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A. LIKELIHOOD COMPUTATION

A.1. Kalman filter background

I begin by giving a very brief overview of the basic Kalman filter algorithm. For a more
thorough treatment of the Kalman filter, see Beck (1989). Readers familiar with the Kalman
filter can jump to A.2, which describes likelihood computation of MONOCAR models based
on this algorithm.

The Kalman filter is a recursive algorithm for estimating latent states from noisy ob-
servations in a linear discrete-time system. The Kalman filter was presented by Kalman
(1960) and applied to likelihood computation by Schweppe (1965). It has received numerous
applications across many fields and been described as “among the most notable innovations
of the 20th century” (Humpherys, Redd, and West 2012).!

The Kalman filter assumes a model with a latent process, giving the evolution of an
unobserved state vector, and an observation process, relating this latent process to observations.

The latent process described by

y, = Py, + Biu; + ¢ (A1)

E; N(O, Tz)

where y, is the unobserved value of the latent process at time 4, u; is a vector of exogenous
variables (input variables in engineering contexts), ¢; is the error term for the latent process
at time ¢, T; is the variance-covariance matrix of the error term at time ¢, ®; is a transition
matrix defining how y,_; affects the expectation of y;, and B; is a similar matrix defining
how u; affects the expectation of y,. B; and u; are often omitted. Note that if ®;, and T,

do not vary with ¢ and B, and u; are omitted, the resulting equation describes a first-order

For a thorough treatment of the history of the algorithm, see Humpherys, Redd, and West (2012).



Gaussian VAR process.

The observation process is described by

z; = Hy, +n, (A2)

n; ~ N(07 ‘I’z)

where z; is the observation at time i, 1), is the error term for the observation process at time
1, W, is the variance-covariance matrix of the error term at time ¢, and H; defines how the
latent process relates to the expected value of the observation.

The Kalman filter algorithm is a two-stage iterative process. Each iteration of the
algorithm consists of a prediction stage, in which estimates of the state space at one time
step are formed from estimates at the previous time step, and an update stage, in which the
estimates of the state space are updated to reflect the observation for that time step. Each
observation’s contribution to the log-likelihood conditional on all previous observations can
also be computed along with the updated stage. These contributions can then be summed to
give the log-likelihood for the model. This algorithm is summarized by algorithm A1l.

A range of models can be represented in the form described by equations Al and A2,
known as “state space form,” with appropriate choices of ®;, B;, T;, H;, and ¥;. ARMA
models with measurement error and dynamic factor models are among the most common
(see Beck 1989). As a result, the Kalman filter can be applied to estimating the log-likelihood

for these models.

A2, Algorithm for MONOCAR likelihood computation

In this section, I describe an algorithm for computing the log-likelihood of a MONOCAR
model based on the Kalman filter. The algorithm is presented by algorithm A2, with

some steps using results from section B. While implementing the MONOCAR likelihood



Algorithm A1: standard Kalman filter with log-likelihood computation

Input:
T = the number of time steps,
Xo|o = initial mean,
Vo = initial variance-covariance matrix, and
for eachi=1to T
‘ Zj, (iia Bi7 T’ia Hi7 and ‘II’L
end
Result:
¢, the log-likelihood of the model, and
for eachi=1to T
‘ Xi|i and V1|Z
end

begin

(<0

fori=1to T do

Note: Prediction stage
Xiji—1 < PiXi_11i-1 + Biw;
Vo1 < ® V1@ + T,
Note: TUpdate stage

w; < z; — Hixy) 1

®; « H,Vy  H + T,

W, + VZ|Z_1H;I—(I)Z_1

Xiji ¢ Xiji—1 + Wiw;

Vi < Viji-i — W;H; Vi
Note: Likelihood update
(0 —w & w; — %log || — Cillog (2m)
end

end




computation is non-trivial, the R package developed for MONOCAR provides a optimized
implementation of the algorithm with some extensions that can be applied by researchers.

Because MONOCAR can also be put in state space form, the Kalman filter can be applied
to computing the log-likelihood of a MONOCAR model. However, computing the appropriate
choices of the parameters used by the Kalman filter algorithm, such as ®;, for each step 7
is more complex than for many models. The dimensionality of the state space used by a
MONOCAR model in state space form also varies between steps.?2 Some simplifications of
the Kalman filter algorithm are also possible to streamline likelihood computation.

The state space used by the Kalman filter cannot simply be the state space of the
model—that is, the space of possible values of y,—because this would be insufficient for
non-instantaneous observations, as an observation recorded from time t; to time ¢, depends
on y, for all t; <t <t; rather than on y, for a single value of ¢'.

Although a non-instantaneous observation depends on the latent process at infinitely many
points in time, it is possible to capture this dependency using a finite number of quantities.

We can do so by adding components of the form

to
Yiito :/ y.ds. (A3)
t1

Because observations may overlap, however, multiple y may be needed at any given stage in
the algorithm. For example, computing the log-likelihood contribution for an observation
occurring from time ¢; to time ¢3 might be based on y,, ,, and y,, ;. rather than directly on
¥4, 4, if another observation began at time ¢,.

Even when no instantaneous observations occur at time ¢, y, can be useful to include in
the state space if an observation has a time interval beginning or ending at time ¢. Because
of the Markovian property of the Ornstein-Uhlenbeck process, it is possible to compute the

distribution of y, ,, from the distribution of y, without need to reference y; ,, for any

2Tt is possible to make the state space unnecessarily large at some steps to keep the state space constant
in dimensionality, but doing so slows likelihood computation and offers no benefit.



Figure A1l: Timing for three-observation example
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t) <t <t;. As aresult, it is convenient to include y, in the state space along with values of
y covering intervals up to time ¢. Thus, for each iteration of the algorithm, the state space
consists of y;, 1y, ¥y, 4, and y,, for some t; <ty < -0 <tpy <ty

To illustrate the necessary components of the state space when updating for an observation,
consider a simple case with three observations. The first observation is observed from time s;
to s3, the second is observed instantaneously at time s4, and the third is observed from time
s9 to s5. The timing of the observations is depicted in figure A1l. Assume for this example
that the latent process is one-dimensional.

To compute the contribution to the log-likelihood from the first observation, ¥, 5, and

Us,,s; are needed, as

E[obs 1] = Fs,., (52 - 51) + Tpz (ﬂ> - (A4)

83 — 51 53 — S1

The state space at this stage also includes y,, so as to facilitate future prediction steps,
even though observation 1 does not depend upon it. Next, in updating for observation 2,
Ys, is needed because E [obs 2| = y¥s, s, and ¥s, s, is needed because it will be needed when
updating for observation 3. Finally, observation 3 depends upon ¥s, s;, ¥Uss.ss, and ¥s, s -
The prediction stage is more complicated than in many other applications of the Kalman
filter. In a theoretical sense, the prediction stage still functions as in the Kalman filter
algorithm. However, it is the computation of the appropriate ®; which is more complicated
because it depends on certain results about the behavior of the latent Ornstein-Uhlenbeck

process. It is also simpler to perform this update without explicitly computing ®;, although



such a matrix could be produced. The necessary results regarding the latent process appear
in section B.

The update stage is less complicated. Minor simplifications relative to the update stage
in algorithm A1 are also possible because observations are assumed to be scalar-valued. The
one minor addition to this stage is the inclusion of variance transformation parameters ~, v,
and £. Algorithm A2 assumes the most general form, although it will often be preferable
to assume v = 0 or £ = 1 rather than treat all three as free parameters. The update of the
log-likelihood is unchanged from algorithm Al.

Finally, the initial values of x and V are set to the unconditional distribution of y,. This
mirrors use with ARMA models (Akaike 1978; Anderson and Moore 1979; Gardner, Harvey,
and Phillips 1980). This is only possible when the latent process is stationary, as has been
assumed in this paper. For the non-stationary case, one alternative is to treat the variance V
as infinite or near-infinite, as has been used for other non-stationary models (Harvey and
Phillips 1979; Koopman 1997),® although other possible issues exist in a maximum-likelihood
framework in this case.

The overall algorithm is given by algorithm A2, although the results in section B are also
a necessary component. As an illustration, table A1 gives a basic overview of the steps taken
in computing the log-likelihood based on the three-observation example depicted in figure A1l

and the state space at each step.

Bayesian estimation An alternative to the use of a maximum-likelihood-based approach
is the use of Markov-chain Monte Carlo (MCMC) methods for estimation and inference
of MONOCAR models in a Bayesian framework. Some common approaches to Bayesian
estimation are inapplicable or ill-suited to MONOCAR. However, efficient Bayesian estimation
should be possible through some MCMC methods.

A common approach to Bayesian estimation is the use of software such as WinBUGS,

30ther approaches to handle the nonstationary case are also possible, such as computing with V = 0 and
adjusting for the uncertainty in the initial value for x (De Jong 1988).



Algorithm A2: Algorithm for computing the log-likelihood of a MONOCAR model

Data:
d = the number of latent processes
N = the number of observations
for eachi=1to N
z; = the value of observation 1%
2-2 = the variance of observation i
g; € {1,...,d} = the latent process measured by observation ¢
[t1,i, t2,s] = time interval for observation 4
Note: 1, =12; for instantaneous observations
end
Parameters: O, u, X, v, v, &
Result: ¢, the log-likelihood of the model
begin
£+ 0
S <= the number of unique values of ¢; ; and ta;
$1,...,8g5 < sorted unique values of 1 ; and ta;

Set the state space to y,, withx=F [ysl] and V = Var [ysl} (the unconditional mean and variances of ysl)
for i =1 to S do
if i > 1 then

Addy,,

1,s; to the state space with new elements of x set by F [ysm_l,si |ySi_1] and V set by

Var [ysi_lqszlysi_l] and Cov [ysi_ﬂysi_l,silysl_l}
Add y,, from the state space with new elements of x set by E [ySi \ysz,_l] and V set by

Var [yolye, o] Cov[ya, valve, ] Cov [5u oy lys, ] and Cov[ge, vty ]
Remove Y, from the state space, deleting the corresponding elements of x and V
a < a such that s, = minj:tz,jZSi 1,5
Remove the first components of the state space describing ysj,sj“ for which j < a

Note: The state space is now consists of {ysaasa+17'"’ysi—113'57ysi} and is d(i —a)
dimensional
end
for each j such that t; ; = s; do
h <+ the d (i — a)-element zero vector
if tl,j = tQ,]' then
‘ hgi—a)4g, <1
else
Note: t1j <ta;
b < b such that s, =t1 ;
fork=b+1toido

h _ Sk—Sk-—1
d(k—a)+g; — Sk —Sp

end
end

¢* < h" Vh+ g, + (vg,) (¢;)%9

Zi— T 2
PP LI Llog (27¢?)

242
X +— X+ (%) Vh
V+V-— ¢—thth
end
end
return ¢
end




Table Al: Step summary for three-observation example

Action State space
Initialize x and V Ys,

Add 951,52 and Yso to state space Ysqs gsl,szy Yss
Remove y,, from state space Ys1,s21 Yso

Add ys, s, and ys, to state space Usy,501 Ysas Usa,s31 Yss
Remove Yso from state space Yst,s0> Ysa,s3> Yss
Update x, V, and log-likelihood for observation 1 = ¥s, s,, ¥sy.s55 Uss

Add ¥y, s, and ys, to state space Usa,s35 Yss» Uss,sas Usa
Remove Yss from state space Ysa,s31 Yss,s40 Usa
Update x, V, and log-likelihood for observation 2 = s, s, Uss,s45 Usa

Add g, s, and ys, to state space Uso,s31 Uss,sa> Usa,ss> Uss
Remove y,, from state space Usg.ss> Uss,sa> Usas Usa.ss> Uss

Update x, V, and log-likelihood for observation 3 ¥, ss, Uss,s45 Usa,ss: Yss

OpenBUGS, JAGS, or Stan to specify a model and provide automated sampling. These
software packages are difficult to apply to MONOCAR because they do not allow models with
continuous-time processes or observations based on intervals over continuous-time processes
and do not offer operators, such as the matrix exponential and kronecker product, needed to
compute the covariance between the latent process at different points in time.

MONOCAR is also not an ideal scenario for the use of Gibbs sampling. In a typical
latent-variable model estimated via Gibbs sampling, the latent variables are treated as
auxiliary parameters. However, because MONOCAR is a continuous-time model, the latent
process is infinite-dimensional.

However, other MCMC methods to Bayesian inference are more attractive for Bayesian
estimation of MONOCAR. In particular, Hamiltonian Monte Carlo and its extension, the
No U-Turn Sampler (Hoffman and Gelman 2014), are compelling possibilities. In addition
to the efficiency offered by these samplers, they can be easily combined with the likelihood

computation already used for maximume-likelihood estimation of MONOCAR.

4While it is possible to reduce the necessary auxiliary parameters needed for Gibbs sampling, doing so
loses the simplicity that is usually offered by this approach and still requires a large number of auxiliary
parameters.

10



A Bayesian approach to MONOCAR has several advantages, such as avoiding the need to
rely on asymptotic results for inference and allowing prior information to be included. Many
advantages offered by a Bayesian approach to MONOCAR are similar to those discussed
with other time-series models (see, e.g., Brandt and Freeman 2006, 2009). Priors may also
be particularly useful in dealing with parameters used to specify the transformation of the
variances of observations described in section 3.4, as we may wish to impose bounds on
these parameters to ensure that all variances are positive, which is more problematic in a
maximum-likelihood framework, and we may have strong a priori beliefs about plausible
values for these parameters.® On the other hand, the maximum-likelihood approach offers
estimates to be computed much more quickly, allows inference to be performed in a frequentist

framework, and avoids the need to specify prior distributions for parameters.

5For example, it may be implausible that the actual sampling error associated with a poll is ten times the
sampling error implied by the sample size or that the actual sampling error would increase as the sampling
size increases.

11



B. DERIVATION OF DISTRIBUTIONS RELATED TO THE MULTIVARIATE
ORNSTEIN-UHLENBECK PROCESS

We begin by defining y, by
dy, = © (n—y,) dt + £2dW, (A5)

where y, is n-dimensional; W; is an n-dimensional Wiener process; p, ©, and 3 are parameters (real-valued
matrices of size n x 1, n X n, and n X n, respectively), and 37 is a matrix satisfying (E%) (E%>T = 3. The
parameter space is restricted to cases where X is positive semidefinite, which is necessary and sufficient for
2 to exist, and the real parts of the eigenvalues of ® are positive, which is sufficient to ensure stationarity.
While £2 is generally not unique, the distribution of y, does not depend on the choice of ¥z given 3.

