
(Mis)Using Dyadic Data to Analyze Multilateral
Events

Abstract

Dyadic (state-pair) data is completely inappropriate for analyzing multilateral events (such

as large alliances and major wars). Scholars, particularly in international relations, often divide

the actors in a multilateral event into a series of dyadic relations. Though this practice can

dramatically increase the size of datasets, using dyadic data to analyze what are, in reality, k -

adic events leads to model misspecification and, inevitably, statistical bias. In short, one cannot

recover a k -adic data generating process using dy-adic data. In this paper, I accomplish three

tasks. First, I use Monte Carlo simulations to confirm that analyzing k-adic events with dyadic

data produces substantial bias. Second, I show that choice-based sampling, as popularized by

King and Zeng (2001a and 2001b), can be used to create feasibly sized k-adic datasets. Finally,

I use the study of alliance formation by Gibler and Wolford (2006) to illustrate how to apply

this choice-based sampling solution and explain how to code independent variables in a k-adic

context.
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1 Introduction

Consider a simple counterfactual: would Belgium and Turkey be alliance members if not for the presence of

the United States in creating and supporting the North Atlantic Treaty Organization? This seems unlikely

given political differences, relatively small military capabilities, and the large geographic distance between the

two countries. Similarly, should one portray the European theater of World War II as a bilateral war between

Germany and Greece? Probably not, given this was a minor campaign in a much larger conflict. Finally, for

comparative politics scholars, would the French Greens and French Communists have formed an electoral

coalition on their own, without the Socialist party being involved? This seems unlikely. In short, empirical

scholars cannot treat the Belgium-Turkey country pair (or dyad) as having formed a bilateral alliance, Greece

and Germany as having fought an isolated bilateral war, and the French Greens and Communists as having

formed a bilateral electoral coalition. This is because, simply put, disregarding these actors’ relations with

outside actors will cause inferential error.

However, this is exactly the common practice of many empirical scholars, particularly (but not solely) in

international relations.1 When analyzing multilateral events, scholars divide the actors involved into a series

of dyadic relations (i.e., a U.S.-France-U.K. event is converted into three events: U.S.-France, U.S.-UK, and

France-U.K.).2 This subset of observations is then added to a set of purely dyadic observations. Though this

practice can dramatically increase the size of datasets, using “dy”-adic data to analyze what are “k”-adic

events leads to model misspecification and, inevitably, statistical bias.

Dyadic data are known to violate the independence assumption underpinning many statistical estimation

techniques. Specifically, dyadic data commit four major violations of the independence assumption. First,

the observations in the dyad-year are temporally correlated (e.g. the Russia-Germany 1938 dyad and the

Russia-Germany 1939 dyad; Beck, Katz, and Tucker 1998). Second, the dyads typically share unexplained

heterogeneity (Green, Kim and Yoon 2001; Beck and Katz 2001; King 2001). Third, the dyads have monadic

similarity (e.g. the presence of the United States in the U.S.-France and U.S.-Brazil dyads; Ward, Siverson,

and Cao 2007; Hoff 2005; Hoff and Ward 2004). Fourth, Signorino (1999) highlights the failure of scholars

to adequately capture the strategic interaction between nations that is implied by dyadic data.

Though accounting for such non-independence is critical for drawing proper inferences, I am not presenting

an alternative procedure for modeling such spatial, strategic, temporal, or monadic interdependencies in the

data. Such features of the data will still be present and must still be modeled. Instead, this paper highlights

a prior, conceptual issue arising in the context of multilateral decision making processes - namely, if the data

are formed by interactions among k > 2 actors, then a dyadic format will not reflect this process regardless of

1Examples outside international relations include studies of pre-electoral coalitions in comparative politics (see Golder 2006).
Interestingly enough, studies on governing coalitions in comparative politics do go beyond the dyad to consider all combinations
of governing parties (see Martin and Stevenson 2001 and Franklin and Mackie 1984).

2Bremer (1992) was highly influential in making the dyad the most prominent unit of analysis in IR, though the practice of
disaggregating multilateral events into dyadic observations is too widespread to summarize. One need only pickup a statistical
study in international relations over the past few decades to find an example (assuming the study did not focus solely on
bilateral relations). Prominent examples that apply dyadic data to multilateral wars include Bremer (1992), Russett and Oneal
(1997), Peceny, Beer, and Sanchez-Terry (2002), and Reiter and Stam (2002, 2003). Studies that have applied dyadic data to
the creation of multilateral trade agreements include Mansfield, Milner and Rosendorff (2002) and Mansfield and Reinhardt
(2003). Lai and Reiter (2000) and Leeds et al (2002) apply dyadic data to the creation of multilateral alliances. See Bennett
and Stam (2000) for an excellent discussion of the promise and pitfalls of estimating dyadic data in international relations.
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how one models other interdependencies. For example, suppose one accounts for strategic interdependence

using an estimator based upon logit quantal response equilibria. In this case, the probability of each outcome

is derived by multiplying the probabilities of the actions that lead to the outcome. If the outcome is the

result of actions taken by k = 4 actors, then considering only the actions of k = 2 actors (i.e., using dyadic

data) will fail to capture the true probability of an outcome.3

This particular limitation of dyadic data is not unknown to scholars. Croco and Teo (2005), using a series of

case studies, highlight the inferential bias introduced by splitting multilateral events into dyadic observations.

Gibler, Rider, and Hutchison (2005), citing Weede (1980), discuss how Wallace (1976, 1979) overstates the

ability of arms races to escalate into wars because he disaggregates one event of arms race induced escalation

into several events, thereby inflating the number of positive cases. Signorino (1999) also identifies this

problem, pointing out that dividing a k-nation event into a series of dyadic observations of size k(k − 1)/2

greatly expands the size of the dataset, but does so without adding new information and by introducing bias.

However, none of these studies, nor any previous study to which the author is aware, has sought either to

identify the size of the bias introduced by evaluating k -adic events with dyadic data, nor offer a suggestion

for how one should alternatively structure the data. Instead, scholars continue to divide multilateral events

into a series of dyadic observations.

This paper has two goals. The first is to illustrate the bias produced when analyzing k -adic processes with

dyadic data. I show, using a Monte Carlo simulation under the simplest of conditions (a cross sectional

dataset in which each grouping of countries has an independent ability to form an alliance and the decision

making process is non-strategic) that one cannot recover a k -adic data generating process using dy-adic

data. One must instead evaluate the data generating process using k -adic data. In other words, one must

use a dataset containing all combinations of actors (i.e., actors A, B, and C can form four multi-actor

combinations: AB, AC, BC, and ABC). Of course, if the number of potential actors is even moderately large

(perhaps N=100), this can quickly produce a dataset with observations numbering in the millions, billions,

or more.4

Thus, the second goal of the paper is to illustrate how choice-based sampling, an approach recommended

by King and Zeng (2001a; 2001b) for analyzing “rare events” data, enables one to create and analyze k -adic

datasets of manageable size. Specifically, one can use a dataset consisting of all k -ads in which a binary

dependent variable is coded 1 (indicating, for example, if members of the k -ad formed an alliance treaty

or began a conflict) and a random sample of various sized k -ads in which the binary dependent variable is

coded 0. This solution is not without costs. For instance, some measures, such as distance, are most easily

understood in a dyadic context. However, intuitive tractability and data collection simplicity do not justify

continued reliance upon flawed inferences.

