
Online Appendix A Verifying Samples are Random from

Discrete Uniform

Goodman (1954) suggests several ways to check that a given sample of serial numbers is a

random sample from a discrete uniform distribution. First, denoting g the largest number in

the sample, divide each of the remaining k− 1 observations in the sample by g. These k− 1

observations should then be statistically indistinguishable from a uniform on [0, 1], with a

Kolmogorov-Smirnov test an appropriate way to check this. Second, one may break the data

into equally spaced ordinal categories, and then conduct a χ2-test on this coarsened data:

if the null cannot be rejected, then the data is at least consistent with a discrete uniform.

Both tests are straightforward to implement, and we use the former.

Online Appendix B Power of the Uniformity Tests

The techniques applied in this Letter work optimally when the sample is one drawn from a

discrete uniform distribution of serial numbers. This does not mean that any bias induced

by non-uniformity invalidates the general thrust of the results presented in the Letter, but

for completeness, we analyze this first order concern here.

We verified uniformity with the Komologorov-Smirnov (KS) test noted above, but one may

be concerned as to its power and want to know the circumstances under which that test is

able to correctly reject the null of non-uniformity. While there is a theoretical literature on

the general issue of the power of the KS test (e.g. Durbin, 1961; Lewis, 1965), we wanted

to obtain specific results for our data. Thus we set up a series of simulation experiments in

which we allowed discrete serial numbers to be generated from a set of Beta distributions

(including the uniform as a special case) and considered the performance of the KS test
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therein. The basic idea is to verify that in ‘reasonable’ sample sizes, the test can distinguish

(i.e., return a p < 0.05) between the simulated Beta sample and an actually discrete random

uniform sample.

In what follows, consider a Beta distribution B(α, β); for clarity in the printing of our plots,

we refer to α as shape1 and β as s2. Our simulation sample size varies from 5 (around the

minimum in our empirical study) to 1300 (close to the maximum in our empirical study) at

intervals of 40—thus it increases {5, 45, 85 . . . 1220, 1260, 1300}. For each sample size, we fix

α, and then iterate between values of β (1, 2, 3, 4, 5), before iterating α (again 1, 2, 3, 4, 5)

thus covering all 25 possible combinations: (B(1, 1),B(1, 2),B(1, 3), . . . ,B(5, 4),B(5, 5)). For
each value of α and β, we conduct the drawing of the simulated sample and the uniform

with which it is paired, a total of 50 times. We then take the mean of these 50 p-values.

Pseudo-code is as follows:

1. for given s{

2. for α ∈ {1, 2, 3, 4, 5} {

3. for β ∈ {1, 2, 3, 4, 5} {

4. for i ∈ {1, . . . , 50}{

(a) draw a random sample of size s from B(α, β)

(b) conduct a Kolmogorov-Smirnov test of this sample against a uniform sample of

size s

(c) record the p-value of this test

5. take the mean p-value of these 50 trials, store}

6. iterate the value of β (i.e., β + 1), do the 50 trials keeping value of α fixed }
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7. iterate the value of α (i.e., α + 1), iterate through values of β for that value of α }

8. iterate the size of the sample to the next entry in the sample size vector }

Recall, we would like to see that the p-values are below 0.05 for any ‘reasonable’ sample size:

this would imply that the test is correctly distinguishing between cables from a simulated

(non-uniform) distribution versus a ‘truly’ uniform one. For our various sample sizes and

Beta distributions, our results are displayed in Figure 2. In each of the plots, the broken line

represents p < 0.05. Thus, points (that is, particular Beta distribution samples) falling below

the line are successfully differentiated from a uniform sample by the KS test. As a sanity

check, we included a simulation set for B(1, 1) (i.e., a uniform) in the top panel: helpfully,

it is not differentiable from the uniform it is paired with for the tests (i.e., the black squares

are everywhere above the broken line).