Assume throughout that y follows a multivariate normal distribution.

B.1. Related to y,

Multiplying both sides of Equation A5 by ¢®* and noting that ©® and ¢®* commute yields

e®ldy, = ©e® (u —y,)dt + OS5 W, (A6)
Applying Ito’s lemma to f (¢, z) = e®ty, gives

0 1
A () = Dty e+ Yy, (ty ) dy, + gy (V3,0 (0,y0) dy, (A7)
= ©c®ly,dt + ®'dy, + 0. (A8)

Substituting in for e®*dy, from Equation A6 gives

df (t,y,) = ©@c®ly,dt + @c® (u—y,) dt + ©' 52 dW, (A9)

= OOy + ORI IW,. (A10)

12



Integrating gives

t t t
/df(s,ys):/ @e@de/ OS82 dW,
0 0

0

t
ey —yo= (" - pu+ /O B SEAA

t
Vi — efgtyo = (I — efet) n +/ efe(tfs)E%dWs
0

t
ye=e¢ yo+ (IT-e®)p+ / e ®l=IRIgW .
0

(A1)
(A12)
(A13)

(A14)

Distribution of y; given the distribution of yo Since y, follows a multivariate normal distribution,

so does the linear transformation e~®'y,. Since (I —e~®") p is a constant and fg e~ Ot=)N2 W, is a

linear operator on a Wiener process independent of y,—essentially a sum of infinitely many independent

multivariate normal distributions—y, must also follow a multivariate normal distribution, y, must therefore

follow a multivariate normal distribution.

We can compute the expectation of y, as

t
Ely)=E[e®y]+(I-e®)p+E U e OU=IRIgW,
0
t
=e @By ]+ (I-e®)p+ / PR >k ) [dW ]
0

= e ' Elyo] + (I-¢™®)
and the variance as

t
Var [y, = Var [e~®'y,] + Var [(I— e ®") p] + Var {/ e @t n3gW,
0

= e ® Var[y,] e ®" 4 Var (e ®ly,] -

Since F [fot e‘e(t_s)E%dWs} =0, dW,dW? = Ids, and dW ,dW. = 0 for s # u,

t t ot
Var [/ e_e(t_s)E;dWs] :/ / {e_e(t_s)zédwsdsWE (Eé)Te_eT(t_”)}
0 o Jo
t

:/ {e_e(t_s)Ee_@T(t_s)}ds.
0

13

(A15)
(A16)

(A17)

(A18)

(A19)

(A20)

(A21)



Thus, the identity vec (ABC) = (CT ® A) vec (B) gives us

¢ ¢
vec (Var {/ e@@S)z%dws]) = / (efg(tfs) ® 678@75)) vec (X)) ds
0 0

t
:/ (67(@)@@)(#5)) vec () ds

0

=0 G))_1 (I — e_(e@e)t) vec (X)
So, y; follows a multivariate normal distribution with
Ely)l=e ®Ely] + I-¢"®)n
and

vec (Var [y,]) = vec (67®t Var [yo] e*QTt> +©@p0)" (I - 67(969@)’5) vec (X)

= ¢ (®9O)lyec (Var [y,]) + (@ 4 ©) " (I - e*(e@@)’j vec (X)

B.2. Related to yo+

Let y, , represent the arithmetic mean of y, over the interval [0,¢]. Thus,

t
tyO,t:/ y$d3
0
t t t s N
:/ e’gsyods—l—/ (I—efes)uds—i—/ / e~ @G- gW , ds
0 0 0 Jo
t s
— @ (O T)yy (14O (¢ )t / / Ol IW . ds
0 Jo
t s
=0 ' (e7® -1) (u—y0)+m+/ / e ®C-IRIIW , ds
0 Jo

I L A e
So0= 10 (O oyt g [ [ O Iziaw,ds
0 JO

(A22)
(A23)

(A24)

(A25)

(A26)

(A27)

(A28)
(A29)
(A30)
(A31)

(A32)

Distribution of yo. given the distribution of yo Since y, follows a multivariate normal distribution,

%@71 (e’et - I) (pn — y,) must also follow a multivariate normal distribution as it is an affine transformation

of y,. Note that fos 6_9(5_")E%dwu must follow a multivariate normal distribution independent of y, as

before, and, thus, so must %fot fos 6*9(5’“)2%dwuds. Since p is a constant, we have that y , is a sum of

independent multivariate normal random variables and must, therefore, itself follow a multivariate normal

distribution.
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We can compute the expectation of y, ; as

Elyo] =B [t07 (e 1) (u—y, } U+ E { / / COsiaw,ds|  (A3)
= %@71 (e™® —I)(p—Elyo])) +n+ 2/0 /0 e Ol R [dW ] ds (A34)
= %@—1 (e7® 1) (u— Elyo)) + 1 (A35)

and the variance as

Var [yo,t] = Var E@_l (e_@t — I) (n— yo)} + Var [p]

1 t S
+ Var [ / / e_e(s_u)Eéquds}
t Jo Jo

= %2@_1 (e_(at - I) Var [y, (e_@Tt - I) ((9_1)T
1 tors .
+ — Var U / e_e(s_“)22quds] :
t 0o Jo

Since F [fot N e‘e(s_“)E%quds] =0,

t S
Var U / e—@<s—u>2%dwuds]=E // —O(-un3 W ds/ / dWT % Lm0t g,
0 0

(A36)

(A37)

(A38)
r rt t z s T b
—E ////e—Q(S—Wz%dwudwf (2%) e=®" =0y ds
L/ O 0 0 0 i
(A39)
T
//// [ 3 AW, dWT (2%) ]EQT(ZU)dzdS
(A40)
t t min(s,z) N T
:/ // e—@<5—u>2ﬂdu(2%) e=®"Gmw g, gs (A41)
0 0 0
t pt  pmin(s,z)
:/ // e~ Ol 3O  =—u) gy 4z ds. (A42)
0 0 0

Thus,

15



t ps t pt  pmin(s,z)
ec <Var {/ / eg(t")Eéquds]> = vec (/ / / e~ O30  (=-u) gy g d5> (A43)
o Jo o Jo Jo

t pt  pmin(s,z)
= / / / vec (e_@(s_“)Ee_eT(z_“)> dudzds
o Jo Jo
t s z
= / / / vec (678(57@2 —©" (- “)) dudzds
o Jo Jo

t z s
=+ / / vec (e_e(s_“)Ee_eT(z_“)) dudsdz
o Jo Jo

(A44)
(A45)

(A46)

Since ©, e=©(~2) and I all commute, (© & @)71 and (6’9(5*2‘) ® I) must commute. Thus, we can

expand the first half of the above representation to yield

/ / / c(e O(s—u) 3" (2~ “)) dudzds

¢
/ e Ot v ¢ efe(zfu)) vec (X) dudz ds

[}

t

e Ob=2) =0k ) g e_@(z_“)) du dz dsvec (X)

(=)

I
/ e ®b-2) g I) (e_(g@@)(z_“)) du dz dsvec (X)
0

(
(

o—©(s—2) ®I) (efeu«—u) ®678<H>> dudz ds vec (X)

(e}

t

z
z
z
t —

I
o\o\o\o\o\
o\o\o\o\o\

e ®(S*Z)®I)/ e (@8O gy, dz ds vec ()
0

S
S
S
S
S

t

CICED I I) ©¢pe)! (I - e—(@®®)z) dz dsvec (X)
0 Jo

(5
@

o) /0 A (s=2) ®I) (I ~(090)z )dzdsvec(E)
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(A47)
(A48)
(A49)
(A50)
(A51)
(A52)
(A53)

(A54)



Looking only at the inner part of the right side of Equation A54, we have

// (6 O(s— z)®I (Ife*(@@@)z)dzds
:/Ot/ —e(s— z)®1 dzds—// —O(s— z)®1> ~©2) 4z ds
:// —O(s—2) ®I dzds—// 7®Z)dzds
// —O(s— Zdzds@I—/ (e—@S @Zdz>

:/0 O ' (I-e9) ds®I—/Ot (e®* @ (-07") (e® -1))ds
=0 ' (I+0 ' (e® -1))®I+ /Ot I ") (e (e ® —1))ds
=O@'{tI+O0 " (e ® -1I)) 1)

+(I®@1)/Ot (e-©0er) ds(1®®1)/0t (e ® ©1)ds

=@ 'H+07 "' (e®-1I))®I)

+(Iee™) (-(©@0e) ") (@@ -1) - 1ee™) (/Ot e%ds @ 1)
I

=@ (T+07 (¥ -T)e
~ (126 (©@ee) 1(

= (@7 (f1+07 (7 ~T)) 2T
(

~(1207)(@00) (O 1)+ (@7 (¢ -1 20™).

It will be useful to refer to this quantity as ¥. Thus, we are left with

/ / / Vec (s—u) e*QT(Z*")) dudzds = (© ® @) Wvec ()
where

T=0""'tI+0 ' (e®-1)xI+0 ' (c®-T)pO!

+(Ie0 ) ©3e) ' - (1Ic07 ') (@pe) (%0

17

e PO 1) 4 (10 07) (07! (¢ ® ~T) &)

(A55)
(A56)
(A57)
(A58)
(A59)

(A60)

(A61)

(A62)

(A63)

(A64)

(A65)

(A66)

(A67)



By a similar derivation,

/ / / Vec (s—u)33—©" (2 “>) dudsdz = (© & ©) ' Evec ().
where

E=100 ' ((I+07'(c® -1)+0 100 ! (¢ ® 1)

+Ie0 ) (©00) ' - (I007') (00 6) (0o

Let Y be the matrix such that

vec ( ///Vec —O(s—u) 3~ 0" (:— “)) dudzds

(©@®0) ' Wvec (D).

Thus,

Vec TT ///Vec —O(-u) 3, ~O" (s- “))dudzds
0 0

t

/ / / ve —O(s—u) 3, = 0" (3— “)) dudsdz

0 0

(©®0) 'Bvec(X).

o

(=)

[I]

It follows that

t S
Vec<Var [/ / ee(t“)Eéquds]> ///vec (s—u) 33, =O" (= “)) dudzds
o Jo
///vec —O(s—u) 33,07 (3= “)dudsdz

= vec (Y )+Vec(TT)

= vec <T + TT)
and, so,

t s
Var {/ / ee(t“)zédwuds} =r+7Y7T
0 Jo
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(A72)
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(AT4)

(A75)

(A76)
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Therefore, y ; follows a multivariate normal distribution with

O ' (e® —I) (u—Ely,)) + 1

and

where Y is defined in Equation A71.

B.3. Covariances

(A79)

(A80)

(A81)

Note that y, , and y, are formed from a linear operator applied to a Wiener process and y, which is itself

N .. e _ T N
multivariate normal. Therefore, the joint distribution of (yOT, yOT,t, vi ) also follows a multivariate normal

distribution.

Covariance between yo and yo; Since

1 1 t s
Yoi = ;C‘)_l (e7® —T) (m—yo) +p+ n / / e~ @Ut-RE W, ds
o Jo

and %fot Iy e~®(t-W)%3 GW ,ds is independent of Yo, we have that

14, _
Cov y0.:30] = Con 107 (¢ =) (= o).y

- _%@—1 (e7®" 1) Couv [y, ¥y

14,
= —;@ Y(em® = 1) Varly,).
Covariance between yq, and y; Since

t
yi=e ®yo+(IT—e®)p+ / e @I RI W,
0
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and fg e*@(lt*S)Z]%alWS is independent of y,, we have that

Cov [S’O,tv}’o} = Cov [eigta}’o]
=e ® Cov [¥0,¥0l

= e ® Varly,].

Covariance between yo, and y; Since

vV 1 - - 1 ! ° — s—u 5
YO,tZEG 1(6 et—I)(H—yo)—Fu—Fg//e ol )E%dwuds
o Jo
and
t 1
yi=e yo+ (I-e"®) p+ / e CUmIB2 W,
0
we have

1 1 [t ;
Cov [yo,tv}’t] = Cov L@l (Ff@t —1I) (1 —yy) 7}’1‘,] + Cov [t/ / eg(su)zzdwud&)’t}
o Jo

1 t
= —;@71 (e7®F — I) Cov [yo,e_gtyo +(I- e ® —|—/ e_e(t_s)EédWS]
0

1 t s
+ Cov [t/ / e_@(s_“)Eéquds,Yt]
0o Jo

= —%@71 (ef(% - I) Cov [yo, efetyo}

t
— %6_1 (e_@t —1) Cov [yo, (I- e_@t) u —|—/ e_@(t_S)EédWS]
0

1 t S )
+ Cov |:t/ / e_e(é_u)E;qudnS,yt] N
0 JO
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Since (I - e’et) 4 is a constant and fg efg(lt*S)Z]%dWS is independent of y,, we have

_ 1,
Cov [Jo,4,y] = —;@ ! ( ©t 1) Cov [yy, e ®'y,]
; (A95)
+ Cov / / (=2 W, ds, y,
1 — T
=:® 1< '~ 1) Cov [yg, o) "
t
+ Cov / / (TR AW, ds, e~ 'y, + (I—e‘et)u—l—/ e ORI qW,
0
(A96)

= —19_1 (e_et - I) Var [y] Ot
+ Cov [ / / (s=w) 2quds,6®t}'o} (A97)

t
+Cov[ // 2quds/ —6(i- 5)25dWS}
0

Similarly noting that %fot I e~®-W%3 JW,ds is independent of yo yields

1 1 t s t
Cov [Fo4, Y] = —¥@71 (e7®" —1) Var[y,] e ®" 4 Cou [t/ / efe(sfu)E%quds,/o e OU-9n2gW,

(A98)
Since B |1 [y fi e THAW,ds| = 0 and B [[; e~ ©C=E2aW, | = 0, we find that
1 t S t
Cov [t / / OG-0} (W ds, / e-9<f-8>2%dws] (A99)
0 0 0
1 t S t
E{/ / e*%*")zédwuds/ {dw;fz%e@%”)}] (A100)
0

- 7E U / / { ~O(—W 53 W, dW? (25)T69T<t”>}ds]. (A101)