This paper is organized as follows. First, using Monte Carlo simulations, section 2 illustrates the bias

introduced when dyadic data is used to evaluate k -adic events. Though I place this simulation (and the

subsequent simulations) in the context of alliance formation, this is intended simply to give the simulation

3See Gent (2007) and Findlay and Teo (2006) for examples of modeling strategic interactions in multilateral events.
4This is a problem that the governing coalition papers of Martin and Stevenson (2001) and Franklin and Mackie (1984) did

not have to address as the number of potential actors in their studies were relatively small (the largest being N=10 for a few
countries where up to 10 parties existed at the time of a government formation).
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a point of reference (the main statistical points they raise could be illustrated just as easily with randomly

constructed covariates devoid of any substantive motivation). Conflict onset, the formation of international

trade agreements, governing party coalitions, as well as numerous other subjects could be used to contextu-

alize the simulation. Second, section 3 uses Monte Carlo simulations to illustrate how choice-based sampling

can generate a feasibly sized dataset that, when estimated, produces substantially less bias. Section 4 uses

the study of alliance formation by Gibler and Wolford (2006) to illustrate how one may apply choice-based

sampling to the construction of k-adic data. Section 5 offers a discussion of why some alternative methods,

particularly spatial interdependence models and evolving network models, are not viable substitutes for using

k -adic data to evaluate multilateral events. Section 6 concludes.
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2 Illustrating the Problem with Monte Carlo Simulations

In this section, I use Monte Carlo simulations to illustrate how dyadic data cannot capture the process that

produces data formed by interactions among k > 2 actors. Again, this is an issue of how one conceptualizes

the construction of the observations and, hence, is separate from concerns of modeling spatial, temporal,

strategic, or monadic interdependencies among the observations. For the sake of illustration, I place this

simulation (and the subsequent simulations) in the context of alliance formation. This is intended only to

give the simulation a substantive point of reference.

2.1 Motivating the Simulation

According to Morrow (1991), pairings of states with highly asymmetric relative physical capabilities are

natural alliance partners. In essence, alliances serve as a type of “protection racket” where a small state

gives foreign policy autonomy to a larger state (in the form of policy concessions or the granting of territorial

access to the large state’s military forces) in exchange for the large state’s promise to defend it in a time of

crisis. One can easily extend to multilateral agreements the Morrow story of asymmetry influencing alliance

formation. The game theoretic work on N -player prisoner dilemmas (see Bianco and Bates 1990) and its

extension to international cooperation (see, most recently, Stone, Slantchev, and Tamar 2008) view the

presence of a large state as the key factor in creating multilateral agreements. This is because the large state

can impose punishments on states that fail to meet contribution requirements.

This suggests that the capability ratio of a grouping of states is a (if not “the”) major factor in determining

if the states will form an alliance. Though the exact influence of the largest state’s capabilities relative to

the entire group’s capabilities is not known, we do know that, in theory, the larger this ratio, the more likely

is a multilateral agreement. For the sake of simplicity and to avoid the issue of the improper use of control

variables that is rampant throughout the empirical international relations literature,5 I will assume that the

true data generating process for alliance formation can be specified as:

Pr(Alliance between states A through K) = Φ

(

cons + β
max(capability A, capability B, ···, capability K)
(capability A+ capability B+ ···+ capability K)

+ µ

)

(1)

where cons is a constant term, µ is a random element capturing the unknown and/or unobserved determi-

nants of alliance formation, and Φ is a function taking on values strictly between zero and one (0 ≤ Φ ≤ 1).

β is the true parameter specifying the relationship between the value of a latent, unobserved dependent vari-

able that determines the probability of alliance formation, y∗, and the capability ratio of states A through

K.

5For works that detail the improper use of control variables in international relations, see Kadera and Mitchell (2005), Ray
(2005), Achen (2005), Clarke (2005) and Starr (2005).
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2.2 Describing the Trilateral Alliance Simulation

I consider a scenario in which states can only form the most basic of multilateral alliances, trilateral alliances.

I construct the simulation according to the following steps:

STEP 1: I create a dataset of 100 observations, where each observation represents a single country. I then

assign a country code (ccode) value to each country.

STEP 2: I randomly assign military “capabilities” to each of these countries. Capabilities range from 0 to

100. These capabilities are stored in the variable cap.

STEP 3: I reorganize the 100 countries into all possible three-country groupings. Since order is not

important, these 100 countries produce 161,700 three country combinations of states (or triads). The triadic

dataset includes the following variables: triadid, mem1, mem2, mem3, cap1, cap2, cap3. The variable

triadid is simply a code identifying triad i (with i ∈ {1, 161700}). The variable mem1 is the ccode number

of the first member state in triad i, mem2 is the ccode number of the second state in triad i, and mem3 is

the ccode number of the third state in triad i. The variables cap1, cap2, and cap3 capture the capabilities

of mem1, mem2, and mem3 respectively.

STEP 4: I compute the “capabilities ratio” of each triad. Specifically, this is captured by the variable

capratio which is calculated as:

capratio =
max(cap1, cap2, cap3)

(cap1 + cap2 + cap3)
(2)

STEP 5: I write the data generating process (DGP) of trilateral alliance formation as:

xb = cons + β capratio + µ (3)

where xb represents the underlying latent variables that determine alliance formation. I set cons = −4 and

β = .25. The variable µ is a logistically distributed random error term.

STEP 6: ALLY , the dependent variable, is a dichotomous variable equal to 1 if a triad forms an alliance,

zero otherwise. To generate realizations of this dependent variable, I code ALLY = 1 if xb > 0, zero

otherwise. Table 1 reports the values of these variables for the first 10 observations. One should notice that

ALLY = 0 for each of these 10 observations.

Step 7: I now convert this triadic dataset into dyadic data. Thus, if a triad contains states A, B, and C,

this step divides this triad into dyad A with B, dyad B with C, and dyad A with C. If ALLY = 1 for triad

A,B,C, then this means ALLY = 1 for dyad A with B, ALLY = 1 for dyad B with C, and ALLY = 1 for

dyad A with C. Next, I use the capabilities scores of each dyad member to compute that dyad’s capability
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Table 1: Sample of Complete Triadic Dataset

Dyad mem1 mem2 mem3 cap1 cap2 cap3 capratio ALLY

102 1 2 3 70.01 62.24 26.23 0.44 0
102 1 2 4 70.01 62.24 16.30 0.47 0
102 1 2 5 70.01 62.24 51.48 0.38 0
102 1 2 6 70.01 62.24 85.39 0.39 0
102 1 2 7 70.01 62.24 35.41 0.42 0
102 1 2 8 70.01 62.24 24.88 0.45 0
102 1 2 9 70.01 62.24 24.29 0.45 0
102 1 2 10 70.01 62.24 34.11 0.42 0
102 1 2 11 70.01 62.24 66.35 0.35 0
102 1 2 12 70.01 62.24 5.38 0.51 0

ratio.

Step 8: I take this dyadic dataset and attempt to estimate β, the parameter characterizing the relationship

between capratio and ALLY . Since the errors are drawn from a logistic distribution, I use logit estimation.