Our immediate observation from the the bottom panels (shape1=α=4 and shape1=β=5)

is that at essentially anything above a small number of cables in the sample (45), the KS

test can differentiate between a uniform sample and a Beta. For the top three panels, the

evidence is more complicated. Basically, for small sample sizes, say fewer than 100 cables,

the KS test sometimes commits type II errors: e.g. for a sample size of 5, the (‘average’)

KS test reports p > 0.05 for any Beta distribution with shape1=α=1 (top panel). The KS

test does worst when the Beta is symmetric and its parameters take low values: i.e when

shape1=α=β=s2=2 or 3. That is, when the distribution of serial numbers is quite close to

uniform around its median. This can be seen by the [red] circles above the plot on the second

panel, and the [green] triangle in the third panel for a sample size around 45. Of course, it

is not obvious that such unimodel symmetric distributions of cables are likely in practice;

more importantly, the bias induced by non-uniformity in e.g. the Goodman estimator is not

necessarily troubling per se: in Online Appendix C we give much more discussion of this
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(potential) issue. Finally, notice that when we get up to our mean sample size (around 100)

the KS test generally gets it right and has the power we need, with the exception of the

case where α = β = 2 and we need a sample size of around 300 to be confident we have a

uniform.

Online Appendix C Simulation Study

We assume the sample of cable serial numbers observed in each embassy year to be draws

from a discrete uniform distribution, in keeping with the practice in Goodman (1952) and

Goodman (1954) and other studies. In the context of our applied research question, the

discrete uniformity assumption means that each serial number, within a given embassy year,

has the same ex ante probability of being included in the final Manning sample.

In this appendix, we briefly discuss conditions under which the discrete uniformity assump-

tion is appropriate to estimate the cable population size for all cables originating from a

particular embassy in a given year, and how the Goodman estimator tends to perform in

settings where discrete uniformity is violated. To perform these analyses, we simulate cables

being written at the daily level (and being released over the course of a year) and observe

how non-constant probabilities of cables arriving in the final Manning sample may bias es-

timates of cable population sizes. In brief, we find that temporal shifts in the probability

cables are excluded from the Manning sample are more likely to bias estimates of the total

population size than vicissitudes in the daily rate of cables being written.

We close this document with a replication of our serial number analysis using a regression-

based approach that incorporates information on the timing of each cable observed in the

sample to help inform our estimates of the cable population size in each embassy-year. In
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general, when the discrete uniformity assumption is satisfied, both Goodman-type estimates

and regression-based approaches provide unbiased estimates of the population size; under

some conditions, however, regression-based techniques may be preferable to the Goodman

estimator if there are sharp changes in the probability is excluded from the Manning sample

near the end of a calendar year, or if reasonable assumptions can be made about a fixed

expected rate of cable generation across periods.

C.1 Overview

Our objective is to observe how various population size estimators perform on simulated

data when (a) there may be seasonality in the rate at which cables are written, (b) there

may exist seasonality in the sensitivity of cables being written. We also seek to inspect how

such biases may manifest in large versus small sample settings. Evaluating such concerns

through simulations, however, will require our making somewhat stylized assumptions about

the data generation process of our sample. The main conclusions of our simulation studies

are as follows: large shifts in the probability cables are excluded from the Manning sample

are more likely to bias Goodman-type estimates of population size than shifts in the number

of cables created per day. For the Goodman estimator, the bias introduced is greater as the

probability of inclusion in the Manning sample is decreasing over time.

To reach these conclusions, in first set of simulations, we will assume the number of ca-

bles written on a particular day is a draw from a Poisson distribution with a fixed rate

parameter. In a second set, we model the number of cables written per day as realizations of

a Hawkes process (e.g., Hawkes, 1971; Ogata, 1988), which allows the instantaneous rate of

cable generation to vary as a part of a “self-exciting” point process, where the occurrence of

any event (i.e., a cable being written) increases the short term probability of another cable

being written. In our applied context, the simulated Hawkes process will lead to clustered
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periods of time with higher than baseline (i.e., random) patterns of cable generation. For

one set of Poisson simulations, we will set the rate parameter to equal λ = 5. For one set

of Hawkes simulations, we will set the initial conditions to equal μ = 10/3, α1 = 1, and

β1 = 3, and simulate events in continuous time for T = 365. These parameters were selected

because they generate, in expectation, equal totals of cables over the course of an entire

year, but vary in terms of their temporal clustering and variance.9 The virtue in maintain-

ing approximately equal yearly sample sizes in the Poisson and Hawkes study conditions is

that it allows for easy inspection of how clustered periods of higher cable generation rates—

rather than sample size on its own, or variation in the probability serial numbers are out of

sample—influence population size estimates.10 As the next section will show, however, the

‘burstiness’ of cables being generated over time may be more likely to bias regression-based

estimates of population size when such periods of time are correlated with large shifts in the

probability cables are excluded from the Manning sample. Goodman-type estimators (which

rely more heavily on the observed value of the sample maximum serial number) may be less

sensitive to burst-induced biases if the probability that cables appear in the Manning sample

is sufficiently high near the end of a calendar year.