As before, E [ Jieet=n3qw, } =0, AW ,dWT = Idu, and dW,dWT = 0 for u # v. Thus,

t
Cov {1 / / 22 W, ds, / @<t8>2%dws} (A102)
tJo Jo 0
1 T
=_F [/ / { (s—u EQdu( ) e ® (t")} ds] (A103)
t 0 Jo
I ®
_1 (s—t) 37— O (t—u) A104
t/o /0 {e }duds (A104)
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Noting (© ® @)71 and (I ® e*Q(t*S)) commute and vectorizing yields

t S t
vec (C’ov [1/ / e*®<5*“>2%dwuds,/ e@@S)zédWSD
tJo Jo 0
t S
vec (/ / {efg(sfu)Ee*@T(t*")} du ds)
o Jo

e O~ @ e=®U=W) gy ds vec ()

t s
/ (I ® €7®(t73)> / (676(571‘) ® 679(87“)) dudsvec (X)
0 0
t s
/ (I ® e_e(t_s)) / e~ (®2O)—v) gy ds vec ()
0

1o efe(tfs)> ©50)! (I - e*(GGB@)S) dsvec (%)

S—
S~

0

©ae)! /Ot (I ® e_e(t_s)) (I - e_(@@@)s) dsvec (%)

B s s N e Y s N s N

©@50)! /Ot (12e7®=9) dsvec (%)
4
©ee)! <I ® /0 t ee(ts)ds> vec (2)
_ % G (/Ot s @ e—®t> vee (%)
020) ' (Ie0 ' (I-e°))vec(E)

(
% ©30) (07! (e7® —1)®e ) vec ()
(

| =

020) ' (Io0 ! (I-e°))vec(T)

- % ©ae)! (@‘1 (I- e_gf‘) ® e_@t) vec (3)
1
t

Thus, substituting Equation A116 into Equation A98, we find that

vec (Cov [y, y]) = vec (—16)_1 (e7®" 1) Var [y,] e_@Tt)

1
+

|

—
[

® @71) (67(969@)15 —e % I) vec (Var [y,])

+

S
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t
CEIC)E / (I ® e_e(t_s)) (e7®* @ e ©%) dsvec (%)
0

©30) " (10 (I-c )+ (0 (I ) e ©))vec(X)

CEIE)E Ie0 ' 'I-e®)0 ' (I-e®)ge ®)vec (D)

©20) ' (Ie0 ' (I-e )0 (I-e9) e ) vec (D).

(A105)
(A106)
(A107)
(A108)
(A109)
(A110)

(A111)

(A112)

(A113)

(A114)

(A115)

(A116)

(A117)

(A118)



B.4. Stationary distribution
From Equation A14, we have
t 1
y, = e ®ly, + (I- efgt) n+ / e Otz gwW,. (A119)
0

. t _@(t—s)wl . . . . .
Since fo e~ @(—=9)32JW, is a linear operator on a Wiener process, it must follow a multivariate normal

distribution. As before, note that F [fot e‘e(t_s)EédWS} = 0. Equation A24 established that

t
vec (Var [/ e_@(t_s)EédWS}> SCEID (I - e_(@@@)t) vec (X) (A120)
0
¢
tlim vec (Var [/ e_G(t_S)E;dWS}> = (©®0) 'vec(X). (A121)
—00 0

Define P by vec (P) = (© & ©) " vec (X). Thus,
¢
/ e Ot=9%2qW, % A (0,P). (A122)
0

Note that lim,,_,~, (I — e’et) p = p. Finally, since the real part of the eigenvalues of ® are positive by

assumption, e‘®ty0 converges pointwise to 0 as t — oo. It follows from Slutsky’s theorem that

yi N (1, P) (A123)

as t — oo.
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C. HIGHER-ORDER MODELS

Although the latent process underlying the MONOCAR model has been assumed to be a
first-order multivariate continuous-time, or MCAR(1) process, the MONOCAR model can be
extended to use a higher-order MCAR(p) process, the continuous-time analogs of a VAR(p)
process. Higher-order continuous-time processes can be thought of as including velocity or
acceleration terms, thus allowing us to capture processes in which, for example, a trending
series tends to continue trending. For example, a latent process which is thought of as having
“momentum” might be well described by a MONOCAR(2) model.

A MONOCAR(p) model can be described by generalizing the equations defining a
MONOCAR. The stochastic differential equation defining the multivariate Ornstein-Uhlenbeck

process which describes the latent process in a MONOCAR model can be written as

Dy, + ®y, = Ou + S DW,, D (A124)

d
dt’

where W, is a multivariate Wiener process. Following Schlemm and Stelzer (2012), we can

extend this to a p*™-order process defined by the stochastic differential equation
DPy, +©,D" 'y, +--- 4+ 0O, Dy, + ©,y, = O, + L2 DW,, (A125)

with all other components of the MONOCAR model unchanged.
Much as a VAR(p) model can be represented as a VAR(1) model, a higher-order MONO-
CAR model can also be represented as special case of the first-order MONOCAR model

described above. A MONOCAR(p) model with & latent processes is equivalent to a first-order,
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pk-dimensional model with

0 I, 0 0
0o 0 I,
e=|: : L0 (A126)
0 0 0 I
e, 6,, 6,, e,
0 - 0 0
s_ | 0 (A127)
0 - 0 0
0 --- 0 X

where Iy is the k£ x k identity matrix, ® and X are pk X pk matrices, O.,..., @p are k X k
matrices of parameters capturing the relationship between the latent series, and 3 is the
k x k matrix of unknown variance parameters.® Using this representation, a MONOCAR(p)
model can be estimated within the current software.”

In considering higher-order MONOCAR models, the selection of an appropriate order
can be done by minimizing the Akaike Information Criterion (AIC) or Bayesian Information
Criterion (BIC). Other criteria, such as cross-validated error, could also be used. A hypothesis
test of a MONOCAR(p) model against a MONOCAR(p’) model can be performed using
a likelihood ratio test. In some cases, there may be theoretical reasons for considering a
MONOCAR model of a particular order.

Despite the availability of higher-order MONOCAR models, low-order—often MONOCAR(1)—

models are often sufficient. The inclusion of measurement error can allow a low-order

MONOCAR to capture effects that would necessitate a higher-order VAR model. Low-order

6Observations remain a function of the same components of the latent process as in the original
MONOCAR(p) representation. Thus, observations are only a function of the first & dimensions of this
pk-dimensional process.

"Further extensions to MCARMA (p, q) processes are also possible in this same framework. See, e.g.,
Schlemm and Stelzer (2012) for details on similar representations of MCARMA ((p, ¢) processes.
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MONOCAR models also offer greater interpretability of coefficients.

D. HOUSE EFFECTS

Polling data is often drawn from opinion polls conducted by multiple polling organizations or
from answers to questions with slight variations in wording. These differences can impact the
responses and ignoring these differences can be dangerous. On the other hand, data collected
by a single organization, using a precise question wording, and differing in no other relevant
respects may be very limited and these difference may be relatively small.

A common solution is to introduce a term for the bias of each polling organization, termed
a “house effect” (see Jackman 2005). Thus, the polls conducted by one organization are
assumed to differ from the polls conducted by another organization by a constant. This
same approach can be used to capture “question wording effects” due to small differences in
question wording between polls.

This approach avoids the need to treat the polls from different organizations as entirely
different series while still allowing the model to account for differences between organizations.
In contrast, treating these polls as different series would necessitate adding many more
parameters to the model and complicating inference. Moreover, house effects are often
sufficient to account for the differences between polls, particularly when the differences are
relatively small. This approach can be extended to permit the variance transformation
discussed in the previous section to vary by polling organization, allowing for the possibility

that some organizations produce results with lower variance than other organizations.

E. VARIANCE-STABILIZING TRANSFORMATIONS

Variance-stabilizing transformations have a long history in statistical practice, particularly

before modern computational resources made non-Gaussian models practical. These transfor-

26



mations result in distributions with approximately constant variance and, asymptotically,
Gaussian distributions with exactly constant variance. Such transformations can be derived
for many standard distributions.

Two common case that would require variance stabilizing transformations are the binomial
and Poisson distributions. The canonical variance-stabilizing transformations are the angular
transformation 2z’ = arcsin (\/%) for the binomial and the square-root function, 2’ = /z for

the Poisson. Several improved versions of the angular transformation of binomial data have

been proposed, such as Anscombe’s (1948) proposal of the form arcsin \/(z + ¢)/(N + 2¢).
However, such transformations are less appropriate because of they depend on n. Chanter
(1975) addresses precisely this issue and proposes an improved transformation that does not
vary with n.

Chanter (1975) addresses precisely this issue and proposes an improved transformation

that does not vary with n. This work suggests the transformation

¢ = aresin ( (1 - g5 (2 — 1)) (A128)

z’:\/zqtg (A129)

for the Poisson distribution.® Their respective approximate variances are % and }1. These

for the binomial distribution and

transformations are proposed in the paper instead of the canonical transformations because

they perform slightly better in most settings.

8The representation of the transformation for the binomial distribution is slightly different than the
representation in Chanter (1975) but is mathematically equivalent. This equivalence follows from applying
the trigonometric identity 2arcsin /% = arcsin(2% — 1) + 7/2.
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E.1. Alternatives to variance-stabilizing transformations

Most other solution to the complications addressed by variance-stabilizing transformations
involve modifying the model. For example, in the distributional assumptions of our observation
process, the variance might be allowed to depend on the mean or a binomial (or other)
distribution might be used in place of a Gaussian distribution. Similarly, the bounds on
the data might be addressed by transforming the latent variable or replacing the Ornstein-
Uhlenbeck process with a bounded alternative, such as a multivariate Jacobi process.

One simple alternative would be to drop the use of variance-stabilizing transformations and
instead use an extended or unscented Kalman filter for approximate likelihood computation.
This would have the advantage of allowing the parameters to be interpreted in terms of natural
units. However, in addition to eliminating the possibility of exact likelihood computation,
this approach would also exacerbate problems with bounded variables.

The use of a Markov-chain Monte Carlo (MCMC) methods in a Bayesian framework
would also be possible, but is not quite as straightforward as in many other applications.
Because the latent process is infinite-dimensional, it is not possible to treat the entire process
as an auxiliary variable, as can be done in many other cases. We may also prefer to remain
in a frequentist framework. Nonetheless, MCMC methods can be applied to the MONOCAR
model and may offer certain advantages, such as allowing computation without the need for
a Gaussian approximation of the sampling distribution.

Almost all alternatives depend on either an approximation to the likelihood or the use of
Monte Carlo methods. This is not always practical and the use of an approximation to the

likelihood is not necessarily superior to an approximation to the distributional form.
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F. STRUCTURAL MONOCAR

In some circumstances, a more general parameterization of the MONOCAR model may be
necessary to provide a behavioral interpretation of the parameters, analogous to the structural
form of a VAR. However before considering a structural form of a MONOCAR model beyond
the parameterization that has been used so far, which might be termed the reduced form, it
is worth noting that the structural form of a MONOCAR model already captures one form
of contemporaneous effects between variables. As a result, it can be appropriate to assume
that the structural form of a MONOCAR model is the reduced form even when this would
not be true for VAR models.

An important reason for using a structural VAR is to identify contemporaneous relation-
ships between the variables. Assuming that the structural form of a VAR model is the reduced
form, implicitly assumes that no contemporaneous relationships exist. MONOCAR, however,
already describes contemporaneous relationships between the variables. In a MONOCAR
model, the value of each series has a contemporaneous effect on the rate of change of each other
series. Thus, while assuming that the structural form of a VAR model is the reduced form
implicitly assumes that there are no contemporaneous relationships between the variables,
we make no such assumption by using a MONOCAR model.

Consider a MONOCAR model with independent error processes observed at regular
monthly intervals. Because the underlying latent process acts continuously with time, the
processes continue to affect each other between observations. As a result, the data would
include a contemporaneous relationship from a discrete-time perspective. If we were analyzing
this data with vector autoregression, a structural VAR approach would be necessary to
identify these contemporaneous effects. However, a standard MONOCAR model would
already capture these relationships.

We can also find a more formal equivalence between the parameters of a structural VAR

and a special case of the MONOCAR. Suppose the data are generated by a MONOCAR
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model with instantaneous observations at regular intervals and no measurement error. For

simplicity, assume that the long-run mean, p, is zero. Thus, the latent process is described by
dy, = © (u — ) dt + S2dW,. (A130)

However, as Bergstrom (1988) points out, this process is also is well approximated by the
structural VAR model given by

1 1 1
(I + 56) Y =Ou+ B (I - 56) Oyi-1 + &1, (A131)

which can be written as

Ay = © (u - %) te (A132)

This parameterization is virtually identical to the parameterization of the MONOCAR model,
whereas the reduced-form parameterization is not.

However, if one wishes to identify both instantaneous and gradual effects in a MONOCAR
model, a structural form of the model would be useful. Much as a structural VAR provides a
more general parameterization, a similar general parameterization can be provided for the
MONOCAR model. The structural MONOCAR can be constructed by replacing equation 3
by

Hdy, = © (u—y,) dt + 2dW,, (A133)

with the corresponding reduced form given by
dy,=H 10 (u —y,) dt + H 1Z2dW,. (A134)

By treating the reduced form of a MONOCAR model as the structural model, we are
implicitly assuming that H = I. As with structural VAR, the structural MONOCAR model

is unidentified without restrictions on the parameters in equation A133.
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The structural form of a MONOCAR differs from the reduced form by by capturing non-
gradual contemporaneous effects. Unlike the reduced form of a VAR model, the reduced form
of a MONOCAR model already treats each series as potentially having a contemporaneous
effect on the other series. However, these effects are gradual; while there is no lag before a
shock to one series begins to affect another series, the size of this effect grows with time. A
structural MONOCAR can also capture contemporaneous effects in which the full effect of a

shock to one series appears immediately in another series.

G. MORE DETAILS ON MODELS FROM SECTION

G.1. State-space models

State-space models provide another possible approach to handling measurement error and
missing values in time-series data. State-space models are a class of models that explicitly
model observations as a function of latent processes. Various types of state-space models
have gained wide usage in engineering, biology, physics, and economics. However, state-space
models have garnered relatively little usage in political science.”