The goal is to see if the logit estimate of β, β̂, is an unbiased estimate of the true β (which is equal to 0.25).

These eight steps create one realization of my dataset. Of course, this realization is determined by a single

random draw of u from a logistic distribution. Because the dependent variable is computed using an error

term drawn from a probability distribution, I repeat the creation of the dependent variable via a Monte Carlo

simulation. In Monte Carlo simulations, random numbers are drawn so as to model a process. The goal is

to determine how random variation (or lack of knowledge or error) affects the sensitivity and reliability of

the parameters characterizing the process. In this particular simulation, I wish to know how randomness

impacts my ability to estimate the impact of relative capabilities on the formation of alliances. The essence

of Monte Carlo simulations to iterate the process numerous times and then obtain an average value from

these iterations.

Step 9: I repeat 500 times steps six through eight. This produces 500 values of β̂. After each iteration, I

also keep the estimated standard error around β̂ (giving me 500 values of the standard error of β̂).

2.3 Results from the Trilateral Alliance Simulation

I use the stored values of β̂ and the estimated standard errors to compute three common criteria for evaluating

estimator performance in Monte Carlo simulations: Bias, Root Mean Squared Error, and Overconfidence.

Bias is the difference between the average value of the coefficient estimate and the true coefficient value.

Root Mean Squared Error is calculated in three steps: (1) computing the squared difference between each

iteration’s coefficient estimate and the true coefficient value; (2) summing up these values and dividing the

total by the number of iterations; and (3) taking the square root of this average value. Overconfidence is

the standard deviation of the coefficient estimates divided by the average reported coefficient standard error.

This is a measure of standard error accuracy. For all three measures, the smaller the value, the more accurate

the estimator.
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Column 1 of Table 2 shows how estimating the triadic dataset with triadic data produces, as one would

expect, relatively unbiased coefficient estimates. However, column 2 shows quite convincingly that the β̂

produced using the dyadic dataset does not accurately estimate β. These results suggest that the existing

approach of dividing multilateral alliances into a series of dyadic observations produces biased estimates of

the true parameter. This is unsurprising, as one should not reasonably expect a dyadic measure of capability

asymmetry to be equivalent to the triadic measure of capability asymmetry employed in this simulation’s

actual DGP. Unfortunately, this is exactly the technique employed by scholars of international relations (to

divide multilateral events, in this case the formation of alliances, into a series of bilateral observations).

Table 2: Trilateral Alliance Simulation Results (True β1 = 0.25)
(1) (2) (3)

Triadic DGP Triadic DGP Triadic DGP
estimated with estimated with estimated with
Triadic Data Dyadic Data Choice-Based Sample

Average β̂1 0.251 0.46 0.251

Bias 0.001 0.21 0.001
Root Mean Squared Error 0.13 0.66 0.16
Over Confidence 0.17 1.09 0.24

2.4 Indentifying the Source of the Bias

What is the exact cause of the bias in the multilateral simulation? Setting aside problems of non-independence

of observations (which, as already highlighted, is present in dyadic data as well), dividing a k -adic event into

dyadic observations leads to a classic case of measurement error in X, the vector of independent variable

values. Recall that the capability ratio in the true DGP is

capratio =
max (cap1, cap2, cap3)

(cap1 + cap2 + cap3)
(4)

while the independent variable in the estimated model is the dyadic capability ratio

capratio =
max (cap1, cap2)

(cap1 + cap2)
(5)

Suppose that the third member of the alliance is never the largest member. Therefore, the dyadic data will

always have the correct numerator value (either cap1 or cap2 ). However, even in this ideal scenario, the

estimated independent variable is systematically higher because the denominator is missing one term, cap3.

As a result, the observation Xi for i = 1, · · · , n is actually Xi = Wi + Ui, where U1, ..., Un are uniformly

distributed (because a uniform distribution was used to generate the capability scores of each state) with

8



E[U] ≥ 0.6 Thus, for either the probit or logit model, we obtain (ignoring the constant term)

Pr(YTi
= 1) = Pr(Y ∗

Ti
≥ 0)

= Pr(βXi + ǫi ≥ 0)

= Pr(β(Wi + Ui) + ǫi ≥ 0)

= Pr(ǫi ≥ −β(Wi + Ui))

= 1 − F (−β(Wi + Ui))

= F (β(Wi + Ui))

where the last line is possible if F is symmetric (which is the case for both the logistic and normal distri-

butions). Of course, the parameter will be estimated via Maximum Likelihood, where each outcome of YTi

follows a Bernoulli density function, f(YTi
) = p

YTi

i (1 − pi)
1−YTi . In other words, each YTi

takes on either a

value of 0 or 1 with probability f(0) = (1 − pi) and f(1) = pi. Hence, pi = Pr(YTi
= 1) = F (β(Wi + Ui)).

Thus, the likelihood function is L = f(YT1
, YT2

, · · · , YTn
). Even if, for i 6= j, each YTi

were independent of

each YTj
(which is not the case since multiple dyads contain the same country) so that the log likelihood is

lnL =
∑n

i=1
YTi

ln pi +(1−YTi
) ln(1−pi), it would still be the case that pi = F (β(Wi +Ui)). Consequently,

lnL =

n
∑

i=1

YTi
lnF (β(Wi + Ui)) + (1 − YTi

) ln(1 − F (β(Wi + Ui))) (6)

One will note that the presence of Ui, where E[Ui] ≥ 0 will inflate the value of Xi. Because the values of

YTi
are fixed, the larger value of X must necessarily reduce β̂, the estimate of the true β. Thus, β̂ 6= β.

6It should be noted that U1, ..., Un are not independent as some observations contain the same third country.
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3 Modeling K -adic Data Using Choice-Based Sampling

Scholars have relied upon dyadic data to analyze international events because it provides intuitive tractabil-

ity, is computationally convenient, and simplifies the collection of data. Moreover, scholars have made great

strides in devising estimation adjustments that account for temporal, spatial, monadic, and strategic viola-

tions of the independence assumption present in many dyadic datasets. However, none of these adjustments,

nor any estimation correction, can account for the bias produced by evaluating k -adic events with dyadic

data.

The simulation in the previous section shows that estimating the formation of trilateral alliances with triadic

data will produce unbiased estimates of the parameter on capratio. Therefore, the solution seems obvious:

use a dataset with all possible k -ads. Fortunately, by all “possible” k -ads, I do not mean to suggest that if

there are n countries, then one needs to include all k -ads of size n or less. Instead, I will show that if the

k -adic event of interest contains, at most, k < n countries, then one need only estimate a dataset with all

combinations of states up to size k. Unfortunately, creating a dataset of all combinations of size k < n has a

major downside: it still dramatically expands the dataset’s observations. For a system of 100 countries, just

as in the above simulations, a dyad only dataset contains 4,950 observations, but a triad only dataset contains

161,700 observations. If one were to consider a dataset of only four country k-ads, the dataset size would

explode to 3,921,225 observations. Consequently, it would be infeasible or impossible to estimate a dataset

capable of explaining the creation of an alliance the size of NATO, which was formed by 12 countries (where

all combinations of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 out of 100 countries will lead to over 1.211475E+15

observations)!

