
A Online Appendix: Additional Text Preparation

Details

A.1 Conversion to Digital Format

Text gathered from a variety of different sources may not be immediately readable by
a computer. First, the data itself might be pictures of text taken from an archive or
hand-written manuscripts that are not yet digitized. In these cases, Optical Character
Recognition (OCR) technologies may be required.1 Even if they have been digitized, texts
may be stored digitally using different encodings and therefore not immediately usable as
one corpus.

A.2 Bag of words

The bag-of-words assumption underlies many statistical models due to its relative sim-
plicity. The simplest method of expanding beyond this approach is to allow each item in
the dictionary to represent a multi-word phrase rather than a single word. Because the
space of ordered word pairs (bigrams) and ordered word triples (trigrams) is significantly
higher than using a single word, this procedure is often coupled with some method of
selecting the most relevant phrases (Jensen et al., 2012; Gentzkow and Shapiro, 2010).
This process can often engender subtle difficulties in interpretation (see for example the
critique of trigrams in Spirling (2012)). More complex approaches have included the use
of string kernels (Spirling, 2011) and word transition distributions (Wallach, 2006). We
choose to focus here on the simple bag-of-words model but emphasize that vocabulary
can be manually modified to include contextually appropriate phrases.

A.3 Additional pre-processing options

As is typically the case in text analysis, the illustrations presented in this paper required
a good deal of preprocessing. In determining how to preprocess our data for each of
these examples, we drew on substantive knowledge of the relevant language, cases, and
questions, and suggest that others do the same. But because no analysis is the same,
researchers may need to preprocess their data in ways not presented in this paper. For
example, users may wish to correct spelling errors, especially when analyzing survey
responses or social media posts where such errors are common. This is easily accomplished
in R with the built-in aspell() function. Users may also wish to expand contractions
(if they are not stemming), to remove punctuation, to make text lowercase (except for

1OCR works by using pattern recognition to identify patterns within the image file that look like
characters and transfer them into machine-encoded text. Some OCR software are dictionary-based,
searching for word within the dictionary that looks most like the image. While OCR software is rarely, if
ever, 100% accurate, clearly-written texts can often achieve accuracy rates of above 90%, which is enough
to understand the content of the text and to use automated content analysis. Even with high error rates,
errors are unlikely to be correlated with most quantities of interest, so the measurement error can be
corrected for. There are many open-source OCR software packages, (see for example FreeOCR: http://
www.free-ocr.com/ or Tesseract: https://code.google.com/p/tesseract-ocr/) and we recommend
that users try out several packages on a given text, as none are perfect, but some may work better with
particular image files. If OCR is not possible it is often possible to pay for data entry.
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proper nouns), etc., most of which can be accomplished easily with tm or txtorg.

B Online Appendix: A Review for Text Analysis

Techniques for Comparativists
In this online appendix, we provide a brief pedagogical overview of supervised and unsu-
pervised methods with an emphasis on choosing the best approach for applied research.
We refer interested readers to Grimmer and Stewart (2013) for more detailed discussion
on particular models, but here we focus more on examples to help applied comparative
politics researchers. We emphasize two aspects of analysis throughout: the processes by
which the analyst incorporates information into the model and the importance of valida-
tion, by which we mean checking model results with substantive knowledge and reference
to the original text.

Oftentimes the virtues and limitations of methods are best illustrated through a fa-
miliar set of documents. In the next few sections we will illustrate methods with toy
examples using a corpus comprised of the last 6 decades of research articles from the
American Political Science Review containing the phrase “comparative politics”. We ob-
tain the word count information from JSTOR’s Data-For-Research site, selecting articles
from 1950-2012. We limit the classification to research articles and choose only articles
in excess of 5 pages (in an attempt to further remove reviews, rejoinders etc.), yielding
417 articles. These texts are accompanied by a variety of metadata elements including
the authors, titles and year of publication. At each stage we point the reader to applied
examples of the methods we discuss.

B.1 Supervised Methods

In their most basic form, supervised methods are a way of replicating work done by the
human analyst on a small scale, to a much larger set of documents. This allows the analyst
to undertake an analysis that one could imagine a human performing with infinite time
but would for all practical purposes be intractable. We start with simple word counting
approaches and their natural extension, document scaling by weighted word counts.