State-space models consist of a transition equation and an observation equation.'® The
transition equation captures the evolution of the state variable over time but is not directly
observed. The observation equation links the observations at time t to the state at time ¢.
When the latent variables are discrete, the models are more commonly known as hidden
Markov models. The term state-space model is sometimes used to refer only to cases where

the state space—that is, the set of possible values of the state variable—is continuous. Note

that this distinction is separate from whether time is continuous; time may still be discrete

9Important exceptions include Beck (1989); Green, Gerber, and Boef (1999); McAvoy (1998); Kellstedt,
McAvoy, and Stimson (1993); Brandt et al. (2000); Brandt and Williams (2001); Martin and Quinn (2002);
Bond, Fleisher, and Wood (2003); Jackman (2005); Pickup and Johnston (2007); De Boef and Keele (2008);

Armstrong (2009).
10See Commandeur and Koopman (2007) for a more thorough introduction to MARSS and other state-space
models and Durbin and Koopman (2012) for a more advanced treatment.
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in state-space models where the state space is continuous.
State-space models allow us to model a vector autoregressive process that is not directly
observed. Rather, each observation can be modeled as a noisy measure of the latent process

1 The latent process is

or a linear function of the latent process at some point in time.!
generally assumed to be a first-order vector autoregressive process, although such a model
can be used to capture a higher-order vector autoregressive process by expanding the state

space. Thus, the model becomes

yi=a+By,_,+e& (A135)
7z, =n+ 2y, + w; (A136)
with
e N (0, T) (A137)
w; N (0,P) (A138)

where z; is an observation at time ¢, and y, is the unobserved latent process at time ¢. The
parameters a, 7, B, Z, T, and P are also sometimes allowed to depend on t.

Such a model is known as a multivariate autoregressive state-space (MARSS) model.
The terms vector autoregressive state-space model or dynamic linear model are also used in
various contexts.!> MARSS models extend vector autoregression by allowing for measurement

error. They also allow for the possibility of missing observations, as yt can be treated as

HMore specifically, the observations are assumed to be drawn from independent multivariate normal
distributions with expectation equal to a linear function of the patent process.

12Terminology varies depending on discipline and model use. Regardless of the name and interpretation
of the parameters and latent process, the models are mathematically identical. The term dynamic linear
model is commonly used when the latent process represents regression parameters, thus creating a model
in which the regression parameters change with time. This distinction is essentially conceptual, with the
state space usually capturing regression parameters and independent variables appearing in the mapping
between the state space and the expected value of an observation rather than the other way around. The
MONOCAR model introduced in this paper can also be used to capture dynamic regression parameters in a
similar fashion to dynamic linear models.
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unobserved at some points in time.!3

MONOCAR, the model introduced in this paper, can be thought of as a type of state-
space model but differs from multivariate state-space models and other existing state-space
models. If a state-space model is defined as requiring an observation at time ¢ to depend
only on the state at time t, then MONOCAR cannot be treated as a state-space model in
which the state at time ¢ is the value of the latent process at time ¢ because MONOCAR
allows non-instantaneous observations that depend on all values of the latent process over
a continuous interval of time.'* However, a state-space representation of MONOCAR is
possible using a representation in which the state-space differs from the space of the latent
process.!?

Most importantly, MONOCAR differs from MARSS models by treating the latent process
as a continuous-time process and allowing an observation to be based on a sum or average
over a continuous interval of time, including an interval that overlaps the time intervals of
other observations.!® This allows MONOCAR to handle temporally aggregated data even
when such aggregation is inherent in the data, some or all of the time intervals are overlapping,
and time is not naturally divided into discrete units. MONOCAR also addresses the critique
of Pickup and Wlezien (2009) regarding the variance of observations from polling data (see

section 3.4).

13While MARSS models are thus able to deal with irregularly spaced observations, they are not quite as
flexible as continuous-time models in this respect.

Despite the fact that the model treats non-instantaneous observations as depending on the value of the
latent process at infinitely many point in time, estimation of the model does not require estimating the value
of the latent process at all these points of time.

15This representation essentially forms the basis of the likelihood computation.

16 Although MARSS models are discrete time, continuous-time state-space models have also been studied.
MONOCAR differs primarily in allowing observations to be based on sums or averages over continuous
intervals of time. This complicates estimation of either the latent process or the model parameters. In this
case, one cannot simply apply a Kalman filter with the state space representing the latent process at a given
point in time because a non-instantaneous observation depends on the values of the latent process at infinitely
many points in time. Additionally, much of the work on continuous-time state-space models has not been
concerned with inference about model parameters. Often, the goal is estimation of latent process under
known model parameters, which is more relevant in engineering contexts, or producing point estimates of the
model parameters.

33



G.2. Continuous-time models

A continuous-time process is a process that is indexed by continuous, rather than discrete,
values of time. In contrast, a discrete-time process is indexed by discrete—usually integer—
values of time. While a discrete process might exist at all integer values of time and, thus, be
continuous in the sense of being an uninterrupted sequence, it is not continuous in the sense
of a continuous-time process. Thus, a discrete process, y,, might be defined for all integers ¢
but would not be defined at non-integer values, such as y 1 0reveny, .

In many situations, we conceptualize time as continuous but use discrete models for
simplicity. If, however, we are modeling a process that is truly continuous, this simplification
comes at a cost of reduced accuracy. A continuous-time model allows us to avoid this
simplification.

Within political science, the use of continuous time has been almost entirely limited to
event history analysis, in which durations are often treated as a continuous quantity, and
longitudinal network analysis (e.g., Snijders 2001; Berardo and Scholz 2010; Manger, Pickup,
and Snijders 2012; Fischer et al. 2012), with a very small number of additional uses in formal
models (e.g., Fearon 1994, 1998; Carpenter 2003).

Continuous-time processes and discrete-time processes are heavily related. Discrete-time
processes can often be represented as continuous-time processes that are only observed at
regularly spaced points in time.!” In this sense, one can often think of many discrete-time
models as special cases of continuous-time models. Indeed, some textbooks on time series
have introduced time-series models in a general framework that included continuous-time
models before focusing on discrete-time models (e.g., Fuller 1976).'8

However, it is useful to draw a distinction between models of this type and models that

"For example, a first-order vector autoregressive process can be viewed as a first-order multivariate
continuous-time autoregressive process observed at regularly spaced points in time so long as the eigenvalues
of B are positive.

18This is especially true in earlier textbooks when the literatures on continuous-time models and discrete-
time models had diverged less than today.
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cannot be represented as a discrete-time model. The term continuous-time model is more
usefully applied to this latter type of models because continuous-time representations are
rarely used when a simple discrete-time representation exists and because doing so allows us
to contrast discrete-time models with continuous-time models. The term will be used in that
sense in this paper.

Continuous-time models are most commonly applied in precisely these circumstances where
discrete-time representations are not possible. For example, as Jones (1985) writes, “|w|hen
data are truly unequally spaced, not equally spaced with missing observations, continuous
time models are necessary to represent the process.” It is thus unsurprising that a common
use for continuous-time models is modeling this sort of data.

Continuous-time autoregressive (CAR) processes have received almost no use in political
science but, like state-space models, have received significant attention in other disciplines.
They have played an important role in physics for over a century and have also seen use in
chemistry, biology, and engineering (see, e.g., Hanggi and Marchesoni 2005). Over the last
several decades, their use has become common in finance—as demonstrated by the ubiquitous
Black-Scholes option-pricing model, and applications in econometrics have also grown (see,
e.g., Brockwell 2001a).

Despite receiving a number of uses in econometrics (see, e.g., Bergstrom 1990), most
applications of CAR processes and their extension, continuous-time autoregressive moving-
average (CARMA) processes, have been for quite different reasons than the difficulties
motivating this paper. Among other reasons, continuous-time models are often chosen
because the data is very high frequency, because they provide a more accurate representation
of many macroeconomic models, because the results do not depend on the unit of time chosen
for observations, or because they can generate continuous-time forecasts (Bergstrom 1996).

Some econometric applications are relevant to some of the issues discussed in this paper.
Several papers have applied CARMA models to irregularly spaced data (Jones 1981, 1985;

Jones and Ackerson 1990, e.g.,), as is discussed in more detail in section G.3. Many other
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applications do allow observations to be averages or sums over intervals of time, although
generally assuming these observations to be non-overlapping and regularly spaced. Mea-
surement error is also commonly allowed. Finally, recent work has focused on extensions to
multivariate continuous-time autoregressive (MCARMA) processes (Marquardt and Stelzer

2007; Schlemm and Stelzer 2012).

G.3. Approaches to irreqularly spaced data

A number of approaches to the analysis of mixed-frequency and irregularly spaced data have
been developed in other disciplines, particularly economics and astronomy. Some, such as
those dealing with spectral analysis or forecasting, are relevant for research questions that
are uncommon in political science. Others—especially those developed in economics—may
be quite applicable, although few have attracted use in political science to date.

One approach has been to extend methods for regularly spaced time series to allow for
missing observations. This work includes tests for the presence of serial autocorrelation (Savin
and White 1978; Dufour and Dagenais 1985; Robinson 1985; Shively 1993) as well as tests
for unit roots (Ryan and Giles 1998), and methods for estimation (Wansbeck and Kapteyn
1985) in its presence. Related work has addressed missing values in panel data, including
estimation when errors are not autocorrelated (Wansbeek and Kapteyn 1989; Baltagi and
Chang 1994) and testing for autocorrelation and estimation in its presence (Baltagi and Wu
1999). A Bayesian extension of the VAR model has also been proposed by Chiu et al. (2011).

Continuous-time models are another approach to analyzing irregularly spaced data. These
models are particularly advantageous when the irregular spacing arises because the data lack
an underlying sampling interval rather than arising due to missing observations in otherwise
regularly spaced data, as most other methodologies deal only with the latter case.

Although much of this work has been focused on the univariate case (Jones 1981, 1985;

Jones and Tryon 1987; Jones and Ackerson 1990), some has also addressed the multivariate
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case (Jones 1984; Jones and Boadi-Boateng 1991). Other work has extended these models to
non-Gaussian error processes (Brockwell 2001b; Yang 2008) and threshold models (Brockwell
and Hyndman 1992; Brockwell 1994). Outside of work with an explicitly continuous-time
model, Erdogan et al. (2005) present an approach that is also applicable to univariate time
series with irregularly spaced observations that lack an underlying sampling interval.

Other work has focused on mixed-frequency data.'® Although mixed-frequency data pose
a simpler problem than irregularly spaced data in that each series is still regularly spaced, they
are also inherently multivariate. Methods for analyzing mixed-frequency data include the use of
bridge equations to link series of different frequencies (Baffigi, Golinelli, and Parigi 2004; Diron
2008, e.g.,), interpolation methods (Lanning 1986; Angelini, Henry, and Marcellino 2006, e.g.,),
a state-space approach known as mixed-frequency vector autoregression (MF-VAR; Zadrozny
1988; Mittnik and Zadrozny 2005), and the Mixed-Data Sampling (MIDAS) approach (Ghysels,
Santa-Clara, and Valkanov 2004) and its extensions, including an autoregressive extension
(AR-MIDAS; Clements and Galvao 2008) and a more general one (unrestricted MIDAS;
Foroni, Marcellino, and Schumacher 2012). Extensions to mixed-frequency data in which
some series end before other series, known as ragged-edge data, have also been discussed
(e.g., Mariano and Murasawa 2010).

Finally, another literature, primarily in astronomy, deals with analyzing the frequency
spectrum of irregularly spaced data (Barning 1963; Lomb 1976; Scargle 1982; Vityazev 1996;
Broersen 2008; Lévy-Leduc, Moulines, and Roueff 2008, e.g.,). While this work has found
some applications in fields such as biology (Ruf 2010; Van Dongen et al. 2010) and climatology
(Schulz and Stattegger 1997; Matyasovszky 2013), frequency-domain models like spectral
analysis have attracted little use in political science.?’ More importantly, frequency-domain
models are generally relevant to different research questions than are time-domain models

such as the methodology discussed in this paper (Van det Eijk and Weber 1987).

YFor a detailed overview of this literature, see Foroni and Marcellino (2013).

20But see Aguiar-Conraria, Magalhaes, and Soares (2012); Im, Cauley, and Sandler (1987); Gregory and
Gallagher (2002); Sandler and Enders (2004) for examples of their use in political science and related fields
and Van det Eijk and Weber (1987) for a discussion.
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H. COMPLETE MONTE CARLO STUDIES

H.1. Temporal aggregation

Non-overlapping intervals To illustrate some of the consequences of temporal aggregation for
VAR and MONOCAR models, consider the following Monte Carlo study. In each simulation,
the data are generated by aggregating two continuous-time latent processes, y; and g9, that
are constructed so that y, affects y; but not the reverse.?! These latent processes are then
aggregated into averages over 1,000 successive time intervals of unit length.?? T will focus on
the coefficient on lagged values of the first series in the equation predicting the second series,
denoted B, ;, which might be used in testing the effect of the first series on the second series.

I vary the mean reversion rate of the two processes, described by ©;; and 0,5, and the
size of the effect of the second series on the first, described by ©1.2* Although 6, <0 in
all simulations, indicating that increases in the second series tend to increase the first, similar
results with bias in the opposite direction can be expected ©; > 0.2 In all simulations,
however, ©;; = 0.

The results of the simulations show how temporal aggregation can lead us to misunderstand
the causal relationship between series. Although, by assumption, the first series has no effect
on the second series, the VAR estimates seems to suggest otherwise.

Figure A2 shows the distribution of B, ; from VAR models.?> In the first row of figure A2,

neither series affects the other (B 5 = 0). With the two processes entirely independent, VAR

21Specifically, underlying process is the multivariate Ornstein-Uhlenbeck process given by

dy, = © (u—y,) dt + £2dW,,

with g =0, X =15, and ® = ((1) _11>

22That is, the aggregated observation i at time ¢, §;;, is defined by 7;; = f;l y; dt for all ¢ € {1,...,1000}.

2] vary O, from 0 to 1 in increments of 0.25. I vary 611 and 6,5 from 0.25 to 1. I do not consider the
case in which 01 = 6O, 2 = 0, which would create a non-stationary process subject to the unit root problem
discussed in section 3.7.

24Note that changing the sign on O, is equivalent to replacing ys by pa — yo.

25The results are based on a 1,000 simulations per study.
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models show no bias in their estimates of B, regardless of the mean reversion rate of each
series, which varies by column. However, as we move down the rows of the figure, the effect
of the second series on the first is increased. Although the true value of B ; remains zero,
VAR estimates show increasing bias as we increase this effect. Moving across the columns of
this figure, the bias appears to stay relatively constant as the mean revision rate of the two
series changes.