3.1 Choice-based Sample of Triadic Data

Choice-based sampling on the dependent variable (see King and Zeng 2001a, 2001b) offers a means of

creating a computationally manageable dataset appropriate for estimating k -adic data. Because so few

triadic observations, relative to the total number of triads, contain the formation of a military alliance, one

is left with a classic “rare events” dataset (binary dependent variable characterized by dozens to thousands

of times fewer events [coded with a positive value] than non-events [coded with a 0]). When presented with

data of this type, King and Zeng (2001a, 2001b) recommend sampling on the dependent variable as it avoids

the issues commonly associated with rare events data such as underestimating the probability of an event.

The sampling method entails constructing a dataset containing all observations for which the dependent

variable is coded with a positive value, along with a random sample of observations for which the dependent

variable is coded 0. According to King and Zeng (2001a, p. 702), it is acceptable to collect anywhere from

two to five times more 0’s than positive values, though one should attempt to collect as many zero values

as is computationally feasible. Thus, in the simulations that follow, I collect ten times more 0’s than ones.

Even then, this creates a dataset between two and three thousand observations, which is highly manageable

from a computational perspective.

When drawing the sample, it is important to stratify by k -ad. This means if a dataset has 100 dyads where
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Y=1 and 50 triads where Y=1, one should attempt to draw 1000 dyads where Y=0 and 500 triads where

Y=0. Why should one sample in this manner rather than simply draw a nonstratified random sample from

the full population of possible outcomes? The reason is that higher order k -ads quickly overwhelm lower

order k -ads with respect to quantity. For instance, if a dataset contains all five-ads, quad-ads, tri-ads, and

dyads of 100 actors, then the full population contains 75,287,520 five-ads and only 4,950 dyads. A non-

stratified random sample of the Y=0 k -ads would contain virtually no Y=0 dyads, even if dyads comprise

the majority of Y=1 observations!

Having obtained a stratified choice-based random sample of k -ads where the dependent variable equals zero,

this sample can be combined with the k -ads where the dependent variable equals 1. This combined dataset

can then be estimated using a rare events logit model, which, by and large, is a logit model that applies a post-

estimation correction to the constant term (called prior correction) to account for the fact that sampling on

the dependent variable has artificially inflated the prominence of observations where the dependent variable

equals 1. Since the dataset on which the model is estimated is a stratified sample, one must weight the

observations from each strata by the inverse probability of being drawn from the sample. For example, if

there are 4,950 total dyads, and Y=1 for 100 of these dyads, then each Y=0 dyad has a 1

4,850
probability

of being drawn. When estimating the model, each Y=0 observation in the sample should be multiplied by
1
1

4,850

.

After applying choice-based sampling, I have a cross-sectional dataset of approximately 55,000 triad obser-

vations (where approximately 5,000 of which ALLY equals 1). The column 3 of Table 2 presents the results

obtained from estimating a choice-based sample of the triadic dataset using a King and Zeng (2001a, 2001b)

rare events logit model. Comparing this parameter estimate to that obtained from estimating the full triadic

dataset, one can see that the parameter estimates are nearly identical, with the Overconfidence measure

suggesting that the rare events estimate produces slightly more variance (which is expected, given that it

contains fewer observations).

3.2 Accounting for All K -ads with Choice-Based Sampling: Proof of Concept

Though this solution works for the triadic dataset, what about a dataset in which the largest k -lateral alliance

contains 4 countries or a dataset containing k -lateral alliances of multiple sizes? The latter is of particular

importance since this is the shape of actual datasets in international relations. For example, the Alliance

Treaty Obligations and Provisions (ATOP) dataset contains 648 military alliance treaties formed between

1815 and 2005. Of these, 536 are bilateral alliances, 47 are trilateral alliances, 23 are quadrilateral alliances,

11 alliances have five members, and 38 have 6 or more members (with the largest alliance containing 50

members).7 As mentioned above, estimating a dataset with all possible combinations of all possible alliance

sizes is computationally infeasible. For instance, a dataset with all possible dyadic, triadic, and quadratic

combinations of 100 countries contains 4, 950 + 161, 700 + 3, 921, 225 = 4, 087, 775 observations! However,

one can still sample on the dependent variable in order to obtain parameter estimates for such data. To show

this is the case, this subsection provides a “proof of concept” focusing on a simulated dataset containing

bilateral and trilateral alliances.

7See Leeds et al (2002) for further details on the ATOP dataset.
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3.2.1 Bilateral-Trilateral Simulation

For this simulation, I place the 100 countries into all possible dyadic and triadic combinations. This generates

a combined dataset of 166,550 observations (where an observation is any grouping of states, dyadic or

triadic). The variable capratio is the ratio of the capabilities of a k -ad’s largest member over that k -

ad’s total capabilities. Next, I set β1, the parameter on capratio, to 25 and the constant term is set to

-25. With these parameter values, a typical simulation produces approximately equal numbers of bilateral

and trilateral alliances (typically 120 to 130 each). As in the above simulations, the DGP also includes a

logistically distributed error term.

Table 3 reports the results from 500 Monte Carlo simulations of this DGP. One can see from column 1 that

applying logit estimation to the full triad-dyad dataset produces, on average, parameter estimates close to

the true parameter value. Column 2 of Table 3 reports the average parameter estimates from 500 Monte

Carlo simulations where the data is converted back into dyadic data. As in the above simulation with triadic

data, this produces large bias in the parameter estimate.

In column 3 of Table 3, I present the results from a “quick fix” one might be tempted to apply when

faced with a multilateral event: dropping the multilateral events. Given that dyads, by definition, capture

bilateral relations, some readers may decide a simpler solution for obtaining unbiased estimates lies in simply

excluding multilateral events from the data. Therefore, I rerun the simulation with the triads removed from

the dataset prior to estimation.8 This does produce dramatically less bias in the estimates and, therefore,

is not an unreasonable approach. However, if one wishes to model multilateral observations, dropping the

multilateral cases is obviously not an option. Moreover, as the next simulation will show, the bias produced

by this approach increases with the number and variety of k-ads in the dataset.

Column 4 of Table 3 reports the results from estimation with choice-based sampling on the dependent

variable. The bias is substantially reduced compared to converting the data into dyadic data. Therefore,

choice-based sampling appears to offer a viable and computationally feasible means of obtaining relatively

unbiased parameter estimates of actual k -adic processes.

8This approach is adopted in some studies, such as Remmer (1998), with the explicit desire to avoid placing multilateral
events into dyadic data (Remmer, 1998: 35).
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Table 3: Bilateral-Trilateral Alliance Simulation Results (True β1 = 25)
(1) (2) (3) (4)

Triadic-Dyadic DGP Triadic-Dyadic DGP Triadic-Dyadic DGP Triadic-Dyadic DGP
estimated with estimated with estimated with estimated with

Triadic-Dyadic Data Dyadic Data Trilateral Alliances Removed Choice-Based Sample

Average β̂1 25.03 22.54 25.18 25.21
Bias 0.03 -2.46 0.18 0.21
Root Mean Squared Error 1.39 4.05 2.17 2.07
Over Confidence 2.35 8.27 3.17 3.32
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3.2.2 A FIVE-adic Simulation

To more fully illustrate the ability of choice-based sampling to create a feasibly sized k -adic dataset that

reduces estimation bias, I consider a final simulation in which the maximum size of a k -ad is five countries.