Keywords Methods and Document Scaling The simplest form of supervision is
counting human-selected keywords. The choice to focus on the counts of particular cho-
sen words is itself a case of a very simple supervised model. When the quantity of interest
is precisely represented, keywords can be a conceptually and computationally simple ap-
proach. Some approaches (such as Yoshikoder)2 assist the user in interpreting the text by
placing keywords within “context” (showing example sentences and phrases which con-
tain the keyword). These methods are a helpful validation method but they still assume
that the use of a particular word is the same across different documents regardless of the
context in which it is used.

Figure 1 shows a simple keyword trend tracking the use of the word “causal” in
APSR. This accords with our understanding of a general rise in interest in causal inference
methods over the last 6 decades. While informative, it is important to emphasize that

2http://conjugateprior.org/software/
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Figure 1: Illustration of Simple Keyword trends. This shows the rise in the proportion of
articles in APSR using the word ‘causal.’ This is a suggestive trend which accords with
our understanding of the literature but requires additional supervision from the researcher
to determine how much we can infer. The plot shows the Loess-smoothed estimate of the
expected proportion of articles using the word “causal” with 95% confidence intervals.

this need not indicate that researchers are using causal inference methods or even that
the use of the word is consistent over the time frame. For that we would need to turn to
more complex methods.

A common extension to counting methods is to consider weighted counts. These
methods are most often applied to sentiment analysis where dictionaries encode the va-
lence of individual words, for example, “angry” might get a more negative sentiment score
than “annoyed.” There are dictionaries available for affect, cognitive mechanisms, sen-
timent and various topics (Stone et al., 1966; Pennebaker et al., 2001). However, these
dictionaries were developed for particular types of texts and may not extend well to other
domains (Grimmer and Stewart, 2013).

Dictionaries of weighted terms can also be learned automatically from human anno-
tated task. In this setting, the user assigns texts to (generally extreme ends of) categories
and uses a model to determine words that are most “distinctive” or predictive of that
class. Words that have high use under one class but low use under another are given
higher scores. Care must be taken with the interpretation of continuous scores generated
from these methods. The continuous nature is (generally) derived from the predictive
power of the features under a discrete classification system. This need not always corre-
spond to an intuitive notion of intensity (e.g. “more conservative”) although it does work
well in many cases.3

To emphasize this point we give an example from the APSR corpus. Here we leverage
the authorship metadata to group documents into those which are co-authored and those
which are solo-authored. In order to characterize what is distinctive about the co-authored
articles we create a “co-author” score where we scale higher scores that indicate that the

3Monroe et al. (2008) provide a comparison of various weighting methods of words for the purposes
of feature selection.
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words are more predictive of co-authorship.4 We give the top 10 words for each side
in Table 1. The results suggest that quantitative empirical work is often co-authored

Solo Words Score Coauthor Words Score
1 rearmament -5.061 ethnopolitical 5.259
2 lebanese -4.846 elf 4.212
3 theology -4.788 civics 4.208
4 machiavelli -4.635 humphrey 4.078
5 crops -4.514 contemporaneously 3.952
6 loc -4.444 rd 3.95
7 hitler -4.444 AY 3.866
8 colonization -4.444 pie 3.862
9 cdu -4.444 supervisors 3.845

10 mussolini -4.42 admissible 3.786

Table 1: Top words indicating coauthored or solo-authored work with scaled values.
Words with higher absolute value scores have a stronger connection.

whereas historical and qualitative work is more likely to be solo-authored. The words
don’t necessarily capture a theoretical conception of “collaborativeness”; they are simply
the most predictive of co-authorship.

This example affords us the opportunity to emphasize the importance of validation
in computer-assisted text methods. For readers of comparative politics it may be easy to
look at the set of coauthor words and tell a consistent story which implies a particular
contextual meaning for each word; “elf” refers to the ethno-linguistic fractionalization
index, “rd” refers to regression discontinuity estimators etc. “Humphrey” the reader may
naturally assume refers to Macartan Humphreys, as his research is often quantitative
and is often coauthored. However, examination of the documents in our sample which
contain the word “humphrey” reveals that the finding is driven largely by a few outliers.
One article which uses “humphrey” an astonishing 55 times is titled “Continuity and
Change in American Politics: Parties and Issues in the 1968 Election” (Converse et al.,
1969). The article discusses Vice President Hubert Humphrey, a subject which clearly
has a quite different interpretation. This example illustrates the need for checking model
interpretation against the original texts even when a collection of words appear to tell a
very clear story.

