A. PROOFS

Proof of Proposition 1. For convenience, let 0 denote the last digit of s;. If the last digit
of X is distributed uniformly, the difference in density with which different numerals occur

must on average be zero. Formally,

so—b

> (flab+di) = flab+dp)) =0 Vdy,dy € {0,....b—1}. (A1)

-
If g can be approximated linearly over consecutive intervals of size b, each starting at

so—b
-}, we have

some a € {%, ...,

glab+d) = g(ab) + k.d, and so (A2)

glab) + kb = g((a+1)b) (A3)

for any d € {0,...,b — 1}, with g(ab) constant over the given interval and k, denoting
the linear coefficient for that interval.

From (1) and (A2) it follows that

ab+d+1
flab+d) = /++

b+d

ab+1 ab+d-+1
= / x)dx + / g(x)dx

b ab+1
= f(ab) + (g(ab) + kqz)|2o 4t

—  f(ab) + kqd. (A4)



Using (A4), we can rewrite (Al) as

sg—b
b

Z (f(ab) + kody — f(ab) — kqds) = 0, and hence

_ 51
=3

(dy—dy) Y ka=0. (A5)

2
It now remains to be shown that > °. k, =

b

Recall from (A3) that we can write

sg—b

5
g(s2) =g(s1)+0b Z kq.
a=3

Proof of Proposition 2. Recall that proposition 1 holds if equation (A5) is true. Given prob-

ability density f(ab) + kod + f.(ab+ d), and recalling equation (Al), we rewrite (A5) as

so—b
o
(dy — dg) Z (ko + fe(ab+ dy) — fo(ab+ dy)) = 0, which implies
-
s2-b s9=b
b b
> felab+dy) =) fulab+ dy). (A6)
a=1 a="1
O

Proof of Corollary 3. Suppose to the contrary that proposition 1 holds if d is additively



separable from f.. Then (A6) can be written as

sg—b so—b

b b
Z fe(ab+dy) = Z fe(ab + dy), and hence
a=3}F 1

a==+

he(dl) = he(dQ)a

which is not true if h.(d) is not constant over all d € {0,...,b— 1}. Similarly we can show

that proposition 1 does not hold if d is multiplicatively separable from f,. O

Proof of Proposition 3. Consider any sequence {z,...,z+2(b—1)}, where z € {sy,...,8, —
2(b—1)}. Let this sequence be denoted ¢, and let () denote the set of all such sequences
of size 2b — 1 on the domain of f. We can approximate f in this sequence by arithmetic
progression, which yields f(z + d') = f(z) + k.d' + f.(z + d'), where k, is the common
difference of successive elements of the sequence, f. is some function that gives the error
in approximation, and d’" € {0,...,2(b— 1)}. Since we want to assess the average relative
densities with which last digits appear across all sequences of size b, let’s average f across
all sequences of size b inside ¢q. There are b unique sequences of size b wholly contained in
{z,...,24+2(b—1)}. Note that each last digit d € {0,...,b — 1} appears exactly once in
each sequence of size b, each number z 4 d appears in d + 1 sequences, and correspondingly
each number z + b + d that is contained in ¢ appears in b — (d + 1) sequences. We can then
write the sum of weighted densities for numbers ending in d (i.e. the numbers z + d and

Z+b+d) as

(d+1Df(z+d)+(b—(d+1))f(z+b+d)
= (d+1)(f(2) + kd+ fo(z+d))
+ (b= (d+1)(f(2) + k. (b+d)+ fe(z+ b+ d))

= f(2)+ kO =b)+(d+1)flz+d) — (b— (d+1))fu(z+d+D).



In expectation we have E[f.(z + d)] = 0, and so by taking expectations we are left with
E[f(2)] + k.(b* — b). Note that this density is not a function of d, i.e. in expectation it is
identical for all d € {0,...,b— 1}. Thus last digits of the random variable X’ are uniformly
distributed in expectation, where X’ has probability density f(x) weighted by the probability
with which x is included in an arbitrary sequence of length b in ¢. In other words, we have
shown that the (unnormalized) density function f(z)h(x,q) produces a uniform distribution
of last digits, where h(z, q) gives the probability that number z is included in any sequence
of size b in ¢. It remains to be shown that ) _, h(z,q) is proportional to a constant (i.e.
does not vary with x), or equivalently, that > _, f(z)h(z, ¢) can be normalized to f(z).

Function h(x,q) is clearly not constant within the sequence {z,...,z + 2(b — 1)}, since
the number of sequences of size b that include x varies with the position of = relative to z.
But there are 2b — 1 sequences in () that include z, and z is in a different position relative
to z in each of these sequences. For any x € {s; +2(b—1),...,s2 —2(b— 1)}, summing over

@ then yields

D f@h(z,q) = f@))  h(z,q)

e q€Q

b—1 b—1

= f(x) <Z(d+ D+ (b—(d+ 1)))
d=0 d=0
b—1

= f@)?) ([d+1)—(d+1))
d=0

= fl=)p?

x f(z)

This leaves © € {s1,...,81 +2b—3;85—2b+3,... , 2}, that is x at the boundaries of



the domain of f. For z at the lower bound, we have

Zh(z,q):Z(d+1) for z € {s1,...,81+b—1}, and
qeQ d=0

b—1 z—(s14+b-1)
dohlz,g) = (d+1)+ DY (b—(d+1)
q€Q d=0 d=0

for x € {sy +b,...,s + 2b— 3},

where the sum of h(x,q) over all elements of ) varies with x. This follows equivalently
for x at the upper bound.

Hence we can normalize Y ., f(z)h(z,q) to f(z) only if f(z) = 0for x € {s1,...,s1 +
2b—3;59—2b+3, ... ,s2}. In other words, the density attributed to z at the upper and lower
bounds of the domain determines the extent to which f(z) is different from the (normalized)
density > ., f(z)h(z,¢) and thus the extent to which last digits may follow a non-uniform

distribution. For the relevant density at the lower bound of x we have

f(Sl) + f(Sl + 2b — 3)
2

=(b—1)(f(s1) + f(s1+2b—3)).

f(si)+... +f(s1+20—3) =

(20 — 2)

Similarly we can compute the density over z € {sq —2b+3,... ,s2}. It follows that as

(b—1)(f(s1) + f(s1+2b—=3)+ f(s2—20+3)+ f(s2)) = 0

or, less generally, as f(x) approaches 0 for x < sy + 2b — 3 and x > sy — 2b + 3, the last

digits of random variable X approach a uniform distribution. O