I focus on a FIVE-adic dataset because, as the above description of the ATOP dataset illustrates, there are

very few k -adic alliances with more than five participants.

For this simulation, I place the 100 countries into all possible combinations of 2, 3, 4, and 5 countries. This

generates a combined dataset of 79,375,395 observations (4,950 + 161,700 + 3,921,225 + 75,287,520). The

variable capratio is defined the same as in the earlier simulations and the DGP is the same as in the above

simulations, except capratio is computed with the capabilities of two, three, four, or five states, depending

on whether an observation is a dyad, triad, “4”-ad, or “5”-ad.

Next, I set β1, the parameter on capratio, to 26 and the constant term is set to -27. With these parameter

values, a typical simulation produces about 190 bilateral alliances, 180 trilateral alliances, 110 quadrilateral

alliances, and 70 five member alliances. Table 4 reports the results from estimating this dataset when applying

choice-based sampling to the full dataset (column 1), dividing the data into dyadic combinations (column 2),

or dropping the k -adic observations in which an alliance formed (column 3). One can immediately see that

the bias produced by analyzing the 5-adic DGP with dyadic data is dramatically more pronounced than in

the previous simulation. Moreover, estimation with the choice-based sample outperforms both estimation

with a dataset in which all k-adic alliances are split into their dyadic combinations and estimation with a

dataset that simply dropped the k-adic observations in which an alliance formed.

Table 4: FIVE-adic Simulation Results (True β1 = 26)
(1) (2) (3)

FIVE-adic DGP FIVE-adic DGP FIVE-adic DGP
estimated with estimated with estimated with

Choice-Based Sample Dyadic Data Non-Dyads Removed

Average β̂1 28.3 13.95 34.31

Bias 2.3 -12.05 8.31
Root Mean Squared Error 0.01 1.34 7.73
Over Confidence 0.05 2.53 18.72
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4 Application: Alliance Formation in International Relations

I will now illustrate how one can apply choice-based sampling to actual data that follows a k -adic DGP. I

will do so using the study of alliance formation by Gibler and Wolford (2006), who draw on the dyad-year

research design of Lai and Reiter (2000). This is one of the only studies to conduct multivariate estimation

of alliance formation. Their dependent variable, alliance formation, equals 1 the year two states become

alliance members, zero otherwise. Because this study is especially interested in the relationship between

regime type and alliance formation, Gibler and Wolford (2006) mention how dyadic data could overstate the

role of democracy on alliance formation. In particular, Gibler and Wolford (2006: 139) highlight how the

bulk of democratic dyads that formed alliances are contained in an incredibly small number of alliances. For

example, NATO accounts for more than 55 percent of the jointly democratic allied dyad-years. Nevertheless,

Gibler and Wolford (2006), in order to match as closely as possible previous research designs, test their

model using all dyad-year data drawn from all alliances.

I am not setting out to nullify the results of Gibler and Wolford (2006). Instead, I am using their study

because, in addition to alliance formation exemplifying a k -adic DGP that has typically been tested using

dyadic data, their study is useful for illustrating new measurements of covariates that were previously coded

only in the dyadic context. For example, geographic distance is easy to conceptualize for a dyad, but what

does it mean in a k -adic dataset? Is it the maximum distance between any two of k members or is it the

average distance between the k members? Similarly, what is a joint democracy k -ad? If a k -ad contains five

states, is it a joint democracy k -ad only when all five states are democracies? If so, does that not treat a

k -ad where 4 of the 5 states are democracies as equivalent to a k -ad where 1 of 5 states are democracies?

Alternatively, perhaps one could construct a continuous measure of joint democracy such as the proportion

of states in the k -ad that are democracies. My goal is not to rectify such measurement issues, as answers

will depend on the particular research question. Instead, by illustrating how one can properly construct and

test a dataset for an event that is inherently k -adic, I will propose and apply reasonable codings for such

variables.

4.1 Real Alliance Formation and Capabilities Data

Before more fully applying the Gibler and Wolford (2006) model of alliance formation, I begin with a simple

model that closely follows the above simulations. Specifically, I test a single covariate model where the

dependent variable is the formation of a Correlates of War military alliance (similar to Gibler and Wolford

2006) and the independent variable is the capability ratio (the capabilities of the largest state over the sum

of the k-ad’s capabilities), where capabilities is measured using the Correlates of War composite index of

national capabilities (CINC) score. The dependent variable ally equals 1 the year an alliance forms, zero

otherwise. Because this replication focuses on the decision to form a new alliance, I consider states who join

an alliance after the year of its initial formation as having not joined the alliance (the decision to join an

existing alliance is a worthy research question, but is treated here as distinct from the decision to create a

new alliance).

15



Column 1 of Table 5 reports the results from applying logit estimation with clustered standard errors to a

dyadic dataset where ally=1 if any alliance is formed (bilateral or multilateral alliance). Column 2 of Table

5 reports the results from applying logit estimation with clustered standard errors to a dyadic dataset where

ally=1 only when bilateral alliances are formed. Column 3 of Table 5 reports the results when using a rare

events logit to estimate a choice-based dataset that directly measures all k -ads that formed alliances.

It is important to make two notes regarding the results in column 3. First, for ally=0 observations, I use eight

times the number of ally=1 observations. Second, the dataset used to produce the results does not include

alliances of with 6 or more members. This is for two reasons. First, the dataset only contains four alliances

of such size. Hence, if alliance formation is a “rare event”, then the formation of alliances with six or more

members is an “unusual” event. Second, the set of possible ally=0 k -ads of 6 or more members is simply

enormous. For example, with 196 countries from which to choose (the number of countries in the Gibler and

Wolford (2006) dataset), all combinations with 6 countries leads to 72,887,293,024 observations. Since there

is only a single six member alliance, I would draw only ten 6-ads where ally=0. This is problematic because

when using a stratified choice-based sample, one must weight each observation by the inverse probability

of that observation being drawn from its stratum. In the case of 6-ads where ally=0 (where the ally=0

6-ad stratum contains 72, 887, 293, 024 − 1 observations), this produces a probability of 8

72,887,293,023
=

0.0000000011 or an inverse probability weight of approximately 9,111,000,000. Placing such a massive weight

on a single observation renders the standard errors of the point estimates uninformative. Since some datasets

will have more than 196 actors and some will have less, the decision of what constitutes an “unusual” versus

simply a “rare” k -adic event must be left to the analyst.

Column 1 of Table 5 shows that splitting all k -ads into dyadic relations leads to a negative and statistically

significant value on the coefficient for capability ratio. In contrast, the coefficient is positive when one

accounts for all k-adic combinations.