Example Applications of Keyword and Scaling Methods Several good examples
of keyword methods can already be found in the comparative politics literature. Johnston
and Stockmann (2007) use stories from the China Daily to study Chinese attitudes toward
Americans immediately after the 2004 tsunami in South Asia. They identify positive and
negative terms surrounding references to the United States in order to measure attitudes
toward American relief efforts following the tsunami. Stockmann (2011) analyzes how
media marketization in China influences views toward the United States. She finds that
after extensive media marketization in the early 2000s, Chinese newspapers use more
negative words surrounding the United States than positive.

4Specifically we use Taddy (2013)’s inverse regression procedure which fits a regularized multinomial
logistic regression with words as the output and the co-authorship indicator as the predictor. Scores are
essentially the regularized log-odds of word use.
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Scaling is the most widely used automated text analysis within comparative politics
due to its prominent role in the study of partisan ideology. Perhaps the most promi-
nent example is the WordScores method (Laver et al., 2003) for analyzing ideology in the
Comparative Manifestos Project. As this literature is quite well developed in comparative
politics we do not dwell on it at length. For more methodological details on the connec-
tions between scaling methods and supervised learning we refer readers to Lowe (2008);
Beauchamp (Beauchamp); Taddy (2013).

Classification/Prediction Document classification is perhaps the most common form
of supervised learning. In this setting researchers develop a categorization by hand and
use it to label a random subset of the documents which we call the ‘training set.’ The
model learns a set of parameters from the training set which it uses to assign the remaining
documents into our original categories. Classification is most useful in cases where (1)
discrete individual decisions need to be made or (2) where an extensive coding system
already exists.5 There are an enormous set of possible classification algorithms that the
analyst can employ, but their common structure makes it possible to provide general
advice that applies to nearly the entire set.

In order to provide some context, we outline an example workflow for document
classification. The researcher must first develop a categorization scheme which assign each
document to a category in a way that is both mutually exclusive and exhaustive. Best
practice is to develop a codebook which provides sufficient detail that an informed third
party would be able to assign a new document within the existing scheme (Krippendorff,
2012). The researcher would ideally want all of the documents hand-coded into this
categorization scheme, but with a large number documents, hand-coding each individual
document would be too time-consuming and expensive. Instead, we hand code only a
sample, with the algorithm classifying the remaining unseen documents.

To teach the algorithm how to classify, researchers select a (preferably random) sample
of documents to be manually coded by human coders into the categories. In order to
ensure that the categories are consistent across coders, each document is usually coded
by two or more researchers (who are provided with the aforementioned codebook) with
a final arbiter comparing the coding to measure the “inter-coder reliability”, or how
consistent the coding is between researchers. In practice this is often an iterative process
of developing the coding scheme and refining the codebook. Once the coders have achieved
a high inter-coder reliability, the resulting “training set” of coded documents and the
remainder of the uncoded documents are then given to the classifier as a term-document
matrix. Using this representation the algorithm learns the parameters for a model which
can classify unseen documents. This classifier is then applied to the remainder of the
corpus.

A significant advantage of supervised document classification is the relative ease in
evaluating machine performance. The accuracy of the classifier can be checked by man-
ually inspecting new documents and comparing the classifier’s coding to manual cod-

5The canonical example of the first case is spam filtering, where your email system must decide for
each email if it is spam or regular. The Congressional Bills Project which classifies documents according
to the topic system developed by the Policy Agendas Project is an example of the second case (Hillard
et al., 2008).
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ing. With a sufficiently large training set classifier accuracy can be assessed using cross-
validation (Grimmer and Stewart, 2013).