C.2 Sensitivity of Assumptions for Goodman and Regression-based

Estimators

Absent large shifts over time in the probability that serial numbers are excluded from the

Manning sample, daily cable counts being produced from Poisson and Hawkes processes are

9In addition to the “Large N” case where the expected number of cables written per year is 1825, we will
also replicate our analysis on a “Small N” case when the expected yearly total is 365.

10If the number of cables created on any given day is nt ∼ Pois(λ), then the expected number of cables

being created over the course of a year is simply
∑365

t=1 E[nt] = 365 · 5 = 1825. In a Hawkes process, the
instantaneous rate parameter in time t is λ(t) = μ+

∑
ti<t αe

β(t−ti). Under the condition that the exponential
rate of decay is greater than the self-excitation growth rate (β > α), and as the number of periods T →∞,
the expected value of the rate parameter is E[λ] = μ

1−∫∞
0

αe−βtdt
= μ

1−(α/β) .
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both acceptable for the Goodman and regression-based estimators of cable population size

at the embassy year level. This point can be demonstrated with a simple example. First

let the number of cables observed on a given day be nt, and the probability any given cable

is included in the Manning sample on day t be pt = p = 0.5. If cables are given serial

numbers in the order in which they are released, and the probability a cable is included

in the sample is independent of the day of the year, one can imagine data being generated

over a full year like those listed on the lefthand side of Table 3. As should be clear, despite

the daily variation in cable counts across days, the probability any given serial number is

included in the sample is orthogonal to the day of the year on which it was written. This

implies that the sample of serial numbers {1, 4, 5, 7, 8, 10, 11, . . . , 1829} is precisely a random

sample from a discrete uniform distribution of size N = 1831, since each serial number has

an equal probability of being drawn into the Manning sample. It is important this stylized

example imposes no structure on how nt is drawn. Regardless of whether the daily counts

of cables result from Poisson or Hawkes processes (much less any stochastic process), the

serial numbers included in the Manning sample are precisely a random draw from a discrete

uniform distribution, which is guaranteed so long that pt is fixed over time. On such a sample

of data, to estimate the number of cables written in a given embassy year using Goodman

estimator, therefore, would be a natural choice. In our simulation results we show that data

generated and analyzed in such a fashion provide unbiased estimates of the population size.

The righthand side of Table 3 provides an example when the assumption of discrete uni-

formity (of serial numbers in the Manning sample, over the course of a full year) is not

satisfied. The example provided is meant to be an extreme case in which there is a pro-

nounced reduction in the probability of cables being included in the study sample in periods

4,. . . , 365, moving from pt = 0.5 to pt = 0. If such censorship were to occur in the data—

i.e., for a fixed N = 1831, relying on a study sample of {1, 4, 5, 7, 8, 10, 11, 13, 16} instead

20



Table 3: Serial numbers included in a hypothetical Manning sample over the course of a
year, where pt denotes each cable’s probability of being drawn into the Manning sample in
time t. The righthand column notes the maximum serial number observed in the Manning
sample in period t, denoted Mt. Underlined serial numbers indicate cables included in a
hypothetical Manning sample.

Discrete Uniformity Satisfied

t nt Serialst pt Mt

1 5 1 2 3 4 5 0.5 5
2 4 6 7 8 9 0.5 8
3 8 10 11 12 13 14 15 16 17 0.5 16
4 6 18 19 20 21 22 23 0.5 22
5 4 24 25 26 27 0.5 26
...

...
...

...
...

365 3 1829 1830 1831 0.5 1829

Discrete Uniformity Unsatisfied

t nt Serialst pt Mt

1 5 1 2 3 4 5 0.5 5
2 4 6 7 8 9 0.5 8
3 8 10 11 12 13 14 15 16 17 0.5 16
4 6 18 19 20 21 22 23 0 NA
5 4 24 25 26 27 0 NA
...

...
...

...
...

365 3 1829 1830 1831 0 NA

of {1, 4, 5, 7, 8, 10, 11, . . . , 1829}—the Goodman estimator would severely underestimate the

true population size. However, if instead one were to use only the first three days of observed

data, a linear extrapolation that relies only on the maximum serial observed on each day in

the observed Manning sample may provide a more plausible estimate of the total population

size. Extrapolation is particularly merited if one is willing to make assumptions about the

expected number of cables being written per day being relatively constant over time.