Table 5: K -ad Year Alliance Formation Regressed on Capability Ratio
(1) (2) (3)

DATASET Dyadic Remove K-adic Alliance K-adic Choice-Based Sample

Capability Ratio -1.79*** -1.08** 7.21**
(0.157) (0.39) (3.43)

Constant -3.69*** -6.13*** -49.81***
(0.132) (0.33) (2.69)

N: 570,390 570,390 215

Estimation Technique Logit with standard errors Logit with Standard errors Rare events logit
clustered on the dyad clustered on the dyad

Standard errors reported in parentheses (non-clustered standard errors produce similar results for models 1 and 2)
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4.2 Reconsidering Gibler and Wolford (2006)

Gibler and Wolford (2006), drawing upon Lai and Reiter (2000), model alliance formation as a function of

several variables. For my illustrative application, I will only use a subset of their variables: Common Threat,

Geographic Distance, and Joint Democracy. I will include with these variables the capability ratio of each

k-ad. These variables are chosen because they are (1) consistently found to be important determinants of

alliance formation and (2) are examples of variables problematic to code in k-adic data.

In dyadic data, Common Threat is a dichotomous variable coded 1 if both states participated in a Militarized

Interstate Dispute (MID) against the same third state sometime in the previous 10 years, 0 otherwise. Coding

this variable in the k-adic context creates similar difficulties to coding joint democracy : if a k -ad contains

five states, does it not face a joint threat if only 4 of the 5 states participated in a MID against the same

third state? Given that the variable Common Threat is intended to capture the idea that a group of states

will have a strong incentive to form an alliance when all members of that group face the same threat, I will

adopt such a coding rule: Common Threat equals 1 if each state has participated in a MID against the same

third state sometime in the previous 10 years, 0 otherwise.

In dyadic data, Geographic Distance gives the square root of the capitol to capitol distance, unless states are

contiguous, in which case distance is set to 0. The potential complications with coding Geographic Distance

in k-adic data were discussed above. I will code Geographic Distance in k-adic data by applying the “weakest

link” principle of Oneal and Russett (1997).9 This means I will represent the geographic distance of the

entire k -ad using the geographic distance of the most distant pair of states.

In dyadic data, Joint Democracy is a dichotomous variable coded 1 when both members of the dyad are

democracies, 0 otherwise. As mentioned above, this coding rule is a bit problematic when applied to k -adic

data: is a FIVE-ad where four of five states are democracies equivalent to a FIVE-ad where one of the five

states is a democracy? Above, I suggested using a continuous measure of democracy, such as the proportion

of states in the k-ad that are democracies. Therefore, I code Joint Democracy using two approaches: as the

proportion of states in a k -ad that are democracies and as a dichotomous variable coded 1 when all members

of the k-ad are democracies, 0 otherwise. This will allow me to compare how the results change when using

an alternative coding rule. Descriptive statistics for these variables are reported in Table 6, along with a

comparison to the typical dyadic values of these variables.

The results are reported in Table 7. Comparing column 3 to column 4, one can see that using a continuous

or dichotomous measure for Joint Democracy does not drastically alter the coefficient estimates. Comparing

column 1 of Table 7 (splitting all k-ads into dyadic relations) to column 3 of Table 7 (estimation with

choice-based sampling of k-ads) reveals two major changes in the results. First, the sign on the variable

for capability ratio flips from negative to positive. While the model estimated with dyadic data identifies

capability ratio as having a significant and negative effect on the probability of alliance formation, the model

9Oneal and Russett (1997) use as a measure for the entire dyad the minimum state level value for the dyad. For example,
they measure a dyad’s overall level of trade integration by using the lower of the two state levels of trade integration (if state
A has trade integration of 40 percent and state B has trade integration of 30 percent, then the trade integration for the dyad
is 30 percent).
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Table 6: Descriptive Statistics
Observations Mean Std. Dev. Min Max

K-adic Data

Distance 287 66.51 27.87 0 109.29
Joint Threat 299 0.04 0.16 0 1
Joint Democracy (continuous) 295 0.29 0.33 0 1
Joint Democracy (dummy) 299 0.12 0.32 0 1
Capability Ratio 296 0.73 0.21 0.18 0.99

Dyadic Data

Distance 515753 63.57 24.38 0 111.33
Joint Threat 516914 0.05 0.22 0 1
Joint Democracy 411476 0.10 0.30 0 1
Capability Ratio 570390 0.83 0.15 0.5 0.99

estimated with k -adic data finds that the effect is positive and insignificant. Second, the coefficients on the

remaining variables are dramatically larger in the k -adic model. To illustrate the substantive impact of these

larger coefficients, consider a change in the relative risk associated with going from having no common threat

(common threat=0 in both the dyadic and k-adic models) to having a common threat (common threat=1 in

both the dyadic and k-adic models).10 Estimating this model with dyadic data shows that such a change

increases the risk of forming an alliance by 5.02 times. However, estimating this model with k-adic data

shows that such a change increases the risk of forming an alliance by 420 times.11

Upon seeing these results, some scholars may wonder if a simpler approach for modeling a k -adic process

without bias would be to simply incorporate into dyadic data a dummy variable that accounts for the k -adic

concept. For instance, consider again the Belgium-Turkey example that opened the paper. Given that the

presence of the United States induced both to join NATO, could one not simply add a variable for “Alliance

Formation with the US” or even “Alliance Formation with a Super Power”?

Depending on the research question, such a reasonable “quick fix” may be appropriate (i.e., if the scholar is

studying the influence of the United States in the formation of alliances). However, it is important to note

that not all multilateral alliances include a major power. Additionally, a dummy variable does not capture

the reason why the presence of a major power leads to the formation of an alliance. Is it because the major

power poses a threat, offers security, or creates the “correct” balance in the capability ratio? This is not

made clear by the simple inclusion of a dummy variable.

10Bennett and Stam (2007) suggest using the risk ratio to substantively evaluate logit coefficients as the rare occurrence of
many international events render their predicted probabilities to be exceedingly small (Bennett and Stam, 2007: 67-69).

11The probabilities and relative risk ratios are computed using prior correction by applying the relogitq command in STATA.
Replication do files are available upon request.
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Table 7: K -ad Year Alliance Formation with Gibler and Wolford (2006) Data

(1) (2) (3) (4)
DATASET Dyadic Remove K-adic Alliance K-adic Choice-Based Sample K-adic Choice-Based Sample

Distance -0.042*** -0.055*** -0.10*** -0.11***
(0.001) (0.004) (0.02) (0.03)

Common Threat 1.615*** 1.341*** 6.02*** 5.42***
(0.079) (0.169) (0.95) (0.97)

Joint Democracy (continuous) -0.406*** -0.439 -2.78**
(0.136) (0.293) (1.16)

Joint Democracy (dichotomous) -2.56*
(1.38)

Capability Ratio -0.576** 0.358 1.33 0.63
(0.250) (0.639) (3.49) (4.21)

Constant -3.46*** -5.591*** -23.65** -22.68
(0.216) (0.56) (3.69) (4.45)

N: 411,476 411,476 202 203

Estimation Technique Logit with standard errors Logit with Standard errors Rare events logit Rare events logit
clustered on the dyad clustered on the dyad

Standard errors reported in parentheses (non-clustered standard errors produce similar results for models 1 and 2)
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5 Alternative Approaches and Their Limitations

Though the inclusion of a dummy variable will not address the misconceptualization of multilateral events

as fitting a dyadic data generating process, scholars may still wish to model a k -adic process using dyadic

data. Therefore, it is worth discussing some approaches that attempt to retain dyadic data and why these

approaches, though quite useful in other contexts, are not yet suitable for modeling k -adic processes: bilinear

mixed-effects hierarchical models, spatial interdependence regression models, and evolving network models.