Although it is relatively easy to assess individual document codings, it is often benefi-
cial, although significantly harder, to assess the calibration of the model’s predictions. For
example imagine a setting where we classify emails into ‘spam’ or ‘not spam.’ Assessing
whether an individual item marked ‘spam’ is correctly identified is often trivially easy. It
takes significantly more data to assess whether items marked as 70% likely to be spam
are actually spam 70% of the time in expectation. While many classification algorithms
tend to make strong individual predictions, these predicted probabilities are often overly
confident.

Calibration of the model becomes particularly important when we are interested in
making inference about a group of documents. If, for example, we wanted to assess
what proportion of APSR articles in our corpus are about ‘institutions’ we could train
a classifier and then sum up the predicted probability that each document falls into the
‘institutions’ category. However, if our classifier is poorly calibrated, this estimate of the
group proportions can be severely biased.

One method developed within political science, ReadMe, leverages this particular goal
to provide more accurate estimates of category proportions than classifiers focused on
individual classifications (Hopkins and King, 2010). ReadMe returns only the group cat-
egory proportions and does not provide individual document level categorizations. This
focus on estimating the population proportion correctly allows for increased accuracy but
makes it inappropriate for settings where the classification of each individual document
must be known.

The workflow for using ReadMe is substantially similar to individual document classifi-
cation. The lack of individual document assignments can mildly complicate the process of
validation, but ultimately it is no more difficult than attempting to assess the calibration
of classification probabilities in the individual classifier setting. The entire workflow for
using ReadMe is summarized in the user manual for the software (Hopkins et al., 2010) with
much of the advice also being applicable to the broader set of classification algorithms.

Example Applications of Document Classification King et al. (2013) provide one
recent example of using ReadMe in comparative politics. King et al. (2013) download
millions of blogposts before the Chinese government is able to censor them, then return
to the blog posts later to see whether they were censored, providing one of the first
large-scale measurements of government censorship in China. In one part of the paper,
the authors use ReadMe to test whether censorship in China is focused on removing blog
posts about collective action events or removing blog posts with criticism of the state.
Jamal et al. (nd) provide another example. They examine views of America that are
being expressed in Arabic and on Twitter. Rather than relying on public opinion data to
understand views of America, Jamal et al. (nd) innovate by analyzing millions of tweets
about America. They also create specific categories to analyze responses to events, like
the Boston Marathon bombing.

When and How to Use It Supervised methods are best used when the analyst is
looking to identify a particular quantity within the text. In the case of document classi-
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fication errors within the algorithm can be straightforwardly assessed by comparing the
algorithm’s decisions to the human-created codebook.6 For keyword methods using pre-
constructed dictionaries of words be sure to validate the resulting methods to insure that
they represent the intended concept.

The software tools for document scaling and classification are particularly well devel-
oped. Within the R language, there are numerous packages including RTextTools (Jurka
et al., 2013) for classification and austin for scaling (Lowe, 2013).7

B.2 Unsupervised Methods

Where supervised methods amplify human effort by attempting to replicate human effort
expended at the beginning of the process, unsupervised methods suggest new ways of
organizing texts. This in turn means that human effort is primarily focused on the
interpretation of the results. Thus these methods are useful when seeking to broadly
characterize what a corpus of texts is about without strong a priori assumptions about
what that might mean. While originally used primarily for exploratory analysis, increasing
attention has been paid to using these methods in the context of measurement, generally
in contexts where the development of a coding system would be prohibitively expensive
(Quinn et al., 2010; Grimmer, 2010) .

Keywords and Scaling As in the supervised case we can extend the word frequency
approach to weighted word frequencies. We posit a continuous latent variable which
explains the text such that each document is assigned to lie along a continuum. This
is the approach taken in the Wordfish algorithm for studying political ideology (Slapin
and Proksch, 2008) and is the unsupervised analog of our analysis with the coauthorship
variable used previously. 8

Document Clustering Document clustering assumes that each document belongs to
a single latent group, and this group provides the best explanation for word use. This
approach has been used in political science for analyzing the contents of Senate press
release (Grimmer, 2010) and speech on the floor of the House (Quinn et al., 2010). Clusters
of documents can either each be distinct or nested into hierarchies themselves.