We see similar patterns in the p-values generated by a VAR model. Figure A3 shows
quantile-quantile plots comparing the empirical distribution of p-values to a uniform distribu-
tion. Because the null hypothesis is true in all cases, the p-values should follow a uniform
distribution. If the p-values were uniform, the points in the quantile-quantile plots should lie
very near the 45-degree line shown in the figure. When these points lie below the 45-degree,
the model is rejecting the null hypothesis at a higher rate than the nominal level of a test. In
the first row of figure A3, with neither series affecting the other, the p-values follow a uniform
distribution. However, moving down the graph, the p-values show increasing deviations from
the desired uniform distribution as the effect of the second series on the first increases.

Unlike VAR, MONOCAR estimates and p-values show no signs of bias. In figure A4, we
see that the distribution of the estimates is centered almost perfectly around the true value
of zero in all cases. Moreover, the points in the quantile-quantile plots shown in figure A5 lie
very near the 45-degree line in all cases, indicating that the MONOCAR p-values follow a
uniform distribution. This is exactly what we should see from an unbiased test of a true null
hypothesis, as is the case here.

This study allows us to isolate the biases from temporal aggregation alone. Because
the observations are regularly spaced, there is no need to drop or impute observations to
use a VAR model. Although observations are regularly spaced, they represent averages
over successive intervals of time (that is, temporal aggregates) rather than instantaneous
measurements, as a VAR model implicitly assumes. The assumptions of a VAR model are

not otherwise violated.

39



Figure A2: Histogram of distribution of estimates from VAR model for the temporal aggrega-
tion Monte Carlo study
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Note: 1,000 simulations per study. In each simulation, the data consist of 1,000 observations per series. The estimated parameter
shown is B1,2, which equals zero under the data generating process. A dashed red line shows this true value of B1 2 = 0 in
each plot.
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Figure A3: Quantile-quantile plot of p-values from VAR model for the temporal aggregation
Monte Carlo study
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Note: 1,000 simulations per study. In each simulation, the data consist of 1,000 observations per series. The estimated parameter
shown is B1 2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis
that B2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform
distribution.
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Figure A4: Histogram of distribution of estimates from MONOCAR model for the temporal
aggregation Monte Carlo study
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Note: 1,000 simulations per study. In each simulation, the data consist of 1,000 observations per series. MONOCAR estimates
are transformed to use the same parameterization as the VAR model. The estimated parameter shown is By 2, which equals
zero under the data generating process. A dashed red line shows this true value of By 2 = 0 in each plot.
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Figure A5: Quantile-quantile plot of p-values from MONOCAR model for the temporal
aggregation Monte Carlo study
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Note: 1,000 simulations per study. In each simulation, the data consist of 1,000 observations per series. MONOCAR estimates
are transformed to use the same parameterization as the VAR model. The estimated parameter shown is Bj 2, which equals
zero under the data generating process. The p-values correspond to a test of the null hypothesis that B2 = 0. Since the null
hypothesis is true under the data generating process, valid p-values should follow a uniform distribution.
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The bias in VAR estimates also changes little with the sample size. Graphs of Monte Carlo
simulations using sample sizes of 250, 500, and 1,000 appear at the end of this section. While
larger sample sizes unsurprisingly lead to lower variance in the estimates, the bias in each
case is essentially unchanged as the sample size increases from 250 and 1,000. MONOCAR
estimates show no apparent bias and a uniform distribution of p-values in all cases.

Since no measurement error or noise has been added to the observations, the failure of
a VAR model to include this cannot explain the results. This also has implications for the
multivariate autoregressive state-space model discussed in section 2.5. Given the lack of noise,
a multivariate autoregressive state-space (MARSS) model becomes equivalent to this VAR
model, as the observations must be equal to the values of the state space. Thus, a MARSS
model can also exhibit temporal-aggregation bias, as in this case.

Thus, the use of a VAR model on temporally aggregated data risks biased estimates and
unreliable inferences even if the data contain no other violations of the VAR assumptions. In

contrast, MONOCAR appears to provide an effective solution to the problem.

Overlapping observations Overlapping observation intervals have the potential to increase
the bias in a VAR model. So far, this study has only considered the effects of temporal
aggregation for time intervals for each observation did not overlap. I now extend this study
to include overlapping observations.

Observations are again assumed to occur at integer values of time. However, rather than
assume that each observation is measured over an interval of length 1, observation times
are allowed to extend past the start time of the subsequent observation. The length of each
observation interval is varied from 1, implying no overlap between observations, to 3, implying
that two-thirds of the time interval for one observation overlaps with the time interval for
the next.

In order to simplify the presentation, only a single parameterization of the latent process?®

1
L =3

26Gpecifically, I assume that @ = (0 1

) and Sigma = 1.
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will be considered, although similar patterns to those observed in the first study can be
expected if these parameters are varied.

Figure A6 shows the distribution of estimates and quantile-quantile plot of p-values against
a standard uniform. For the VAR models, we again see the negative bias in the estimates
seen in the previous study. As the amount of overlap between observation intervals increases,
the size of this bias increases. A similar pattern is observed in the p-values. Although the
estimates and p-values are biased even when no overlap is present, a 50% overlap between
observations creates a situation in which virtually all estimates are negative and the null
hypothesis is erroneously rejected in most cases.

MONOCAR models, on the other hand, exhibit no bias regardless of the amount of
overlap between observations. Similarly, the quantile-quantile plots show that the p-values
from the MONOCAR models follow the desired uniform distribution that should be expected
under the null hypothesis. Thus, while temporal aggregation poses an increasing problem
for VAR models as the amount of overlap between time intervals increases, MONOCAR

continues to produce reliable estimates and inference.

Overlapping observations with measurement error I next extent this study to include mea-
surement error, creating a case in which MARSS models differ from VAR models. In most
respects, the underlying data generating process is unchanged. The underlying latent pro-
cesses considered and the length of the intervals are allowed to vary in the same fashion as
in the previous simulations. However, rather than assume the observations occur without
measurement error, the standard deviation of the measurement error, 1; ;, is assumed to take
on one of four values—0.01, 0.05, 0.1, or 0.25—and is treated as known. With this change, a
first-order MARSS model is no longer identical to a first-order VAR model.

Figures A7 and A9 show the distribution of estimates of these models using MARSS
and MONOCAR, respectively. As in the previous study, MARSS models exhibit bias that
increases as the amount of overlap between observations increases. Although the MARSS

models take into account the measurement error, their performance is only marginally better
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Figure A6: Histogram of distribution of estimates and quantile-quantile plot of p-values from
VAR and MONOCAR models for the overlapping observation Monte Carlo study
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Note: 1,000 simulations per study. In each simulation, the data consist of 1,000 observations per series. MONOCAR estimates
are transformed to use the same parameterization as the VAR model. The estimated parameter shown is B1 2, which equals
zero under the data generating process. The p-values correspond to a test of the null hypothesis that B1,2 = 0. Since the null
hypothesis is true under the data generating process, valid p-values should follow a uniform distribution.
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than the VAR models. In contrast, the MONOCAR estimates exhibit no apparent bias.
The distribution of p-values—shown in figures A8 and A10—also demonstrate a similar
pattern. MARSS models show bias in favor of rejecting the null hypothesis that increases
with the amount of overlap between observations, although this bias decreases as the size of
the measurement error increases. MONOCAR models again show a uniform distribution of

p-values in all cases.

H.2. Imputation

While the previous Monte Carlo study dealt with bias from temporal aggregation, I now turn
to a different source of bias—imputation. One common solution to irregularly spaced polls
is to use WCALC or Samplemiser to create regularly spaced data, which are then used in
VAR or other time-series models. This study will test this approach on simulated, irregularly
spaced data and compare the resulting estimates and p-values with those from MONOCAR.

Imputation does not apply to all models that have been used to study irregularly spaced
polls. Models such as MARSS models can deal effectively with irregularly spaced data
occurring in discrete-time, although other problems such as temporal aggregation and
overlapping observations seen in the previous studies can still cause issues. In this study,
MARSS models can be expected to perform similarly to MONOCAR.?” However, because
the WCALC-imputation approach is often taken with polling data, it is worth analyzing the
bias that results from this approach.

The simulated latent processes are identical to those used in the first Monte Carlo study.?®
This means that y; does not affect y under the true data generating process. I will again
focus on the estimated effects of y; on ys and p-values for the null hypothesis of no effect.

However, the observation process is different from the previous study. Observations are

2"Because the data generating process in this study assumes instantaneous observations with spacing that
are always multiples of a day (i.e., 24 hours), the MARSS and MONOCAR models are identical here except
in their parameterizations.

28See footnote 21 for details.
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Figure AT: Histogram of distribution of estimates from MARSS model for the overlapping
observation with measurement error Monte Carlo study
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Note: 1,000 simulations per study. In each simulation, the data consist of 1,000 observations per series. ) is the standard
deviation of the measurement error for each observation. The estimated parameter shown is B1 2, which equals zero under the
data generating process. A dashed red line shows this true value of B1 2 = 0 in each plot.
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Figure A8: Quantile-quantile plot of p-values from MARSS model for the overlapping
observation with measurement error Monte Carlo study
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Note: 1,000 simulations per study. In each simulation, the data consist of 1,000 observations per series. ) is the standard
deviation of the measurement error for each observation. The estimated parameter shown is B1 2, which equals zero under the
data generating process. The p-values correspond to a test of the null hypothesis that B1 2 = 0. Since the null hypothesis is
true under the data generating process, valid p-values should follow a uniform distribution.
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Figure A9: Histogram of distribution of estimates from MONOCAR model for the overlapping
observation with measurement error Monte Carlo study
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Note: 1,000 simulations per study. In each simulation, the data consist of 1,000 observations per series. v is the standard devi-
ation of the measurement error for each observation. MONOCAR estimates are transformed to use the same parameterization
as the VAR model. The estimated parameter shown is B1 2, which equals zero under the data generating process. A dashed
red line shows this true value of By 2 = 0 in each plot.
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Figure A10: Quantile-quantile plot of p-values from MONOCAR model for the overlapping
observation with measurement error Monte Carlo study
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Note: 1,000 simulations per study. In each simulation, the data consist of 1,000 observations per series. v is the standard devi-
ation of the measurement error for each observation. MONOCAR estimates are transformed to use the same parameterization
as the VAR model. The estimated parameter shown is B1 2, which equals zero under the data generating process. The p-values
correspond to a test of the null hypothesis that B1,2 = 0. Since the null hypothesis is true under the data generating process,
valid p-values should follow a uniform distribution.
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instantaneous measures of the latent process in this study. However, the observations of
the first series are not regularly spaced and both series include measurement error. Thus,
temporal aggregation is not a problem with the simulated data, but irregular spacing and
noise are.

The simulated data cover a 40-year period. Observations of the first series, which can be
thought of as simulated polls, are collected at random points over this period.?? Observations
of the second series are regularly spaced and occur at the midpoint of each month. I then
added measurement error to observations from both series.3°

I analyze each set of simulated data using a typical process used with polling data. I
first apply WCALC to the observations of the first series. To match the second series, I use
monthly observation units. The result is imputed monthly observations for the first series
which are paired with the corresponding monthly observations of the second series. I then
estimate a VAR model on this data. I repeat this process using Samplemiser in place of
WCALC.?! Finally, I estimate a MONOCAR model on the original simulated data.3?

The estimates and p-values from WCALC and VAR show clear evidence of bias. Figure
A1l shows the distribution of estimates as we vary the parameters of the latent process.
In the first row, the two latent processes are independent. As a result, the estimates are
unsurprisingly unbiased. However, moving down the rows shows the bias as we vary the
effect of the second series on the first. As this effect increases, we see increased bias in the
estimated effect of the first series on the second. We can also see that the bias decreases as
the mean reversion rate increases. That is, when the processes are more autocorrelated, we
see greater bias in the estimates.

Similar issues arise with the p-values from WCALC and VAR. Quantile-quantile plots

29The observation times are independent and equally likely to fall on any data in the period. Unlike real
polls, these observations are measured at a single moment in time.

30The measurement error consists of independent draws from a normal distribution with a mean of zero
and standard deviation of 0.01 that are added to each observation.

31Samplemiser estimates are computed using a reimplementation of the approach described in Green,
Gerber, and Boef (1999) with the MARSS library in R.

32That is, I use the raw data, not the imputed values from WCALC or Samplemiser, as MONOCAR does
not require regularly spaced observations.
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against a uniform distribution appear in figure A12. In the first column, in which the two
latent processes are independent, p-values follow a uniform distribution. However, large
deviations from a uniform distribution are visible when the second series affects the first.
The p-values increasingly deviate from a uniform distribution as effect of the second series on
the first increases and as the mean reversion rate decreases.

The results are very similar using Samplemiser in place of WCALC. The distribution of
estimates using Samplemiser can be seen in figure A13 and quantile-quantile plots for the
p-values can be seen in figure Al4.

In contrast, MONOCAR again shows no signs of bias in either estimation or inference.
Figure A15 shows the distribution of estimates, which appear centered around the true value
of zero in all cases. Moreover, in the quantile-quantile plots that appear in figure A16, the
p-values follow a uniform distribution, as the points in the graph lie on a 45-degree line, in
all cases. Since the null hypothesis is true by assumption, this is precisely what we should
observe from an unbiased test.

Thus, the common practice of using estimates of public opinion from WCALC or Sam-
plemiser as data in a time-series analysis can be unreliable. Even if this process avoids
temporal-aggregation bias, it does so at the cost of creating a new source of bias. However, by
avoiding the need to aggregate or impute data, MONOCAR can produce unbiased estimates
and inference.

