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This appendix provides further information on the Monte Carlo simulations. It describes
each step of the procedure and provides more information on the results of the simulations. R
code included in the Supplementary Materials contains the exact code used. This code relies on
parallelisation in R to speed up implementation.1

1. SPATIALLY AUTOCORRELATED DATA

I generate spatially autocorrelated data in R using the gstat package.2 It allows one to simu-
late data using a variety of methods; I rely on ‘unconditional Gaussian simulation’ for a given
theoretical variogram (autocorrelation structure).3 Four parameters are set for each use of gstat:
β, p,m, r. β defines the expected value of the simulated data (in the absence of autocorrelation); I
set it to be 100 for the population data and 1 for the proportion of government supporters. In the
latter case, I rescale the generated data to range from 0 to 1. p denotes the sill, i.e. the variance
of simulated data in the absence of autocorrelation. I set p = 1 for generating the propensity data
and p = 1000 for the population data. To prevent the emergence of ‘negative’ population, I rescale
the data by ensuring the smallest population value is equal to zero, i.e. subtract the minimum
value of the raster from every point in the raster.

m denotes the model or type of variogram used; I use the common ‘exponential’ model in
all simulations.4 This model has the key property that spatial autocorrelation asymptotically
approaches zero as the distance between any two points increases. Finally, r is the range of the
variogram and this is varied to create differences in the extent of spatial autocorrelation. The
‘theoretical’ range is the parameter value set in gstat, however, due to the asymptotic nature of
an exponential variogram, the more relevant parameter is the ‘effective range’, i.e. the distance
at which 95% of the autocorrelation has disappeared or equivalently the value of the variogram is
95% of the sill. In the exponential variogram model, this occurs at approximately three times the
effective range noting that 1− e3 ≈ 0.95.

One point to note when analysing this model, however, is that the distribution of the vote is a
product of two (independent) distributions each with spatial autocorrelation. Thus, the relevant
parameter is some combination of the two ranges. I simplify this by assuming a constant range for
the population in all models (0.25). This is a large effective range and thus assumes a reasonably
high degree of spatial autocorrelation in the population data. I vary the range of the proportion
of government supporters (rprop ∈ {0.01, 0.05, 0.10, 0.20, 0.25}) to create distributions, shown in
the main text, that have quite different degrees of spatial autocorrelation.

2. CONSTITUENCIES

As noted in the main text, one set of constituencies is generated by first taking N independent
draws from a truncated normal distribution TN(µ, σ) with a lower limit of 0 and an upper limit

1. doParallel is used. Revolution Analytics and Weston 2014.
2. Pebesma 2004.
3. The exact code is gstat(formula=z∼1, locations=∼x+y, dummy=T, beta=β, model=vgm(...)) where the

content of vgm varies and β varies depending on whether I am simulating population or vote share.

4. Formally, and assuming the nugget to be zero, γ(h) = (p)(1− e−h/r) where h represents the distance between
any two points.
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of 1. The PDF of TN is zero for x outside of the limits and the PDF for x ∈ [0, 1] is shown below,
where φ and Φ denote the PDF and CDF of the (untruncated) normal distribution with mean µ
and standard deviation σ. I set µ = 0.50 for the remainder of the analysis.

f(x, µ, σ) =
φ(x, µ, σ)

Φ(1, µ, σ)− Φ(0, µ, σ)
(1)

It can be shown that as σ →∞, then TN approximates a uniform distribution on the unit interval.
As σ → 0, any x is less likely to cross the truncation boundaries and (Φ(1, 0.50, σ)−Φ(0, 0.50, σ))→
1. Thus TN should approximate the untruncated normal distribution with µ = 0.50 and standard
deviation σ. Values are drawn using the msm package in R.5 Graphically, Figure 1 provides an
illustration by plotting 100,000 draws from each distribution for a given standard deviation.