For longer and more complex documents (e.g. our APSR corpus) the assumption
that each document falls within only a single cluster is too restrictive. Mixed-membership
models, such as Latent Dirichlet Allocation (LDA) (Blei, 2012), assume that each word
comes from a single topic, and that each document comes from a mixture of topics. Thus,
a document is represented as the proportion of its words that come from each topic.9

6Specifically we often validate accuracy via cross-validation. See Grimmer and Stewart (2013) for
details.

7Documentation on RTextTools can be found at http://www.rtexttools.com/. Documentation
for austin can be found urlhttp://conjugateprior.org/software/austin/. Both have an excellent set of
examples for getting started.

8Of course there is no guarantee that the recovered dimension will correspond to any specific political
concept (Grimmer and Stewart, 2013). In general, unsupervised scaling methods will characterize the
dominant source of variation in the texts whether that variation is topical, ideological or stylistic. For
other examples of unsupervised scaling methods, see Elff (2013).

9To help distinguish the two types of models we use the term “cluster” when discussing single mem-
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For our APSR corpus we run an LDA model with six topics and in Table 2 display
seven informative words which characterize each topic.

1 press,democratic,international,democracy,countries,variables,institutions
2 elections,election,local,members,models,population,levels
3 military,war,conflict,civil,people,leaders,empirical
4 groups,group,interest,problems,foreign,law,latin
5 behavior,cases,society,soviet,values,issue,approach
6 party,parties,model,electoral,vote,voting,effects

Table 2: Top words for a 6 topic LDA model on the APSR corpus.

We emphasize that these topics are discovered from the texts using the patterns of
word co-occurrences and are not assumed by the researcher. To give a concrete example,
a document mostly coming from topic 2 (about elections and local politics) is “French
Local Politics: A Statistical Examination of Grass Roots Consensus” (Kesselman, 1966)
and it also draws from the 5th topic on behavior and the 6th topic on parties and voting.

When and How to Use Unsupervised Text Models Unsupervised learning is
best applied when the analyst is interested in the contents of a corpus but do not have
strong expectations for its structure. Generally all that is necessary to perform document
clustering or topic modeling is the algorithm of choice and an assumption about the
number of latent groups to be estimated. There is no “correct” specification in a general
sense, but different approaches will provide different types of structure. For example
specifying the number of clusters or topics provides views of the data at different levels
of granularity.

Unsupervised scaling using the Wordfish algorithm (Slapin and Proksch, 2008) is
available in the austin package (Lowe, 2013). The basic LDA model is implemented in
several R packages including lda (Chang, 2012) and topicmodels (Grün and Hornik,
2011).

Choosing a Strategy When choosing a method for automated text analysis the key
is to focus on the best use of human effort. At an abstract level the distinction between
unsupervised and supervised learning is extremely clear: supervised learning is learning by
human-provided example whereas in unsupervised learning those examples are discovered
from the data. In practice the line between the two approaches is somewhat hazier. Nearly
all good coding schemes are developed by a combination of a priori theory and iterative
inspection of the data. Thus even in supervised models, there is a “concept discovery”
process. With supervised learning this comes through model fitting and checking errors,
in unsupervised learning the concept discovery is simply part of the model.

How then should we think about the difference between the two approaches in applied
work? Supervised learning offers a greater degree of control: concepts are completely and
exclusively enumerated. This is a powerful assumption which tends to make models
easier to estimate and results easier to check (because the concept of an error is very well
defined). When the space of possible concepts is easy to define this is considerably more
tractable.

bership models and “topic” when describing “mixed membership models.”
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The choice between supervised and unsupervised learning is subtle in the general
case but often is quite obvious in practice. No matter what you choose it is important to
validate your results. This helps to prevent conceptual slippage between the statistical
model of the text and the theoretical concept which we are claiming to measure. For
approaches to validation see Grimmer and Stewart (2013); Quinn et al. (2010); Lowe and
Benoit (2013).