The bias illustrated in this study does not mean that WCALC, Samplemiser, or other such
techniques are unreliable for other purposes. As estimators of the latent series themselves,
they often perform quite well—including on the simulated data in this study. Rather, it is

the use of estimated latent series as data that leads to the biases seen here.
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Figure A11: Histogram of distribution of estimates from WCALC and VAR models in
imputation Monte Carlo study
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Note: 1,000 simulations per study. In each simulation, the first series consists of 160 randomly spaced instantaneous polls
(averaging four per year) and the second series consists of monthly instantaneous observations. The estimated parameter shown
is B1,2, which equals zero under the data generating process. A dashed red line shows this true value of By 2 = 0 in each plot.
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Figure A12: Quantile-quantile plot of p-values from WCALC and VAR models in imputation
Monte Carlo study
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Note: 1,000 simulations per study. In each simulation, the first series consists of 160 randomly spaced instantaneous polls
(averaging four per year) and the second series consists of monthly instantaneous observations. The estimated parameter shown
is B1,2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis that
B1,2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform distribution.
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Figure A13: Histogram of distribution of estimates from Samplemiser and VAR models in
imputation Monte Carlo study
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Note: 1,000 simulations per study. In each simulation, the first series consists of 160 randomly spaced instantaneous polls
(averaging four per year) and the second series consists of monthly instantaneous observations. The estimated parameter shown
is B1,2, which equals zero under the data generating process. A dashed red line shows this true value of By 2 = 0 in each plot.
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Figure Al14: Quantile-quantile plot of p-values from Samplemiser and VAR models in
imputation Monte Carlo study
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Note: 1,000 simulations per study. In each simulation, the first series consists of 160 randomly spaced instantaneous polls
(averaging four per year) and the second series consists of monthly instantaneous observations. The estimated parameter shown
is B1,2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis that
B1,2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform distribution.
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Figure A15: Histogram of distribution of estimates from MONOCAR models in imputation
Monte Carlo study
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Note: 1,000 simulations per study. In each simulation, the first series consists of 160 randomly spaced instantaneous polls
(averaging four per year) and the second series consists of monthly instantaneous observations. MONOCAR estimates are
transformed to use the same parameterization as the VAR model. The estimated parameter shown is B1 2, which equals zero
under the data generating process. A dashed red line shows this true value of B1,2 = 0 in each plot.
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Figure A16: Quantile-quantile plot of p-values from MONOCAR models in imputation Monte
Carlo study
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Note: 1,000 simulations per study. In each simulation, the first series consists of 160 randomly spaced instantaneous polls
(averaging four per year) and the second series consists of monthly instantaneous observations. MONOCAR estimates are
transformed to use the same parameterization as the VAR model. The estimated parameter shown is B1 2, which equals zero
under the data generating process. The p-values correspond to a test of the null hypothesis that B12 = 0. Since the null
hypothesis is true under the data generating process, valid p-values should follow a uniform distribution.
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H.3. Additional graphs for Monte Carlo studies
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Figure A17: Histogram of distribution of estimates from VAR models in temporal aggregation
Monte Carlo study with 250 observations
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Note: 1,000 simulations per study. In each simulation, the data consist of 250 observations per series. The estimated
parameter shown is B1 2, which equals zero under the data generating process. A dashed red line shows this true value of

B1,2 = 0 in each plot.
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Figure A18: Histogram of distribution of estimates from VAR models in temporal aggregation

Monte Carlo study with 500 observations
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Note: 1,000 simulations per study. In each simulation, the data consist of 500 observations per series. The estimated
parameter shown is B1 2, which equals zero under the data generating process. A dashed red line shows this true value of

B1,2 = 0 in each plot.
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Figure A19: Histogram of distribution of estimates from VAR models in temporal aggregation
Monte Carlo study with 1,000 observations
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Note: 1,000 simulations per study. In each simulation, the data consist of 1,000 observations per series. The estimated
parameter shown is B1 2, which equals zero under the data generating process. A dashed red line shows this true value of

B1,2 = 0 in each plot.
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Figure A20: Quantile-quantile plot of p-values from VAR models in temporal aggregation
Monte Carlo study with 250 observations
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Note: 1,000 simulations per study. In each simulation, the data consist of 250 observations per series. The estimated parameter
shown is B1 2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis
that B2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform
distribution.
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Figure A21: Quantile-quantile plot of p-values from VAR models in temporal aggregation
Monte Carlo study with 500 observations
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Note: 1,000 simulations per study. In each simulation, the data consist of 500 observations per series. The estimated parameter
shown is B1 2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis
that B2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform
distribution.
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Figure A22: Quantile-quantile plot of p-values from VAR models in temporal aggregation
Monte Carlo study with 1,000 observations
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Note: 1,000 simulations per study. In each simulation, the data consist of 1,000 observations per series. The estimated parameter
shown is B1 2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis
that B2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform
distribution.
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Figure A23: Histogram of distribution of estimates from MONOCAR models in temporal
aggregation Monte Carlo study with 250 observations
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Note: 1,000 simulations per study. In each simulation, the data consist of 250 observations per series. MONOCAR estimates
are transformed to use the same parameterization as the VAR model. The estimated parameter shown is By 2, which equals
zero under the data generating process. A dashed red line shows this true value of By 2 = 0 in each plot.
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Figure A24: Histogram of distribution of estimates from MONOCAR models in temporal
aggregation Monte Carlo study with 500 observations
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Note: 1,000 simulations per study. In each simulation, the data consist of 500 observations per series. MONOCAR estimates

are transformed to use the same parameterization as the VAR model.

zero under the data generating process. A dashed red line shows this true value of By 2 = 0 in each plot.

68

The estimated parameter shown is By 2, which equals



Figure A25: Histogram of distribution of estimates from MONOCAR models in temporal
aggregation Monte Carlo study with 1,000 observations
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Note: 1,000 simulations per study. In each simulation, the data consist of 1,000 observations per series. MONOCAR estimates
are transformed to use the same parameterization as the VAR model. The estimated parameter shown is By 2, which equals
zero under the data generating process. A dashed red line shows this true value of By 2 = 0 in each plot.
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Figure A26: Quantile-quantile plot of p-values from MONOCAR models in temporal aggre-
gation Monte Carlo study with 250 observations
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Note: 1,000 simulations per study. In each simulation, the data consist of 250 observations per series. The estimated parameter
shown is B1 2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis
that B2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform
distribution.
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Figure A27: Quantile-quantile plot of p-values from MONOCAR models in temporal aggre-
gation Monte Carlo study with 500 observations
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Note: 1,000 simulations per study. In each simulation, the data consist of 500 observations per series. The estimated parameter
shown is B1 2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis
that B2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform
distribution.
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Figure A28: Quantile-quantile plot of p-values from MONOCAR models in temporal aggre-
gation Monte Carlo study with 1,000 observations

MONOCAR

61’1 = 62’2 =0.25 61’1 = 62’2 =05 61’1 = 62'2 =0.75 61’1 = 62’2 =1

(B11=B2,=0.78) (B11=B2,=0.61) (B11=B2,=0.47) (B11=B2,=0.37)

K

@1’2 =0 %
(B12=0) :é

w

g

61’2 =-0.25 %
(B1,=0.25B, ) ié
w

91’2 =-0.5

(B12=0.5B11)

Empirical quantiles

61’2 =-0.75

(B12,=0.75B;,)

Empirical quantiles

01’2 =-1
(51,2= B1,1)

Empirical quantiles

Note: 1,000 simulations per study. In each simulation, the data consist of 1,000 observations per series. The estimated parameter
shown is B1 2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis
that B2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform
distribution.
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Figure A29: Histogram of distribution of estimates and quantile-quantile plot of p-values
from VAR and MONOCAR models for the overlapping observation Monte Carlo study with
250 observations
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Note: 1,000 simulations per study. In each simulation, the data consist of 250 observations per series. The estimated parameter
shown is B1, 2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis
that B2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform
distribution.
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Figure A30: Histogram of distribution of estimates and quantile-quantile plot of p-values
from VAR and MONOCAR models for the overlapping observation Monte Carlo study with

500 observations
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Note: 1,000 simulations per study. In each simulation, the data consist of 500 observations per series. The estimated parameter
shown is B1, 2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis
that B2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform

distribution.
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Figure A31: Histogram of distribution of estimates and quantile-quantile plot of p-values
from VAR and MONOCAR models for the overlapping observation Monte Carlo study with
1,000 observations
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Note: 1,000 simulations per study. In each simulation, the data consist of 1,000 observations per series. The estimated parameter
shown is B1, 2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis
that By,2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform
distribution.
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Figure A32: Histogram of distribution of estimates from WCALC and VAR models in
imputation Monte Carlo study with average of four polls per year
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Note: 1,000 simulations per study. In each simulation, the first series consists of 160 randomly spaced instantaneous polls
(averaging four per year) and the second series consists of monthly instantaneous observations. The estimated

parameter shown is B12, which equals zero under the data generating process. A dashed red line shows this true value of
Bi,2 = 0 in each plot.
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Figure A33: Histogram of distribution of estimates from WCALC and VAR models in
imputation Monte Carlo study with average of eight polls per year

WCALC

@1’1 = @2’2 =0.25 Ol,l = @2’2 =0.5 @1’1 = @2’2 =0.75 @1’1 = @2’2 =1

(B11=B,,=0.78) (B11=B,,=0.61) (B1,1=B,,=0.47) (B11=B,,=0.37)
61’2 =0
(B1.2 =OBl,1) M
70‘2 70‘1 0.0 0‘1 0‘2 70‘2 70‘1 0.0 O‘l 0‘2 70‘.2 70‘1 0.0 O‘l 0‘2 70‘2 70‘1 0.0 0‘1 0‘2
61’2 =-0.25 1
(B12=0.25B1,) : gl
[ [ M I [
70‘2 70‘1 0‘0 0‘1 0‘2 70‘2 70‘1 0‘0 0‘1 0‘2 70‘2 70‘1 0.0 O‘l 0‘2 70‘2 70‘1 0.0 0‘1 0‘2
91,2 =-0.5
(51,2:0-531,1) L
70‘ 2 70‘ 1 0‘0 U‘l 0‘2 70‘ 2 70‘ 1 0‘0 U‘l 0‘2 70‘.2 70‘ 1 0‘0 0‘1 0‘2 70‘ 2 70‘ 1 0‘0 0‘1 0‘2

61’2 =-0.75

(B12=0.75B,,)

61’2 =-1

(B 12=B 1,1)

Note: 1,000 simulations per study. In each simulation, the first series consists of 320 randomly spaced instantaneous polls
(averaging eight per year) and the second series consists of monthly instantaneous observations. The estimated

parameter shown is B12, which equals zero under the data generating process. A dashed red line shows this true value of
Bi,2 = 0 in each plot.
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Figure A34: Histogram of distribution of estimates from WCALC and VAR models in
imputation Monte Carlo study with average of twelve polls per year
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Note: 1,000 simulations per study. In each simulation, the first series consists of 480 randomly spaced instantaneous polls
(averaging twelve per year) and the second series consists of monthly instantaneous observations. The estimated

parameter shown is B12, which equals zero under the data generating process. A dashed red line shows this true value of
Bi,2 = 0 in each plot.
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Figure A35: Quantile-quantile plot of p-values from WCALC and VAR models in imputation
Monte Carlo study with average of four polls per year
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Note: 1,000 simulations per study. In each simulation, the first series consists of 160 randomly spaced instantaneous polls
(averaging four per year) and the second series consists of monthly instantaneous observations. The estimated parameter shown
is B1,2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis that
B1,2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform distribution.
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Figure A36: Quantile-quantile plot of p-values from WCALC and VAR models in imputation

Monte Carlo study with average of eight polls per year
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Note: 1,000 simulations per study. In each simulation, the first series consists of 320 randomly spaced instantaneous polls
(averaging eight per year) and the second series consists of monthly instantaneous observations. The estimated parameter
shown is B1,2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis
that By,2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform
distribution.
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Figure A37: Quantile-quantile plot of p-values from WCALC and VAR models in imputation
Monte Carlo study with average of twelve polls per year
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Note: 1,000 simulations per study. In each simulation, the first series consists of 480 randomly spaced instantaneous polls
(averaging twelve per year) and the second series consists of monthly instantaneous observations. The estimated parameter
shown is B1,2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis
that By,2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform
distribution.
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Figure A38: Histogram of distribution of estimates from Samplemiser and VAR models in
imputation Monte Carlo study with average of four polls per year
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Note: 1,000 simulations per study. In each simulation, the first series consists of 160 randomly spaced instantaneous polls
(averaging four per year) and the second series consists of monthly instantaneous observations. The estimated

parameter shown is B12, which equals zero under the data generating process. A dashed red line shows this true value of
Bi,2 = 0 in each plot.
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Figure A39: Histogram of distribution of estimates from Samplemiser and VAR models in
imputation Monte Carlo study with average of eight polls per year
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Note: 1,000 simulations per study. In each simulation, the first series consists of 320 randomly spaced instantaneous polls
(averaging eight per year) and the second series consists of monthly instantaneous observations. The estimated

parameter shown is B12, which equals zero under the data generating process. A dashed red line shows this true value of
Bi,2 = 0 in each plot.
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Figure A40: Histogram of distribution of estimates from Samplemiser and VAR models in
imputation Monte Carlo study with average of twelve polls per year
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Note: 1,000 simulations per study. In each simulation, the first series consists of 480 randomly spaced instantaneous polls
(averaging twelve per year) and the second series consists of monthly instantaneous observations. The estimated

parameter shown is B12, which equals zero under the data generating process. A dashed red line shows this true value of
Bi,2 = 0 in each plot.
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Figure A41: Quantile-quantile plot of p-values from Samplemiser and VAR models in
imputation Monte Carlo study with average of four polls per year
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Note: 1,000 simulations per study. In each simulation, the first series consists of 160 randomly spaced instantaneous polls
(averaging four per year) and the second series consists of monthly instantaneous observations. The estimated parameter shown
is B1,2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis that
B1,2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform distribution.
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Figure A42: Quantile-quantile plot of p-values from Samplemiser and VAR models in
imputation Monte Carlo study with average of eight polls per year
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Note: 1,000 simulations per study. In each simulation, the first series consists of 320 randomly spaced instantaneous polls
(averaging eight per year) and the second series consists of monthly instantaneous observations. The estimated parameter
shown is B1,2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis
that By,2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform
distribution.
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Figure A43: Quantile-quantile plot of p-values from Samplemiser and VAR models in
imputation Monte Carlo study with average of twelve polls per year
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Note: 1,000 simulations per study. In each simulation, the first series consists of 480 randomly spaced instantaneous polls
(averaging twelve per year) and the second series consists of monthly instantaneous observations. The estimated parameter
shown is B1,2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis
that By,2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform
distribution.

87



Figure A44: Histogram of distribution of estimates from MONOCAR models in imputation
Monte Carlo study with average of four polls per year
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Note: 1,000 simulations per study. In each simulation, the first series consists of 160 randomly spaced instantaneous polls
(averaging four per year) and the second series consists of monthly instantaneous observations. The estimated

parameter shown is B 2, which equals zero under the data generating process. A dashed red line shows this true value of
Bi,2 = 0 in each plot.