5.1 Bilinear Mixed-Effects Hierarchical Model

Ward, Siverson, and Cao (2007) and Hoff and Ward (2004) use the bilinear mixed-effects model developed

by Hoff (2005) to address monadic dependency in dyadic data. In essence, this model enables scholars to

overcome a problem that is the mirror image of the issue I raise: standard approaches to analyzing non-

directed dyadic data (i.e., movement from state i to state j is considered the same as from j to i) hold

that the dependence of observations having a common sender and the dependence of observations having a

common receiver are both zero. This is a problem as it seems unreasonable to assume, for example, that all

dyads containing the United States are independent from one another. The bilinear mixed-effects model can

account for this country specific dependency by explicitly incorporating both dyadic and monadic (country

specific) characteristics into the regression model.

Formally, suppose there is a binary outcome, yi,j , which is either 0 or 1, indicating the presence or absence

of a “link” from i to j.12 Suppose we are interested only in estimating the linear relationships between

responses yi,j and a vector of variables xi,j , which could include characteristics of unit i, characteristics of

unit j, or characteristics specific to the pair. Thus, we can consider the regression model

yi,j = β′xi,j + ǫi,j (7)

The generalized least squares estimate of β̂ and its covariance matrix depend on the joint distribution of the

ǫi,j ’s only through their covariance. Next, two key assumptions are made. First, it is commonly assumed

in regression problems that the regressors xi,j contain enough information so that the distribution of the

errors is invariant under any combination/arrangement of i and j. This is known as “weak row-and-column

exchangeability” of an array. Second, it is assumed that ǫi,j is Gaussian with mean 0. For undirected dyadic

data (in which yi,j = yj,i), the first assumption implies that ǫi,j is equal in distribution to f(u, αi, αj , γi,j),

where u, αi, αj , γi,j are independent random variables and f is a function to be specified. When combined

with the second assumption, we can now express ǫi,j as

ǫi,j = αi + αj + γi,j (8)

12The formal discussion is adopted from Hoff, 2005, pp. 286 - 287
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where (αi, αj) is distributed multivariate normal with mean zero and variance Σαi,αj
and (γi,j , γj,i) is

distributed multivariate normal with mean zero and variance Σγi,j ,γj,i
. Because αi, αj , γi,j are independent

random variables, then

Σαi,αj
=

(

σ2
αi

0

0 σ2
αj

)

(9)

and

Σγi,γj
=

(

σ2
γi,j

0

0 σ2
γi,j

)

(10)

This means the covariance structure of the errors (and thus the observations) is

E(ǫ2i,j) = σ2
αi

+ σ2
αj

+ γ2
i,j

E(ǫi,j , ǫj,i) = 0

E(ǫi,j , ǫi,k) = σ2
αi

E(ǫi,j , ǫk,j) = σ2
αj

E(ǫi,j , ǫk,i) = 0

E(ǫi,j , ǫk,l) = 0

(11)

so that σ2
αi

represents the dependence of observations having a common sender and σ2
αj

represents the

dependence of observations having a common receiver. Standard approaches to analyzing dyadic data assume

that both of these values are zero, but this is theoretically unlikely (i.e., it seems unreasonable to assume

that all dyads containing the United States are independent from one another). Thus, the Ward et al.

(2007) approach provides a better way of analyzing dyadic data that accounts for the characteristics of the

individual members of the dyad. This is useful when the dyad is the appropriate unit of observation and

could be extended to account for individual level characteristics in k -adic data, but it does not allow one to

avoid using the k-ad as the unit of observation.

5.2 Spatial Interdependence Regression Model

The spatial interdependence specification of Franzese and Hays (2007a, 2007b, 2007c, and 2008) is applied

whenever an outcome in country i is influenced by the connection country i has with country j. For example,

spatial interdependence regression models have been widely applied in political science to the study of

interstate capital tax rate competition, pejoratively referred to as the “race to the bottom.” Specifically, a

common practice in statistical models of international capital tax competition is to control for the influence

that tax rates of countries neighboring state i have on the tax rate of state i. Unfortunately, Franzese and

Hays (2006) point out how previous studies on capital tax competition, such as Hays (2003) and Basinger
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and Hallerberg (2004), improperly specify such spatial interdependence. For instance, Hays (2003) fails to

weight the importance of the tax rate of one country relative to another.

Formally, if N is the number of countries and T is the number of time periods, then the connection between

country i and country j is typically captured by W, an NT ×NT block-diagonal matrix where element wij

reflects the degree of connection from i to j according to some metric (such as the similarity or complimen-

tarity between i’s and j’s economies or their trade bundles). For instance, a standard W matrix is expressed

as
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Suppose “connection” in this instance is a shared border. Therefore, if country i and country j share a

border then wij = 1. Otherwise wij = 0. Hence, this block-diagonal matrix can be rewritten as
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where the diagonal in each matrix is zero (as it contains “self-referencing entries; e.g. w11 contains the

impact of country 1 on country 1). Having constructed this spatial-weighting matrix, the impact on policy

y of country i by country j is captured with

y = ρ · Wy (14)
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where y is an NT ×1 vector of outcome observations stacked by time (i.e. time 1, country 1 to N , then time

2, country 1 to N , through time T ). Combined, Wy reduces to a vector, where the parameter ρ captures

the impact the spatially-weighted outcome of countries −i has on the outcome of country i.

Given the emphasis spatial interdependence regression models place on joint determination of policy out-

comes, one might suspect that this approach offers a way to properly estimate the creation of multilateral

alliances. Specifically, one could conceptualize membership in the same alliance as analogous to “neighbor-

ing” states in the capital taxation context. Returning to the notation from the previous section, y is an

NT ×1 vector of capability observations stacked by country and the spatial-weighting matrix is computed by

coding wij = 1 for countries i and j that are members of the same multilateral alliance, wij = 0 for countries

that are not part of the same multilateral alliance. However, one must keep in mind that the weighting

matrix captures the ability of state i to influence state j on policy y. In other words, it captures whether or

not i and j have a connection, which is precisely what one needs to estimate! This means that whereas the

spatial regression model treats W as a prespecified right hand side variable, W is actually the element one

needs to estimate as a left hand side variable. It is for this reason that spatial interdependence regression

will be inappropriate for modeling k-adic data.

5.3 Evolving Network Models

Another approach is offered by longitudinal-network (or “evolving networks”) models, which attempt to

directly model the interdependence of states as a network and then statistically estimate the network data.13

Though scholars such as Warren (2009) have used these models to study multilateral events (specifically

military alliances), evolving networks models currently cannot properly model a k -adic DGP. To understand

why this is the case, one need only briefly consider the setup of these models.