C Online Appendix: Machine Translation via trans-

lateR
As discussed in the paper great strides have been made in machine translation researcher,
especially by large corporations like Google and Microsoft. This paper makes use of a new
R package translateR to help researchers translate multilingual corpora into a common
language. translateR provides bindings for the Google and Microsoft Translation APIs
and can export translated text in a format that easily works with the stm package or
other text analysis packages.10 translateR has one workhorse function, translate(),
through which it provides access to both supported APIs. translate() takes text in two
formats. First, users can provide as input a dataframe where one column is text and the
remaining are metadata. In this case, translate() returns the original dataframe with
the translated text bound to the original data set. This is important for use with stm,
as the metadata can then be used as covariate information to estimate a structural topic
model for the translated text. Second, users can provide text in the form of a character
vector. This is valuable for users translating a document-term matrix. The column names
of a document-term matrix (i.e., the terms) can be passed to translate() as a vector.
The translated vector can then be used to rename the columns, thus “translating” the
DTM from one language into another.

translateR also provides a number of “sanity checks” to protect users. For instance,
translateR uses the textcat package (Hornik et al., 2012) to confirm that users have
selected the proper source language, a functionality that is very important, given that
simple typos in language can could cost the user money when used with large corpora.
Finally, translateR parallelizes the translation process, thus reducing the runtime nec-
essary to translate an entire corpus. In sum, translateR provides a powerful mechanism
for R users to access cutting edge machine translation tools and in a way that comports
with topic modeling software.11

C.1 Usage

To use the Google API, users must provide a valid API key, available at https://

developers.google.com/translate/v2/getting_started. If a Google API key is passed

10Discussion of the relevant advantages of each, including access cost, is beyond the scope of this
document. Though we note that as of summer 2014, the Microsoft API is that it will accept longer
documents.

11An alternative, less developed, R package for translation is the translate package which accesses the
Google API only and can only process one document at a time, without any of the additional features
discussed above.
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to translate(), the Google API will be used to translate the text. To use the Mi-
crosoft API, users must pass a valid client ID and client “secret value,” available at
http://msdn.microsoft.com/en-us/library/hh454950.aspx. Note that users must
pass to translate() either a Google key or both a Microsoft client ID and a Microsoft
client secret value.

The translateR packages installs with a small dataset constructed from the Enron
corpus (Klimt and Yang, 2004), a corpus constructed from emails sent during the Enron
scandal and in the public domain. The small subset has ten rows and three columns, two
of which are metadata (the email subject and date). The text is simply the body of the
email. The column names are “email,” “date,” and “subject.” In the following example,
we demonstrate different ways in which the software can be used to translate the original
text into German. Package help files contain similar documentation.

# Load example data. Three columns, the text content (‘email’)

# and two metadata fields (‘date’ and ‘subject’)

data(enron)

# Google, translate column in dataset

google.dataset.out <- translate(dataset = enron, content.field = ‘email’,

google.api.key = my.api.key,

source.lang = ‘en’, target.lang = ‘de’)

# Google, translate vector

google.vector.out <- translate(content.vec = enron$email,

google.api.key = my.api.key,

source.lang = ‘en’, target.lang = ‘de’)

# Microsoft, translate column in dataset

google.dataset.out <- translate(dataset = enron, content.field = ‘email’,

microsoft.client.id = my.client.id,

microsoft.client.secret = my.client.secret,

source.lang = ‘en’, target.lang = ‘de’)

# Microsoft, translate vector

google.vector.out <- translate(content.vec = enron$email,

microsoft.client.id = my.client.id,

microsoft.client.secret = my.client.secret,

source.lang = ‘en’,

target.lang = ‘de’)

The full set of arguments for translate() is as follows, though we refer users to
translateR package documentation for details.

• dataset: A dataframe with a column containing the text to be translated.

10

http://msdn.microsoft.com/en-us/library/hh454950.aspx


• content.field: If a dataframe is passed to “dataset”, the name of the column
containing the text must be passed to “content.field”.

• content.vec: A character vector of text. This is an alternative to “dataset”/“content.field”.

• google.api.key: To use the Google API, an API key must be provided. For more in-
formation on getting your key, see https://developers.google.com/translate/

v2/getting_started.

• microsoft.client.id: To use the Microsoft API, a client id and a client secret
value must be provided. For more information on getting these, see http://msdn.

microsoft.com/en-us/library/hh454950.aspx. NOTE: you do not need to ob-
tain an access token. translateR will retrieve a token internally.

