = g(s_1) + b \sum_{a=\frac{s_1}{b}}^{\frac{s_2-b}{b}} k_a.$$

Since $g(s_1) = g(s_2)$ and $b > 0$, this implies $\sum_{a=\frac{s_1}{b}}^{\frac{s_2-b}{b}} k_a = 0$. \square

Proof of Proposition 2. Recall that proposition 1 holds if equation (A5) is true. Given probability density $f(ab) + k_a d + f_e(ab + d)$, and recalling equation (A1), we rewrite (A5) as

$$\begin{aligned} & (d_1 - d_2) \sum_{a=\frac{s_1}{b}}^{\frac{s_2-b}{b}} (k_a + f_e(ab + d_1) - f_e(ab + d_2)) = 0, \text{ which implies} \\ & \sum_{a=\frac{s_1}{b}}^{\frac{s_2-b}{b}} f_e(ab + d_1) = \sum_{a=\frac{s_1}{b}}^{\frac{s_2-b}{b}} f_e(ab + d_2). \end{aligned} \quad (\text{A6})$$

\square

Proof of Corollary 3. Suppose to the contrary that proposition 1 holds if d is additively

separable from f_e . Then (A6) can be written as

$$\sum_{a=\frac{s_1}{b}}^{\frac{s_2-b}{b}} f_e(ab + d_1) = \sum_{a=\frac{s_1}{b}}^{\frac{s_2-b}{b}} f_e(ab + d_2), \text{ and hence}$$

$$h_e(d_1) = h_e(d_2),$$

which is not true if $h_e(d)$ is not constant over all $d \in \{0, \dots, b-1\}$. Similarly we can show that proposition 1 does not hold if d is multiplicatively separable from f_e . \square

Proof of Proposition 3. Consider any sequence $\{z, \dots, z + 2(b-1)\}$, where $z \in \{s_1, \dots, s_2 - 2(b-1)\}$. Let this sequence be denoted q , and let Q denote the set of all such sequences of size $2b-1$ on the domain of f . We can approximate f in this sequence by arithmetic progression, which yields $f(z + d') = f(z) + k_z d' + f_e(z + d')$, where k_z is the common difference of successive elements of the sequence, f_e is some function that gives the error in approximation, and $d' \in \{0, \dots, 2(b-1)\}$. Since we want to assess the average relative densities with which last digits appear across all sequences of size b , let's average f across all sequences of size b inside q . There are b unique sequences of size b wholly contained in $\{z, \dots, z + 2(b-1)\}$. Note that each last digit $d \in \{0, \dots, b-1\}$ appears exactly once in each sequence of size b , each number $z + d$ appears in $d+1$ sequences, and correspondingly each number $z + b + d$ that is contained in q appears in $b - (d+1)$ sequences. We can then write the sum of weighted densities for numbers ending in d (i.e. the numbers $z + d$ and $z + b + d$) as

$$\begin{aligned} & (d+1)f(z+d) + (b - (d+1))f(z+b+d) \\ = & (d+1)(f(z) + k_z d + f_e(z+d)) \\ & + (b - (d+1))(f(z) + k_z(b+d) + f_e(z+b+d)) \\ = & f(z) + k_z(b^2 - b) + (d+1)f_e(z+d) - (b - (d+1))f_e(z+d+b). \end{aligned}$$

In expectation we have $E[f_e(z + d)] = 0$, and so by taking expectations we are left with $E[f(z)] + k_z(b^2 - b)$. Note that this density is not a function of d , i.e. in expectation it is identical for all $d \in \{0, \dots, b-1\}$. Thus last digits of the random variable X' are uniformly distributed in expectation, where X' has probability density $f(x)$ weighted by the probability with which x is included in an arbitrary sequence of length b in q . In other words, we have shown that the (unnormalized) density function $f(x)h(x, q)$ produces a uniform distribution of last digits, where $h(x, q)$ gives the probability that number x is included in any sequence of size b in q . It remains to be shown that $\sum_{q \in Q} h(x, q)$ is proportional to a constant (i.e. does not vary with x), or equivalently, that $\sum_{q \in Q} f(x)h(x, q)$ can be normalized to $f(x)$.

Function $h(x, q)$ is clearly not constant within the sequence $\{z, \dots, z + 2(b-1)\}$, since the number of sequences of size b that include x varies with the position of x relative to z . But there are $2b-1$ sequences in Q that include x , and x is in a different position relative to z in each of these sequences. For any $x \in \{s_1 + 2(b-1), \dots, s_2 - 2(b-1)\}$, summing over Q then yields

$$\begin{aligned}
\sum_{q \in Q} f(x)h(x, q) &= f(x) \sum_{q \in Q} h(x, q) \\
&= f(x) \left(\sum_{d=0}^{b-1} (d+1) + \sum_{d=0}^{b-1} (b - (d+1)) \right) \\
&= f(x) b^2 \sum_{d=0}^{b-1} ((d+1) - (b-1)) \\
&= f(x) b^2 \\
&\propto f(x).
\end{aligned}$$

This leaves $x \in \{s_1, \dots, s_1 + 2b-3; s_2 - 2b+3, \dots, s_2\}$, that is x at the boundaries of

the domain of f . For x at the lower bound, we have

$$\begin{aligned} \sum_{q \in Q} h(x, q) &= \sum_{d=0}^{x-s_1} (d+1) \quad \text{for } x \in \{s_1, \dots, s_1 + b - 1\}, \text{ and} \\ \sum_{q \in Q} h(x, q) &= \sum_{d=0}^{b-1} (d+1) + \sum_{d=0}^{x-(s_1+b-1)} (b - (d+1)) \\ &\quad \text{for } x \in \{s_1 + b, \dots, s_1 + 2b - 3\}, \end{aligned}$$

where the sum of $h(x, q)$ over all elements of Q varies with x . This follows equivalently for x at the upper bound.

Hence we can normalize $\sum_{q \in Q} f(x)h(x, q)$ to $f(x)$ only if $f(x) = 0$ for $x \in \{s_1, \dots, s_1 + 2b - 3; s_2 - 2b + 3, \dots, s_2\}$. In other words, the density attributed to x at the upper and lower bounds of the domain determines the extent to which $f(x)$ is different from the (normalized) density $\sum_{q \in Q} f(x)h(x, q)$ and thus the extent to which last digits may follow a non-uniform distribution. For the relevant density at the lower bound of x we have

$$\begin{aligned} f(s_1) + \dots + f(s_1 + 2b - 3) &= \frac{f(s_1) + f(s_1 + 2b - 3)}{2} (2b - 2) \\ &= (b - 1)(f(s_1) + f(s_1 + 2b - 3)). \end{aligned}$$

Similarly we can compute the density over $x \in \{s_2 - 2b + 3, \dots, s_2\}$. It follows that as

$$(b - 1)(f(s_1) + f(s_1 + 2b - 3) + f(s_2 - 2b + 3) + f(s_2)) \rightarrow 0$$

or, less generally, as $f(x)$ approaches 0 for $x \leq s_1 + 2b - 3$ and $x \geq s_2 - 2b + 3$, the last digits of random variable X approach a uniform distribution. \square