
A. PROOFS

Proof of Proposition 1. For convenience, let 0 denote the last digit of s1. If the last digit

of X is distributed uniformly, the difference in density with which different numerals occur

must on average be zero. Formally,

s2−b
b∑

a=
s1
b

(f(ab+ d1)− f(ab+ d2)) = 0 ∀d1, d2 ∈ {0, . . . , b− 1}. (A1)

If g can be approximated linearly over consecutive intervals of size b, each starting at

some a ∈ { s1
b
, . . . , s2−b

b
}, we have

g(ab+ d) = g(ab) + kad, and so (A2)

g(ab) + kab = g((a+ 1)b) (A3)

for any d ∈ {0, . . . , b − 1}, with g(ab) constant over the given interval and ka denoting

the linear coefficient for that interval.

From (1) and (A2) it follows that

f(ab+ d) =

∫ ab+d+1

ab+d

g(x) dx

=

∫ ab+1

ab

g(x) dx+

∫ ab+d+1

ab+1

g(x) dx

= f(ab) + (g(ab) + kax)|ab+d+1
ab+1

= f(ab) + kad. (A4)
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Using (A4), we can rewrite (A1) as

s2−b
b∑

a=
s1
b

(f(ab) + kad1 − f(ab)− kad2) = 0, and hence

(d1 − d2)

s2−b
b∑

a=
s1
b

ka = 0. (A5)

It now remains to be shown that
∑ s2−b

b

a=
s1
b

ka = 0.

Recall from (A3) that we can write

g(s2) = g(s1) + b

s2−b
b∑

a=
s1
b

ka.

Since g(s1) = g(s2) and b > 0, this implies
∑ s2−b

b

a=
s1
b

ka = 0.

Proof of Proposition 2. Recall that proposition 1 holds if equation (A5) is true. Given prob-

ability density f(ab) + kad+ fe(ab+ d), and recalling equation (A1), we rewrite (A5) as

(d1 − d2)

s2−b
b∑

a=
s1
b

(ka + fe(ab+ d1)− fe(ab+ d2)) = 0, which implies

s2−b
b∑

a=
s1
b

fe(ab+ d1) =

s2−b
b∑

a=
s1
b

fe(ab+ d2). (A6)

Proof of Corollary 3. Suppose to the contrary that proposition 1 holds if d is additively
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separable from fe. Then (A6) can be written as

s2−b
b∑

a=
s1
b

fe(ab+ d1) =

s2−b
b∑

a=
s1
b

fe(ab+ d2), and hence

he(d1) = he(d2),

which is not true if he(d) is not constant over all d ∈ {0, . . . , b − 1}. Similarly we can show

that proposition 1 does not hold if d is multiplicatively separable from fe.

Proof of Proposition 3. Consider any sequence {z, . . . , z+2(b− 1)}, where z ∈ {s1, . . . , s2−
2(b − 1)}. Let this sequence be denoted q, and let Q denote the set of all such sequences

of size 2b − 1 on the domain of f . We can approximate f in this sequence by arithmetic

progression, which yields f(z + d′) = f(z) + kzd
′ + fe(z + d′), where kz is the common

difference of successive elements of the sequence, fe is some function that gives the error

in approximation, and d′ ∈ {0, . . . , 2(b − 1)}. Since we want to assess the average relative

densities with which last digits appear across all sequences of size b, let’s average f across

all sequences of size b inside q. There are b unique sequences of size b wholly contained in

{z, . . . , z + 2(b − 1)}. Note that each last digit d ∈ {0, . . . , b − 1} appears exactly once in

each sequence of size b, each number z + d appears in d+ 1 sequences, and correspondingly

each number z + b+ d that is contained in q appears in b− (d+ 1) sequences. We can then

write the sum of weighted densities for numbers ending in d (i.e. the numbers z + d and

z + b+ d) as

(d+ 1)f(z + d) + (b− (d+ 1))f(z + b+ d)

= (d+ 1)(f(z) + kzd+ fe(z + d))

+ (b− (d+ 1))(f(z) + kz(b+ d) + fe(z + b+ d))

= f(z) + kz(b
2 − b) + (d+ 1)fe(z + d)− (b− (d+ 1))fe(z + d+ b).

3



In expectation we have E[fe(z + d)] = 0, and so by taking expectations we are left with

E[f(z)] + kz(b
2 − b). Note that this density is not a function of d, i.e. in expectation it is

identical for all d ∈ {0, . . . , b− 1}. Thus last digits of the random variable X ′ are uniformly

distributed in expectation, where X ′ has probability density f(x) weighted by the probability

with which x is included in an arbitrary sequence of length b in q. In other words, we have

shown that the (unnormalized) density function f(x)h(x, q) produces a uniform distribution

of last digits, where h(x, q) gives the probability that number x is included in any sequence

of size b in q. It remains to be shown that
∑

q∈Q h(x, q) is proportional to a constant (i.e.

does not vary with x), or equivalently, that
∑

q∈Q f(x)h(x, q) can be normalized to f(x).

Function h(x, q) is clearly not constant within the sequence {z, . . . , z + 2(b − 1)}, since
the number of sequences of size b that include x varies with the position of x relative to z.

But there are 2b− 1 sequences in Q that include x, and x is in a different position relative

to z in each of these sequences. For any x ∈ {s1+2(b− 1), . . . , s2− 2(b− 1)}, summing over

Q then yields

∑
q∈Q

f(x)h(x, q) = f(x)
∑
q∈Q

h(x, q)

= f(x)

(
b−1∑
d=0

(d+ 1) +
b−1∑
d=0

(b− (d+ 1))

)

= f(x)b2
b−1∑
d=0

((d+ 1)− (d+ 1))

= f(x)b2

∝ f(x).

This leaves x ∈ {s1, . . . , s1 + 2b − 3; s2 − 2b + 3, . . . , s2}, that is x at the boundaries of
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the domain of f . For x at the lower bound, we have

∑
q∈Q

h(x, q) =

x−s1∑
d=0

(d+ 1) for x ∈ {s1, . . . , s1 + b− 1}, and

∑
q∈Q

h(x, q) =

b−1∑
d=0

(d+ 1) +

x−(s1+b−1)∑
d=0

(b− (d+ 1))

for x ∈ {s1 + b, . . . , s1 + 2b− 3},

where the sum of h(x, q) over all elements of Q varies with x. This follows equivalently

for x at the upper bound.

Hence we can normalize
∑

q∈Q f(x)h(x, q) to f(x) only if f(x) = 0 for x ∈ {s1, . . . , s1 +
2b−3; s2−2b+3, . . . , s2}. In other words, the density attributed to x at the upper and lower

bounds of the domain determines the extent to which f(x) is different from the (normalized)

density
∑

q∈Q f(x)h(x, q) and thus the extent to which last digits may follow a non-uniform

distribution. For the relevant density at the lower bound of x we have

f(s1) + . . . + f(s1 + 2b− 3) =
f(s1) + f(s1 + 2b− 3)

2
(2b− 2)

= (b− 1)(f(s1) + f(s1 + 2b− 3)).

Similarly we can compute the density over x ∈ {s2 − 2b+ 3, . . . , s2}. It follows that as

(b− 1)(f(s1) + f(s1 + 2b− 3) + f(s2 − 2b+ 3) + f(s2)) → 0

or, less generally, as f(x) approaches 0 for x ≤ s1 + 2b− 3 and x ≥ s2 − 2b+ 3, the last

digits of random variable X approach a uniform distribution.
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