• microsoft.client.secret: To use the Microsoft API, a client id and a client se-
cret value must be provided. For more information on getting these, see http:

//msdn.microsoft.com/en-us/library/hh454950.aspx. The client secret value
is a unique identifying string obtained when registering with Microsoft (see the link
for more information). NOTE: you do not need to obtain an access token. trans-
lateR will retrieve a token internally.

• source.lang: The language code that corresponds with the language in which the
source text is written. The translators use different language codes, so select ac-
cordingly. To see a list of language codes, enter getGoogleLanguages() or getMi-
crosoftLanguages() for Google or Microsoft, respectively.

• target.lang: The language code that corresponds with the language into which
the source text is to be translated. The translators use different language codes, so
select accordingly. To see a list of language codes, enter getGoogleLanguages() or
getMicrosoftLanguages() for Google or Microsoft, respectively.

Note that the source.lang and target.lang arguments require language codes spe-
cific to the Google and Microsoft APIs. To make it easier for users to access these codes,
we provide two functions. getGoogleLanguages() and getMicrosoftLanguages() print
the full listing of languages supported by each API and their corresponding code so that
users do not have to look this information up online.

D Online Appendix: Core STM Technical Details
We briefly state the data generating process for the STM, referring readers elsewhere
for additional details (Roberts et al., 2014, nd, 2013). The generative process for each
document (indexed by d) can be summarized as:

1. Draw the document-level attention to each topic from a logistic-normal generalized
linear model based on document prevalence covariates Xd.
~θd|Xdγ,Σ ∼ LogisticNormal(µ = Xdγ,Σ)
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2. Form the document-specific distribution over words representing each topic (k) us-
ing the baseline word distribution (m), the topic specific deviation κk, the content
covariate group deviation κg and the interaction between the two κi.
βd,k ∝ exp(m+ κk + κgd + κi=(kgd))

3. For each word in the document, (n ∈ 1, . . . , Nd):

• Draw word’s topic assignment based on the document-specific distribution over
topics.
zd,n|~θd ∼ Multinomial(~θ)

• Conditional on the topic chosen, draw an observed word from that topic.
wd,n|zd,n, βd, k = z ∼ Multinomial(βd,k=z)

The model is completed with regularizing prior distributions for γ, κ and Σ. Both
prevalence and content covariates are optional, When content covariates are not included
the distribution over β can optionally be optimized directly as in the standard LDA model.
Without prevalence or content covariates, the model reduces to a logistic-normal topic
model (Blei and Lafferty, 2007) rather than LDA as the Logistic Normal allows the topics
to be correlated.

We estimate the model using a variational EM algorithm as implemented in the stm

package in R. All reported covariate effects are estimated in the package as well using a
method of composition style approach to dealing with measurement uncertainty in the
latent topics (Roberts et al., 2014).

E Online Appendix: Topic Correlation Graph Esti-

mation
Here we introduce and discuss two estimation procedures we provide for producing topic
correlation plots both of which are implemented in the stm package. The first method
is conceptually simpler and involves a simple thresholding procedure on the estimated
marginal topic covariance matrix and requires a human specified threshold. The second
method draws on recent literature undirected graphical model estimation and can be
automatically tuned. For Figure 2 in the paper we use simple thresholding measure.

Simple Thresholding Taking the correlation of the MAP estimates for the topic pro-
portions θ yields the marginal correlation of the mode of the variational distribution.
Then we simply set to 0 those edges where the correlation falls below the user threshold.
A method of composition approach can be used to integrate over the uncertainty in the
topic means by repeatedly drawing from the variational posterior for θ and calculating the
correlation. This makes it possible to derive confidence intervals on the topic correlations.

Graph Estimation An alternative strategy is to treat the problem as the recovery of
edges in a high-dimensional undirected graphical model. In these settings we assume that
observations come from a multivariate normal distribution with a sparse precision matrix.
The goal is to infer which elements of the precision matrix are non-zero corresponding
to edges in a graph. In an influential piece, Meinshausen and Bühlmann (2006) showed
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that using sparse regression methods like the LASSO it is possible to consistently identify
edges even in very high dimensional settings. Drawing on this work Blei and Lafferty
(2007) use the Meinshausen and Bühlmann (2006) approach to estimate a topic graph
in the Correlated Topic Model by running a LASSO regression on the variational means.
The variational means are plausibly multivariate normal but are not the true quantity of
interest.