The aim here is to provide a sketch of this intuition. Assume the number of cables written on

day t is nt ∼ g(θ), with the expected number of documents written per day being E[X]. If a

cable is written in time t, there is some pt probability that cable is included in the Manning

sample. Each cable written (i.e., both those in the Manning sample and outside the Manning

sample) are given a serial number according to the order in which it is written, in line with

the process shown in Table 3. On the first day, the expected number of cables included in

the sample is E[X] · p1, on the second day the expected number of cables included in the

Manning sample is E[X] · p2, and on the t-th day the expected number of cables included in

the Manning sample is E[X] · pt. This is by definition true so long as the distribution from
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which daily cable counts are drawn is fixed over time. The expected Manning sample size

over T periods is simply E[X] ·∑T
t=1 pt.

In general, however, the expected number of cables appearing in the Manning sample per

day is not the same as the expected value of the maximum serial number observed on day

t, which we will denote E[Mt]. In a trivial case, for example, E[Mt] may be undefined if

pt = p = 0, even if E[X] > 0. The expected value of the sample maximum observed on day

t will depend on several quantities: the number of periods that have passed prior to period

t (accounting for the serial numbering pattern), the expected number of cables written per

day, and the expected number of cables entering into the Manning sample on day t. More

formally, we denote the expected value of the maximum serial number observed on day 1 as

E[M1] = f(p1, θ), the maximum serial number observed on day 2 as E[M2] = E(X)+f(p2, θ),

and E[Mt] = (t− 1)E[X] + f(pt, θ). The first summand of E[Mt] accounts for the expected

starting point of serial numbers written in period t, regardless of whether they appear in

the sample; the second summand adjusts directly for the expected maximum serial number

observed in the Manning sample, which is a function of the underlying daily count function

and pt. If we differentiate E[Mt] with respect to t, we observe ∂E[Mt]
∂t

= E(X) + ∂f
∂pt

∂pt
∂t
. By

necessity the sign on ∂f
∂pt

will always be positive, but ∂pt
∂t

may positive, negative, or equal to

zero. Clearly, if ∂pt
∂t

= 0, then ∂E[Mt]
∂t

= E(X).

C.2.1 A Regression-based Estimator of Cable Population Size

The observation that ∂E[Mt]
∂t

= E(X) + ∂f
∂pt

∂pt
∂t

is valuable because it motivates a linear

regression-based approach to estimate the total number of cables written in a given year.

It also provides intuition on the bias that may be introduced through such an estimation

approach if ∂pt
∂t
�= 0 . Let us first consider the case when ∂pt

∂t
= 0. If changes over time in the

probability cables are included in the Manning sample are not linearly associated with time,
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the subsequent regression-based approach will be appropriate to estimate the total number

of cables produced at an embassy in a given year. Namely, for each embassy year, aggregate

the observed sample of data at the daily level, and estimate the following bivariate regression

equation:

Mt = β0 + β1 · t+ ε, (1)

where Mt is the maximum serial observed (e.g., {5, 8, 16}) in on day t, t is the numeric

calendar day (e.g., {1, 2, 3}), and ε is the error. At the embassy level, we estimate the total

number of cables written over a 365 day period as

N̂ = ̂M365 = β̂0 + β̂1 · 365. (2)

Straightforwardly, the quantity β̂1 is an estimate of ∂E[Mt]
∂t

. In leap years, the fitted value for

day 366 would be used.

When there exists an association between the expected change in pt and t, however, this

estimator may be biased. If ∂pt
∂t

> 0, the estimator will tend to produce estimates that are

somewhat larger than the true population size, and when ∂pt
∂t

< 0 the estimates will tend

to undershoot the true population size. So too, if there are associations between changes

in rate of cable generation and changes in the probability probability with which cables are

included in the sample, the estimator may be biased in expectation. The magnitude of this

bias will depend precisely on magnitude of the unobserved shifts in cable generation and pt.

There may be cases in which sharp shifts in pt do not threaten the validity of linear ex-

trapolation, however. Consider the case when pt = 0.1 for the first half of a calendar year,

and pt ≈ 0 in the second half. (This scenario is approximated in the “Second Half Censored”

study condition mentioned in the next section.) In this extreme case, linear extrapolation

23



given the observed data may be reasonable: even though the range of the observed data is

weighted exclusively to the first half of a calendar year, if the true rate of cable generation in

the first half of the year is close to the rate of cable generation in the second half of the year,

the estimates ∂̂E[Mt]
∂t

obtained from the first half of the calendar year should appropriately

map to the second half of the year, even if no data are observed in sample from that period.