Formally, let N actors be connected according to an observed, binary endogenous, and time-variant connec-

tivity matrix, x, with elements xij(t), representing the connection between actor i and j at time t (which

is analogous to the weighting matrix, W, of Franzese and Hays). Let z, be a vector of N observed, binary

behaviors at time t (analogous to y(t) in Franzese and Hays). Actors have opportunities to make changes in

their network connections, switching on or off one time or doing nothing. When the opportunity to change

network connections arrives for some i, this actor chooses to change the status on one of his/her N − 1

connections, turning it on or off, or leaving them all unchanged. The actor makes this choice by comparing

the values of some objective function specified by

fnet
i (x, x′, z) + ǫnet

i (x, x′, z) (15)

where fnet is a deterministic objective function that can be interpreted as a measure of the actor’s satisfaction

with the result of the network decision, and ǫnet, is a random disturbance term representing unexplained

change that is assumed extreme-value distributed. This, coupled with the additional assumption that the

13The discussion that follows is drawn from Franzese, Hays, and Kachi (2009) and Steglich, Snijders, and Pearson (2007).
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data are IIA, allows the objective function to take on multinomial logit shape of categorical choice (where

each category is a relation with another actor).

This specification illustrates two reasons why the evolving networks approach will not properly model k -

adic data. First, the notation xij(t) illustrates that the presence of a connection is dyadically measured.

More concretely, even though this approach can identify the presence of a connection between any two of n

countries and even determine if these links serve to “close” a triangular relationship, it cannot distinguish

between a triangular relationship that is closed due to the presence of a single trilateral alliance and a

triangular relationship that is closed due to the presence of interlinking bilateral alliances.

Second, the underlying IIA assumption means these models treat each node’s decision regarding which ties

to form as independent of every other nodes’ decisions. Thus, one does not directly model, for the specific

edges between specific i, j, and k, the probability of i and j being connected as a function of the probability

that j and k are connected.

Moreover, current methods for statistically estimating network data, such as the Simulation Investigation

for Empirical Network Analysis (SIENA) software package developed by Ripley and Snijders (2010), can

estimate the presence of ties and the similarity in covariate values between no more than two states. For

example, in the above simulations, all countries have a country specific explanatory variable (i.e., the level of

capabilities). The values of this explanatory variable can be entered into a network-analytic program, which

then estimates a summary statistic (such as capability “similarity” between two states). This summary

statistic is some function of the edges and/or nodes – which is to say, it is some function of the 1’s or 0’s

that indicate a connected or a non-connected pair of nodes and/or of characteristics of those nodes. For

instance, SIENA uses the following formula to compute “similarity”:

1 −

(

|vi − vj |

rV

)

(16)

where vi is the capability score of state i, vj is the capability score of state j, and rV is the difference

between the highest and lowest capability scores in the dataset. Hence, because this formula only measures

the similarity in capabilities between two states, SIENA, in essence, only estimates how this dyadic statistic

impacts the probability of two states forming an alliance. Consequently, network analytic models cannot

circumvent the essentially dyadic nature of the information in the data as recorded and used (e.g., they can

not distinguish from i − j − k connected in three binary treaties from i − j − k connected in one trilateral

agreement).14

14Two other methods for estimating network data include exponential random graph models (ERGM) (see Robins and Morris
(2007) for a primer on these models) and neural network models, as applied by Beck, King, and Zeng (2000). However, both
are greatly limited in their ability to capture k-adic processes as they require a dyadic based measure of connectivity between
nodes.
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6 Conclusion

The following events did not occur: Belgium and Turkey formed a bilateral military alliance during the

second half of the twentieth century, Greece and Germany fought an isolated bilateral war in the 1940s,

and the French Greens and Communists formed a bilateral electoral coalition. However, empirical scholars

have widely used data suggesting otherwise: when analyzing multilateral events, they often divide the actors

involved into a series of dyadic relations, thereby creating observations that disregard the dyad’s relations

with outside actors. Though this practice has some benefits, such as making the operationalization of a

variety of concepts (e.g. geographic distance) intuitive and straightforward, this practice also leads to flawed

statistical inference. Specifically, through a series of simulations, I show that one cannot recover a k -adic

data generating process (with k > 2) using dy-adic data. Instead, one must analyze k-adic events using

k-adic data.

Unfortunately, creating and estimating datasets containing all k-adic combinations of countries can be com-

putationally infeasible. Therefore, I also show that choice-based sampling offers a means of creating k-adic

datasets of manageable size.15 Specifically, suppose there are n actors and suppose that q < n is the largest

combination of these n actors that experienced an event. In this case, one must first collect all k-ads that

witnessed the event. Next, one should obtain a sample of k-ads that did not witness the event, where the

largest of these non-event k-ads is of size q (i.e. no larger than the largest k-ad that witnessed the event).

One can then apply a rare events logit to this choice-based k-adic dataset to obtain unbiased parameter

estimates.

Where should scholars go from here? Two steps seem immediately clear. First, researchers must ensure that

ongoing and future research on multilateral events use k-adic data.

Second, scholars should return to the numerous studies that have used dyadic data to analyze multilateral

events, such as (but not limited to) the influential interstate conflict studies of Bremer (1992), Russett

and Oneal (1997), and Reiter and Stam (2002). Specifically, scholars should reevaluate previous studies

in a manner consistent with the recommendations of this paper. The simplest re-evaluation would require

limiting the analysis to just bilateral events, as this would retain the original dyadic structure of the data.

However, because we must still seek to understand multilateral events, one should also restructure the data

along the lines recommended in this paper. This will entail identifying the size of the largest multilateral

event, identifying the distribution of multilateral events (i.e. how many involved 5 actors, 4 actors, etc),

and then creating a sample of non-event k-adic observations that are stratified according to the distribution

of k-adic observations that witnessed the event. Once the k-adic datasets are created, it will be critical for

scholars to code the independent variables. I used the Gibler and Wolford (2006) study of military alliance

formation to illustrate some of the various ways scholars can code variables that, like geographic distance,

have an intuitive interpretation in dyadic data, but whose coding is less clear in a k-adic setting. Of course,

the manner of coding these variables that will best capture the concept the scholar wishes to operationalize

can ultimately only be chosen by that scholar.

15I have written software for converting dyadic observations into the appropriate number of k-adic observations. This software
is available through the author’s website (http://sitemaker.umich.edu/poast.paul/home) or by typing findit kadcreate into
the command line of STATA. Code and files to assist readers through the process of coding independent variables in k-adic
data and estimating the resulting dataset are also available on the author’s website.
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There are two important caveats one must keep in mind when working with k-adic data. First, some

multilateral events of exceptional size are simply too rare to be estimated using quantitative methods. In

particular, recall that estimating a k-adic dataset after applying choice-based sampling requires weighting

each observation by the inverse probability of it being drawn from its respective stratum. Consequently,

events such as the formation of NATO, with 12 countries at the time of formation, require placing such a

massive weight on a single observation that the standard errors are rendered uninformative. What constitutes

such an “unusual” (versus simply a “rare”) k -adic event will vary according to the number of possible actors

from which the event could have been formed. However, the analyst must be aware that some multilateral

events will simply not be amenable to quantitative analysis.

Second, as emphasized in the introduction, using k-adic data will not address the many other sources of

non-independence pervasive in dyadic datasets. Spatial, strategic, temporal, or monadic interdependencies

are still features of the data that must be modeled. However, if the process the scholar wishes to evaluate

is k-adic in nature, then, regardless of the estimation technique employed, that scholar cannot use dyadic

data. Instead, multilateral events must be modeled using k-adic data.
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