Figure 1: Truncated Normal Distribution with Varying σ
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Creating the constituencies themselves begins by taking a sets ofN i.i.d. points from TN(0.50, σ)
to get the x- and y-coordinates that lie inside a unit square. I then append the coordinates (0, 0)

5. Jackson 2011.
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and (1, 1) to the list to create the set of points from which Voronoi polygons, also known as
Dirichlet polygons, are constructed using the deldir package.6 It creates N polygons such that for
any polygon i corresponding to point n, all points inside i are closer to point n compared to any
other point n′ ∈ N . As the figure in the main paper showed, more spread out points (smaller σ)
correspond to more equally sized polygons whilst tightly clustered points (given fixed boundaries
of the unit square) create more heterogeneity in polygon size.

3. GERRYMANDERING

As noted in the main text, gerrymandering is an extremely complex and varied phenomenon.
The method implemented here is merely an attempt to capture a simple version of it. It works
in the following way: first, generate two sets of boundaries (‘old’ and ‘new’) using the process
above. Second, create a new set of polygons (shapefile) formed by the ‘intersection’ of the two
sets of boundaries.7 Then, select some proportion (g) of those small polygons and apply the
gerrymandering algorithm. Call these the ‘candidate’ polygons. This algorithm will attempt to
gerrymander the new constituencies.

1. Note the neighbours for each polygon and the share of government support in each ‘new’
constituency (as currently formed).8

2. For the relevant candidate, check whether any of its neighbours meet the following criteria.

• They are not a member of the same new constituency.

• The share of government support is higher in the new constituency to which the neigh-
bour belongs than in the candidate polygon. If multiple neighbours fit this criteria,
select the neighbour for which the ‘new’ constituency’s share is the highest.

3. If that provides a unique neighbour, then assign the candidate polygon to that new con-
stituency. If it provides multiple neighbours, these will almost certainly be in the same ‘new’
constituency (unless two neighbouring ‘new’ constituencies had exactly the same govern-
ment support). Randomly select one and assign the candidate polygon to that constituency.
However, if the suggested assignment would mean that one new constituency ceased to exist
(i.e. the candidate is the only remaining small polygon in a new constituency), then do not
assign the candidate.

4. Recalculate the share of government support in each new constituency as modified by the
above procedure.

This leads to polygons that have highly irregular shapes—corresponding to the classic images
of gerrymandering in the United States.9 Figure 2 shows an example for varying g.

Further inspection of the data confirms that the gerrymandering procedure does create the
expected differences between the un-gerrymandered and modified boundaries. For each simulation
and set of boundaries used, the standard deviation of the area of all polygons was recorded.10

Further, I also noted the average vote share for the government (i.e. averaging the twenty-two
constituencies shares together) as well as the number of government ‘wins’ (i.e. the number of
seats where the government share is more than 50%). Figure 3 uses this data to compare the
unmodified (new) constituencies against their gerrymandered version. It confirms that increased
gerrymandering works in the expected way: it increases the heterogeneity of the constituency sizes
as well as creating a higher average government share, on average, as well as more government
‘wins’.

6. Turner 2014.
7. Somewhat confusingly, the relevant R command is ‘union’ from the raster package. Hijmans 2014.
8. The relevant R package here is spdep and the function is ‘poly2nb’. Bivand 2014.
9. The procedure used will not guarantee contiguity of the gerrymandered polygons but the reliance on only

moving ’neighbours’ means it is generally preserved.
10. The average remains unchanged because the total area and number of constituencies is unchanged.
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Figure 2: Gerrymandered Constituencies with Varying g
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Figure 3: Effects of Gerrymandering
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(b) Average Government Vote Share
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(c) Number of Government ‘Wins’
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4. RESULTS OF THE SIMULATIONS

The main paper presented a heat map of the simulation results. The replication R code contains
the data and models to allow a reader to verify the statistical significance of the simulation
parameters. Some other error statistics, e.g. the inter-quartile range of the absolute error, are also
included. One point to note is that whilst 18750 iterations were run, 13 failed—presumably due
to some polygons being too small to rasterise successfully given the raster size specified (1,000 by
1,000 pixels). Thus, there are 187370 observations in each regression.
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