Figure A45: Histogram of distribution of estimates from MONOCAR models in imputation
Monte Carlo study with average of eight polls per year
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Note: 1,000 simulations per study. In each simulation, the first series consists of 320 randomly spaced instantaneous polls
(averaging eight per year) and the second series consists of monthly instantaneous observations. The estimated

parameter shown is B12, which equals zero under the data generating process. A dashed red line shows this true value of
Bi,2 = 0 in each plot.



Figure A46: Histogram of distribution of estimates from MONOCAR models in imputation
Monte Carlo study with average of twelve polls per year
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Note: 1,000 simulations per study. In each simulation, the first series consists of 480 randomly spaced instantaneous polls
(averaging twelve per year) and the second series consists of monthly instantaneous observations. The estimated

parameter shown is B12, which equals zero under the data generating process. A dashed red line shows this true value of
Bi,2 = 0 in each plot.



Figure A47: Quantile-quantile plot of p-values from MONOCAR models in imputation Monte
Carlo study with average of four polls per year
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Note: 1,000 simulations per study. In each simulation, the first series consists of 160 randomly spaced instantaneous polls
(averaging four per year) and the second series consists of monthly instantaneous observations. The estimated parameter shown
is B1,2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis that
B1,2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform distribution.
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Figure A48: Quantile-quantile plot of p-values from MONOCAR models in imputation Monte
Carlo study with average of eight polls per year
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Note: 1,000 simulations per study. In each simulation, the first series consists of 320 randomly spaced instantaneous polls
(averaging eight per year) and the second series consists of monthly instantaneous observations. The estimated parameter
shown is B1,2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis
that By,2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform
distribution.
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Figure A49: Quantile-quantile plot of p-values from MONOCAR models in imputation Monte
Carlo study with average of twelve polls per year

MONOCAR

@1’1 = @2’2 =0.25 Ol,l = @2’2 =0.5 @1’1 = @2’2 =0.75 Ol,l = @2’2 =1

(B11=B,,=0.78) (B11=B,,=0.61) (B11=B,,=0.47) (B11=B,,=0.37)
28]
z
$3
0,,=0 3
! o =
(B12=0B1,) 5 °
& 3
8%
EE
61’2 =-0.25 %q
(B12=0.25B1,) §°
& 3
53
£,
S8
91,2 =-0.5 %q
(51,2:0-531,1) 5°
LIE.I g 4
58
£,
S8
91’2 =-0.75 %q
(B12=075B1y) 5°
& 3
58
g8
Q=1 =
Q=
(Bl,2: Bl,l) é °
vy

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Theoretical quantiles Theoretical quantiles Theoretical quantiles Theoretical quantiles

Note: 1,000 simulations per study. In each simulation, the first series consists of 480 randomly spaced instantaneous polls
(averaging twelve per year) and the second series consists of monthly instantaneous observations. The estimated parameter
shown is B1,2, which equals zero under the data generating process. The p-values correspond to a test of the null hypothesis
that By,2 = 0. Since the null hypothesis is true under the data generating process, valid p-values should follow a uniform
distribution.
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[. COMPLETE MODEL ESTIMATES FOR PRESIDENTIAL APPROVAL EXAMPLE

Table A2: Full VAR/WCALC models of presidential approval and unemployment

Model 7 Model 8 Model 11 Model 12
presidential approval
approval;_q 0.892* 0.892* 0.899* 0.899*
(0.036)  (0.036) (0.035) (0.036)
unemployment; 1 —0.507 —0.494 —0.046 —0.045
(0.292)  (0.310) (0.025) (0.026)
Bush administration 0.107 0.007
(0.841) (0.070)
constant 9.692* 9.584* 0.322 0.314
(3.623) (3.734) (0.179) (0.198)
unemployment rate
unemployment;_q 0.997* 1.004* 1.000* 1.006*
(0.012)  (0.013) (0.012) (0.013)
approval;_1 0.001 0.001 0.020 0.017
(0.001)  (0.001) (0.017) (0.017)
Bush administration 0.059 0.057
(0.034) (0.034)
constant —0.049 —-0.109 0.001 —0.067
(0.148)  (0.151) (0.088) (0.096)
N (approval) 144 144 144 144
N (unemployment) 144 144 144 144
log-likelihood —365.1 —363.5 7.1 —5.6

Note: *p < 0.05. Variance multiplier scaled to represent the multiplier for an observation with a sample size of 1000.

94



Table A3: Full MONOCAR models of presidential approval and unemployment

— All polls — — Gallup only —
Model 9 Model 10 Model 1  Model 2
presidential approval
mean reversion rate of approval (017) 0.302* 0.235* 0.245* 0.199*
(0.082)  (0.073) (0.081) (0.075)
effect of unemployment on approval (—021) —0.024* —0.026* —0.022*  —0.024*
(0.011)  (0.011) (0.010) (0.010)
shift in approval for Bush administration (d7) —0.176* —0.134
(0.065) (0.103)
long-run mean of approval (1) 0.126 0.186 0.117 0.162
(0.076)  (0.097) (0.079) (0.097)
variance multiplier for approval observations () 3.433* 3.375* 4.048* 4.105*
(0.200)  (0.283)  (0.712)  (0.699)
variance exponentiator for approval observations (&1) 1.762* 1.734* 1.302* 1.333*
(0.271)  (0.270) (0.606) (0.602)
unemployment rate
mean reversion rate of unemployment (©27) 0.011 0.007 0.003  —0.001
(0.013)  (0.014)  (0.013)  (0.014)
effect of approval on unemployment (—©;2) 0.041 0.072 0.136 0.151
(0.102)  (0.085) (0.107) (0.091)
shift in unemployment for Bush administration (d2) —0.219 —0.225
(0.168) (0.166)
long-run mean of unemployment (pus) 7.218* 7.301* 7.225* 7.326*
(0.825)  (0.800)  (0.817)  (0.783)
variance of unemployment observations () 0.002 0.002 0.002 0.003
(0.001)  (0.001) (0.001) (0.001)
N (approval) 533 533 212 212
N (unemployment) 144 144 144 144
log-likelihood —-1396.1 —1391.2 —678.0 —676.1

Note: *p < 0.05. Variance multiplier scaled to represent the multiplier for an observation with a sample size of 1000.
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Table A4: Full MARSS models of presidential approval and unemployment

Model 3 Model 4 Model 5 Model 6

presidential approval

approval;_1 (B11) 0.890* 0.902* 0.994* 0.995*
(0.038)  (0.034) (0.002) (0.002)

unemployment;_; (Bay) —-0.096 —0.125* —0.005 —0.006*
(0.057)  (0.059) (0.003) (0.003)

Bush administration (1) —5.285* —5.487*
(2.013) (2.470)

constant (o) 4.364 5.169 4.115 5.242
(2.789)  (3.436) (2.558) (3.297)

variance multiplier for approval observations () 6.481* 6.361* 2.484* 2.479*
(0.443)  (0.436) (0.224) (0.221)

variance exponentiator for approval observations (&;) 1.451* 1.435* 1.260* 1.258*

(0.274)  (0.274)  (0.293)  (0.291)

unemployment rate

unemployment;_; (Bag) 0.993* 0.998* 1.000* 1.000*
(0.011)  (0.012)  (0.000) (0.000)
approval;_1 (Bi2) 0.006 0.010 0.000 0.000
(0.008)  (0.007)  (0.000)  (0.000)
Bush administration (d2) —0.751 —0.723
(0.546) (0.551)
constant (o) 22.732*  23.570%  22.797* 23.541*
(2.623)  (2.642)  (2.634)  (2.643)
variance of unemployment observations (v2) 0.000 0.000 0.000 0.000
(0.023) (0.022)  (0.024) (0.023)
Time unit Month Day
N (approval) 533 533 533 533
N (unemployment) 144 144 144 144
log-likelihood —1472.7 —1468.1 —1353.2 —1349.5

Note: *p < 0.05. Variance multiplier scaled to represent the multiplier for an observation with a sample size of 1000.
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Table A5: Full MARSS models of presidential approval and unemployment, Gallup only

Model 7 Model 8 Model 9 Model 10

presidential approval

approval;_1 (B11) 0.860* 0.881* 0.992* 0.993*
(0.043)  (0.040) (0.002) (0.002)

unemployment;_; (Bay) —0.144* -0.166* —0.007* —0.008*
(0.063)  (0.065) (0.003) (0.003)

Bush administration (1) —4.808 —4.505
(3.145) (3.150)

constant (o) 3.697 5.246 3.656 5.124
(2.560)  (3.067) (2.471) (3.025)

variance multiplier for approval observations () 6.948* 6.930* 1.395* 1.429*
(0.827)  (0.826) (0.389) (0.392)

variance exponentiator for approval observations (£;) 1.440* 1.471* 2.714* 2.671*

(0.610)  (0.609)  (1.108)  (1.078)

unemployment rate

unemployment;_; (Bag) 1.000* 1.004* 1.000* 1.000*
(0.012)  (0.012)  (0.000) (0.000)
approval;_1 (Bi2) 0.015 0.017* 0.000 0.001*
(0.009)  (0.008)  (0.000)  (0.000)
Bush administration (d2) —0.748 —0.690
(0.535) (0.540)
constant (o) 22.807* 23.180*  22.880* 23.201*
(2.563)  (2.396)  (2.614)  (2.514)
variance of unemployment observations (v2) 0.000 0.000 0.000 0.000
(0.023) (0.022)  (0.023) (0.022)
Time unit Month Day
N (approval) 212 212 212 212
N (unemployment) 144 144 144 144
log-likelihood —698.0 —695.6 —651.8 —649.7

Note: *p < 0.05. Variance multiplier scaled to represent the multiplier for an observation with a sample size of 1000.

97



Table A6: Lagged dependent variable/ WCALC models of presidential approval

— All polls — — Gallup only —
Model 11 Model 12 Model 13 Model 14
approval;_ 0.891* 0.890* 0.900* 0.899*
(0.036) (0.036) (0.035) (0.035)
unemployment; —0.541 —0.530 —0.047 —0.046
(0.289) (0.305) (0.025) (0.026)
Bush administration 0.104 0.009
(0.833) (0.069)
constant 10.017* 9.923* 0.328 0.318
(3.578) (3.669) (0.177) (0.194)
N (approval) 144 144 144 144
N (unemployment) 144 144 144 144
log-likelihood —413.0 —413.0 —55.0 —55.0

Note: *p < 0.05. Number of approval observations reflects number of imputed
observations from WCALC, not number of polls used by WCALC.

98



References

Aguiar-Conraria, Luis, Pedro C. Magalhaes, and Maria Joana Soares. 2012. “Cycles in
Politics: Wavelet Analysis of Political Time Series.” American Journal of Political Science

56 (2): 500-518.

Akaike, Hirotugu. 1978. “Covariance Matrix Computation of the State Variable of a Stationary

Gaussian Process.” Annals of the Institute of Statistical Mathematics 30 (1): 499-504.

Anderson, Brian D.O., and John B. Moore. 1979. Optimal Filtering. Englewood Cliffs, N.J.:

Prentice-Hall.

Angelini, Elena, Jérome Henry, and Massimiliano Marcellino. 2006. “Interpolation and
Backdating with a Large Information Set.” Journal of Economic Dynamics and Control 30

(December): 2693-2724.

Anscombe, Francis J. 1948. “The Transformation of Poisson, Binomial and Negative-Binomial

Data.” Biometrika 35 (3/4): 246-254.

Armstrong, II, David Alan. 2009. “Measuring the Democracy—Repression Nexus.” Electoral
Studies 28 (3): 403-412.

Baffigi, Alberto, Roberto Golinelli, and Giuseppe Parigi. 2004. “Bridge Models to Forecast
the Euro Area GDP.” International Journal of Forecasting 20 (3): 447-460.

Baltagi, Badi H., and Ping X. Wu. 1999. “Unequally Spaced Panel Data Regressions with
AR(1) Disturbances.” Econometric Theory 15 (06): 814-823.

Baltagi, Badi H., and Young-Jae Chang. 1994. “Incomplete panels.” Journal of Econometrics
62 (June): 67-89.

Barning, Fredericus J.M. 1963. “The Numerical Analysis of the Light-Curve of 12 Lacertae.”

Bulletin of the Astronomical Institutes of the Netherlands 17 (1): 22-28.

99



Beck, Nathaniel. 1989. “Estimating Dynamic Models Using Kalman Filtering.” Political
Analysis 1 (1): 121-156.

Berardo, Ramiro, and John T. Scholz. 2010. “Self-Organizing Policy Networks: Risk, Partner
Selection, and Cooperation in Estuaries.” American Journal of Political Science 54 (3):

632-649.

Bergstrom, Albert Rex. 1988. “The History of Continuous-Time Econometric Models.”

Econometric Theory 4 (12): 365-383.

. 1990. Continuous Time Econometric Modelling. Oxford: Oxford University Press.

——— 1996. “Survey of Continuous-Time Econometrics.” In Dynamic Disequilibrium
Modeling: Theory and Applications: Proceedings of the Ninth International Symposium
in Economic Theory and Econometrics, ed. William A. Barnett, Giancarlo Gandolfo,
and Claude Hillinger. International Symposia in Economic Theory and Econometrics

Cambridge: Cambridge University Press.

Bond, Jon R., Richard Fleisher, and B. Dan Wood. 2003. “The Marginal and Time-Varying
Effect of Public Approval on Presidential Success in Congress.” Journal of Politics 65

(February): 92-110.

Brandt, Patrick T., and John R. Freeman. 2006. “Advances in Bayesian Time Series Modeling
and the Study of Politics: Theory Testing, Forecasting, and Policy Analysis.” Political

Analysis 14 (1): 1-36.

. 2009. “Modeling Macro-Political Dynamics.” Political Analysis 17 (2): 113-142.

Brandt, Patrick T., and John T. Williams. 2001. “A Linear Poisson Autoregressive Model:

The Poisson AR(p) Model.” Political Analysis 9 (January): 164-184.

Brandt, Patrick T., John T. Williams, Benjamin O. Fordham, and Brain Pollins. 2000.

100



“Dynamic Modeling for Persistent Event-Count Time Series.” American Journal of Political

Science 44 (October): 823.