C.2.2 Study Conditions and Outcomes of Interest

To assess how various estimators perform across various hypothetical data generation pro-

cesses, we vary both the distribution from which daily cable counts are drawn, in addition

to the probability that any cable written on day t is to be included in the Manning sample.

As before, we denote the probability that a cable is included in the Manning sample, given

that it is written on day t, as pt.

We report simulation results for eight different manipulations of pt. The names of these

study conditions are presented along with their formal definitions in Table 4.

Table 4: Study Manipulations: Variation in the Probability of a Cable’s Inclusion in the
Manning Sample, given that it was written on day t

Condition Definition

Fixed Probabilities pt = p = 0.1
First Half Censored pt = 0.001, if t < 183; pt = 0.1, if t ≥ 183
Second Half Censored pt = 0.1, if t < 183; pt = 0.001, if t ≥ 183
Random Uniform pt ∼ Unif(0, 0.1)
Inverted U-Shape pt = sin(t · π/365)/10
U-Shape pt = (1− sin(t · π/365))/10
Linear Increase pt = (t/365)/10
Linear Decrease pt = (1− t/365)/10

In addition to varying the probability with with written cables appear in the Manning

sample, we vary whether daily cables counts arise as a result of a Poisson process or a Hawkes

process. For both the Poisson and the Hawkes study conditions, we have “Large N” and a
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“Small N” variants. In the “Large N” conditions, the Poisson parameter is λ = 5, while the

respective Hawkes parameters are defined as μ = 10/3 (the baseline rate), α = 1 (the exci-

tation parameter), and β = 3 (the exponential decay). In the “Small N” study conditions,

the Poisson parameter λ = 1, and the Hawkes parameters are μ = 0.2, α = 0.8, and β = 1.

Using Poisson and Hawkes data generation process, across both the “Large N” and “Small

N” study conditions, we perform 2,500 random simulations of each of the study conditions

listed in Table 4. In each of these simulations we record the “true” number of cables gener-

ated by either the Poisson or Hawkes processes, in addition to the estimates of each of the

MLE, Goodman, and regression-based estimators. In each iteration of the simulation, we

divide each estimator’s estimate of the total population size by the true number, yielding

N̂/N , and we store this value. If across multiple simulations a particular estimator sys-

tematically yields values of N̂/N > 1, this provides evidence that an estimator tends to

overestimate the true number of cables. Similarly, if a particular estimator on average yields

values of N̂/N < 1, this provides evidence that an estimator, given the study conditions,

tends to underestimate the true number of cables in a given embassy year.

C.3 Results

Figures 3 through 6 present the results of this simulation study. In each subplot, the mean

value of N̂/N across simulations is presented beneath each estimator’s name. The upper

and lower boundaries of each boxplot denote the interquartile range of simulation results for

each estimator. The median result is presented as a solid, horizontal line. The upper and

lower whiskers denote values 1.5 above or below the interquartile range of the plot.

Overall, the regression-based estimator performs consistently well. When the discrete uni-

formity assumption is satisfied, however, the Goodman estimator is unbiased and exhibits
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the lowest variance. The bias and variance of each estimator appears to be larger in the

“Small N” study conditions. In our applied example, the Goodman estimator is most biased

cases in which pt is decreasing over time. Relative to the “Inverted U-Shape”, the ”U-Shape”

study conditions have distributions of N̂/N closer to 1.
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Figure 3: Simulation results for “Poisson, Large N” study. The results of 2500 random
simulations reflected in each subplot. In this condition, λ = 5, such that the expected
number of cables per year is 1825.
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Figure 4: Simulation results for “Poisson, Small N” study. The results of 2500 random
simulations reflected in each subplot. In this condition, λ = 1, such that the expected
number of cables per year is 365.
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Figure 5: Simulation results for “Hawkes, Large N” study. The results of 2500 random
simulations reflected in each subplot. In this condition, μ = 10/3, α = 1, and β = 3, such
that the expected number of cables per year is 1825.
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Figure 6: Simulation results for “Hawkes, Small N” study. The results of 2500 random
simulations reflected in each subplot. In this condition, μ = 0.2, α = 0.8, and β = 1, such
that the expected number of cables per year is 365.
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