Brockwell, Peter J. 1994. “On Continuous-Time Threshold ARMA Processes.” Journal of

Statistical Planning and Inference 39 (2): 291-303.

. 2001a. “Continuous-Time ARMA Processes.” In Stochastic Processes: Theory and
Methods, ed. Dayanand N. Shanbhag, and C. Radhakrishna Rao. Vol. 19 of Handbook of
Statistics Amsterdam: North Holland, 149-276.

——— 2001b. “Lévy-Driven CARMA Processes.” Annals of the Institute of Statistical
Mathematics 53 (1): 113-124.

Brockwell, Peter J., and Rob J. Hyndman. 1992. “On Continuous-Time Threshold Autore-

gression.” International Journal of Forecasting 8 (2): 157-173.

Broersen, Piet M.T. 2008. “Time Series Models for Spectral Analysis of Irregular Data Far

Beyond the Mean Data Rate.” Measurement Science and Technology 19 (January): 015103.

Carpenter, Daniel P. 2003. “Why Do Bureaucrats Delay? Lessons from a Stochastic Optimal
Stopping Model of Agency Timing, with Applications to the FDA.” In Politics, Policy,
and Organizations: Frontiers in the Study of Bureaucracy, ed. George A. Krause, and

Kenneth J. Meier. Ann Arbor: University of Michigan Press, 23-40.

Chanter, Dennis O. 1975. “Modifications of the Angular Transformation.” Journal of the

Royal Statistical Society, Series C (Applied Statistics) 24 (3): 354-359.

Chiu, Ching Wai Jeremy, Bjorn Eraker, Andrew T Foerster, Tae Bong Kim, and Hernan D
Seoane. 2011. Estimating VARs Sampled at Mixed or Irregular Spaced Frequencies: A
Bayesian Approach. Technical Report RWP 11-11 Federal Reserve Bank of Kansas City

Kansas City: .

101



Clements, Michael P., and Ana Beatriz Galvao. 2008. “Macroeconomic Forecasting With

Mixed-Frequency Data.” Journal of Business & Economic Statistics 26 (4): 546-554.

Commandeur, Jacques J.F., and Siem Jan Koopman. 2007. An Introduction to State Space

Time Series Analysis. Oxford: Oxford University Press.

De Boef, Suzanna, and Luke Keele. 2008. “Taking Time Seriously.” American Journal of

Political Science 52 (January): 184-200.
De Jong, Piet. 1988. “The Likelihood for a State Space Model.” Biometrika 75 (1): 165-169.

Diron, Marie. 2008. “Short-term Forecasts of Euro Area Real GDP Growth: An Assessment

of Real-time Performance Based on Vintage Data.” Journal of Forecasting 27 (5): 371-390.

Dufour, Jean-Marie, and Marcel G. Dagenais. 1985. “Durbin-Watson tests for Serial
Correlation in Regressions with Missing Observations.” Journal of Econometrics 27 (March):

371-381.

Durbin, James, and Siem Jan Koopman. 2012. Time Series Analysis by State Space Methods.

Oxford: Oxford University Press.

Erdogan, Emre, Sheng Ma, Alina Beygelzimer, and Irina Rish. 2005. “Statistical Models for
Unequally Spaced Time Series.” In Proceedings of the 2005 SIAM International Conference
on Data Mining. STAM, 626—630.

Fearon, James D. 1994. “Domestic Political Audiences and the Escalation of International

Disputes.” American Political Science Review 88 (03): 577-592.

——— 1998. “Bargaining, Enforcement, and International Cooperation.” International

Organization 52 (02): 269-305.

Fischer, Manuel, Karin Ingold, Pascal Sciarini, and Fr/’ed/’eric Varone. 2012. “Impacts
of Market Liberalization on Regulatory Network: A Longitudinal Analysis of the Swiss

Telecommunications Sector.” Policy Studies Journal 40 (3): 435-457.

102



Foroni, Claudia, and Massimiliano Marcellino. 2013. A Survey of Econometric Methods
for Mixed-frequency Data. Technical Report ECO 2013/02 Department of Economics,

European University Institute Florence: .

Foroni, Claudia, Massimiliano Marcellino, and Christian Schumacher. 2012. U-MIDAS:

MIDAS Regressions with Unrestricted Lag Polynomials. CEPR discussion paper CEPR.
Fuller, Wayne A. 1976. Introduction to Statistical Time Series. John Wiley & Sons.

Gardner, G., Andrew C. Harvey, and Garry D. A. Phillips. 1980. “Algorithm AS 154: An
Algorithm for Exact Maximum Likelihood Estimation of Autoregressive-Moving Average
Models by Means of Kalman Filtering.” Journal of the Royal Statistical Society, Series C
(Applied Statistics) 29 (3): 311-322.

Ghysels, Eric, Pedro Santa-Clara, and Rossen Valkanov. 2004. The MIDAS Touch: Mixed
Data Sampling Regression Models. CIRANO Working Papers 2004s-20 CIRANO.

Green, Donald P., Alan S. Gerber, and Suzanna L. de Boef. 1999. “Tracking Opinion over
Time: A Method for Reducing Sampling Error.” Public Opinion Quarterly 63 (Summer):
178-192.

Gregory, Jr, Stanford W., and Timothy J. Gallagher. 2002. “Spectral Analysis of Candidates’
Nonverbal Vocal Communication: Predicting U.S. Presidential Election Outcomes.” Social

Psychology Quarterly 65 (3): 298-308.

Hénggi, Peter, and Fabio Marchesoni. 2005. “Introduction: 100 Years of Brownian Motion.”
Chaos 15 (2): 026101.

Harvey, A. C., and G. D. A. Phillips. 1979. “Maximum Likelihood Estimation of Regression

Models with Autoregressive-moving Average Disturbances.” Biometrika 66 (1): 49-58.

Hoffman, Matthew D., and Andrew Gelman. 2014. “The No-U-Turn Sampler: Adaptively

103



Setting Path Lengths in Hamiltonian Monte Carlo.” Journal of Machine Learning Research
15: 1351-1381.

Humpherys, Jeffrey, Preston Redd, and Jeremy West. 2012. “A Fresh Look at the Kalman
Filter.” SIAM Review 54 (4): 801-823.

Im, Eric Iksoon, Jon Cauley, and Todd Sandler. 1987. “Cycles and Substitutions in Terrorist

Activities: A Spectral Approach.” Kyklos 40 (2): 238-255.

Jackman, Simon. 2005. “Pooling the Polls over an Election Campaign.” Australian Journal

of Political Science 40 (December): 499-517.

Jones, Richard H. 1981. “Fitting a Continuous Time Autoregression to Discrete Data.”
In Applied Time Series Analysis II, ed. David F. Findley. New York: Academic Press,
651-682.

———. 1984. “Fitting Multivariate Models to Unequally Spaced Data.” In Time Series
Analysis of Irregularly Observed Data, ed. Emanuel Parzen. Vol. 25 of Lecture Notes in

Statistics Springer New York, 158-188.

. 1985. “Time Series Analysis with Unequally Spaced Data.” In Time Series in the

Time Domain, ed. Edward J. Hannan, Paruchuri R. Krishnaiah, and Malempati M. Rao.
Vol. 5 of Handbook of Statistics Amsterdam: North Holland, 157-178.

Jones, Richard H., and Francis Boadi-Boateng. 1991. “Unequally Spaced Longitudinal Data
with AR(1) Serial Correlation.” Biometrics 47 (1): 161-175.

Jones, Richard H., and Lynn M. Ackerson. 1990. “Serial Correlation in Unequally Spaced

Longitudinal Data.” Biometrika 77 (4): 721-731.

Jones, Richard H., and Peter V. Tryon. 1987. “Continuous Time Series Models for Unequally
Spaced Data Applied to Modeling Atomic Clocks.” SIAM Journal on Scientific and

Statistical Computing 8 (1): 71-81.

104



Kalman, Rudolph Emil. 1960. “A New Approach to Linear Filtering and Prediction Problems.”

Transactions of the ASME-Journal of Basic Engineering 82 (Series D): 35-45.

Kellstedt, Paul, E. McAvoy, and James A. Stimson. 1993. “Dynamic Analysis with Latent

Constructs.” Political Analysis 5 (1): 113-150.

Koopman, Siem Jan. 1997. “Exact Initial Kalman Filtering and Smoothing for Nonstationary

Time Series Models.” Journal of the American Statistical Association 92 (440): 1630-1638.

Lanning, Steven G. 1986. “Missing Observations: A Simultaneous Approach versus In-
terpolation by Related Series.” Journal of Economic and Social Measurement 14 (2):

155-163.

Lévy-Leduc, C., E. Moulines, and F. Roueff. 2008. “Frequency Estimation Based on the

Cumulated Lomb-Scargle Periodogram.” Journal of Time Series Analysis 29 (6): 1104-1131.

2

Lomb, Nicholas R. 1976. “Least-squares Frequency Analysis of Unequally Spaced Data.

Astrophysics and space science 39 (February): 447-462.

Manger, Mark S., Mark A. Pickup, and Tom A. B. Snijders. 2012. “A Hierarchy of
Preferences: A Longitudinal Network Analysis Approach to PTA Formation.” Journal of
Conflict Resolution 56 (5): 853-878.

Mariano, Roberto S., and Yasutomo Murasawa. 2010. “A Coincident Index, Common Factors,

and Monthly Real GDP.” Oxford Bulletin of Economics and Statistics 72 (1): 27-46.

Marquardt, Tina, and Robert Stelzer. 2007. “Multivariate CARMA Processes.” Stochastic

Processes and their Applications 117: 96-120.

Martin, Andrew D., and Kevin M. Quinn. 2002. “Dynamic Ideal Point Estimation via Markov
Chain Monte Carlo for the U.S. Supreme Court, 1953-1999.” Political Analysis 10 (2):
134-153.

105



Matyasovszky, Istvan. 2013. “Spectral Analysis of Unevenly Spaced Climatological Time
Series.” Theoretical and Applied Climatology 111 (3-4): 371-378.

McAvoy, Gregory E. 1998. “Partisan Probing and Democratic Decisionmaking Rethinking
the Nimby Syndrome.” Policy Studies Journal 26 (2): 274-292.

Mittnik, Stefan, and Peter Zadrozny. 2005. “Forecasting Quarterly German GDP at Monthly
Intervals Using Monthly Ifo Business Conditions Data.” In Ifo Survey Data in Business
Cycle and Monetary Policy Analysis, ed. Jan-Egbert Sturm, and Timo Wollmershéuser.

Contributions to Economics Physica-Verlag HD, 19-48.

Pickup, Mark A., and Christopher Wlezien. 2009. “On Filtering Longitudinal Public Opinion

Data.” Electoral Studies 28 (3): 354-367.

Pickup, Mark A., and Richard Johnston. 2007. “Campaign Trial Heats as Electoral Informa-
tion.” Electoral Studies 26 (2): 460-476.

Robinson, Peter M. 1985. “Testing for Serial Correlation in Regression with Missing
Observations.” Journal of the Royal Statistical Society, Series B (Methodological) 47 (3):

429-437.

Ruf, Thomas. 2010. “The Lomb-Scargle Periodogram in Biological Rhythm Research: Analysis
of Incomplete and Unequally Spaced Time-Series.” Biological Rhythm Research 30 (August):
178-201.

Ryan, Kevin F., and David E. A. Giles. 1998. “Testing for Unit Roots With Missing
Observations.” In Messy Data: Missing Observations, Qutliers, and Mixed-Frequency Data,
ed. Thomas B. Fomby, and R. Carter Hill. Vol. 13 of Advances in Econometrics JAI Press,
203-242.

Sandler, Todd, and Walter Enders. 2004. “An economic perspective on transnational

terrorism.” Furopean Journal of Political Economy 20 (2): 301 — 316.

106



Savin, N. E., and Kenneth J. White. 1978. “Testing for Autocorrelation with Missing

Observations.” Econometrica 46 (1): 59-67.

Scargle, Jeffrey D. 1982. “Studies in Astronomical Time Series Analysis. [I-Statistical Aspects
of Spectral Analysis of Unevenly Spaced Data.” The Astrophysical Journal 263 (December):
835-85H3.

Schlemm, Eckhard, and Robert Stelzer. 2012. “Multivariate CARMA Processes, Continuous-
Time State Space Models and Complete Regularity of the Innovations of the Sampled
Processes.” Bernoulli 18 (1): 46-63.

Schulz, M, and K Stattegger. 1997. “SPECTRUM: Spectral Analysis of Unevenly Spaced

Paleoclimatic Time Series.” Computers & Geosciences 23 (9): 929-945.

Schweppe, Fred C. 1965. “Evaluation of Likelihood Functions for Gaussian Signals.” IEEE

Transactions on Information Theory 11 (1): 61-70.

Shively, Thomas S. 1993. “Testing for Autoregressive Disturbances in a Time Series Regression

with Missing Observations.” Journal of Econometrics 57 (May): 233-255.

Snijders, Tom A. B. 2001. “The Statistical Evaluation of Social Network Dynamics.”

Sociological Methodology 31 (1): 361-395.

Van det Eijk, Cees, and Robert Philip Weber. 1987. “Notes on the empirical analysis of

cyclical processes.” European Journal of Political Research 15 (2): 271-280.

Van Dongen, H. P. A., E. Olofsen, J. H. Van Hartevelt, and E. W. Kruyt. 2010. “A Procedure
of Multiple Period Searching in Unequally Spaced Time-Series with the Lomb-Scargle
Method.” Biological Rhythm Research 30 (August): 149-177.

Vityazev, Veniamin V. 1996. “Time Series Analysis of Unequally Spaced Data: Intercompari-
son between the Schuster Periodogram and the LS-Spectra.” Astronomical & Astrophysical

Transactions 11 (2): 139-158.

107



Wansbeek, Tom, and Arie Kapteyn. 1985. “Estimation in a Linear Model with Serially
Correlated Errors When Observations are Missing.” International Economic Review 26 (2):

469-490.

. 1989. “Estimation of the Error-Components Model with Incomplete Panels.” Journal

of Econometrics 41 (July): 341-361.

Yang, Yu. 2008. “Estimation for Lévy-driven CARMA Processes”. Ph.D. diss. Colorado

State University.

Zadrozny, Peter. 1988. “Gaussian Likelihood of Continuous-Time ARMAX Models When
Data Are Stocks and Flows at Different Frequencies.” Econometric Theory 4 (April):
108-124.

108