We use the recently developed Nonparanormal SKEPTIC procedure which was de-
veloped to extend previous results to the non-Gaussian case (Liu et al., 2012; Zhao et al.,
2012). Essentially the data are transformed using a Gaussian Copula approach and then
tested using a LASSO as in Meinshausen and Bühlmann (2006). Thus we are able to
run model selection on the true quantity of interest: the MAP estimates for θ. Model
selection for the scale of the L1 penalty is performed using the rotation information cri-
terion (RIC) which estimates the optimal degree of regularization by random rotations.
The authors note that this selection approach has strong empirical performance but is
sensitive to under-selection of edges (Zhao et al., 2012). We choose this metric as the
default approach to model selection to reflect social scientists’ historically greater concern
for false positive rates as opposed to false negative rates.

The Nonparanormal SKEPTIC procedure has been shown to have excellent theoret-
ical properties and empirical success in large genomics data sets (Liu et al., 2012). In
high-dimensions (a large number of topics in our case) the procedure can be shown to
have optimal parametric convergence rates even when the data are truly Gaussian. The
procedure also has the advantage of identifying significant negative relationships between
topics and effectively visualizing those for the user is a matter of future research.

We note that in models with low numbers of topics the simple procedure and the
more complex procedure will often yield identical results. However, the advantage of the
Nonparanormal SKEPTIC procedure hat we outline here is that it scales gracefully to
models with hundreds or even thousands of topics - specifically the set of cases where
some higher level structure like a correlation graph would be the most useful.

F Online Appendix: Additional Information on Em-

pirical Examples

F.1 Fatwah Analysis

The Fatwah texts come as raw Arabic texts, so preprocessing is necessary. We first clean
the text of punctuation marks and stray characters, and standardize some variants of
Arabic letters that are functionally equivalent. We then remove numbers, reflecting our
belief that these are not important for differentiating topics. We also believe that stop
words are not important for our goal of uncovering the topics discussed by Muslim clerics
so we remove stop words according to a custom list we developed in Arabic. We then
remove prefixes and suffixes from remaining words using the “light 10” Arabic stemmer
(Larkey et al., 2007) with minor modifications and implemented through the python
extensibility available in txtorg. Stemming is appropriate for this application because
we expect topics to be primarily related to the core concepts conveyed by each stem,
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rather than specific prefixing, infixing, or suffixing. After preprocessing the Arabic text
as described, we split the corpus into tokens by dividing the text at spaces in the text and
removing any remaining whitespace. From these tokens, we construct a document-term
matrix that can be read into stm.

F.2 Snowden Analysis

In this section, we provide additional detail concerning the Snowden analysis, including
preprocessing, estimation, and interpretation of additional topics not discussed in Section
4.2, and also alignment across the two translation approaches.

F.3 Preprocessing

In the paper we analyze unique tweets, leaving the analysis of a combined retweet/original
tweet corpus to future work which could study the intensity of particular messages. For
both the Arabic and Chinese, we removed exact duplicates. However, some retweets are
not exact matches, for any number of reasons. To address this issue in the Arabic corpus,
we also removed tweets containing the string “RT”, which signifies a retweet. For the
Chinese corpus, we removed text containing the phrase, zhuanfa weibo, which is used to
identify retweets, translating “forwarded Weibo.”

To preprocess the Chinese text for full text translation, after translating the text, we
stemmed the corpus and removed stopwords and infrequent words. For the document-
term matrix translation, we first segmented the chinese corpus using the Stanford Word
Segmenter (Chang et al., 2008; Tseng et al., 2005), though we also could have accomplished
this with txtorg. Then, with both the Chinese and Arabic corpora, we converted the
remaining terms to lowercase, stemmed them, removed stopwords, and removed all terms
less than two characters in length. Following this procedure, we created a document-
term matrix from the segmented corpus, then translated the vocabulary and combined
any columns (terms) that translated into the same English term. We removed infrequent
terms and then conducted the analysis on the remaining.

F.4 Alignment of Asylum, Human Rights, and Attack topics

To examine the alignment between topics estimated with full text translation versus
document-term matrix translation, we marginalize over the betas, convert the vocabulary
to lower case, and merge the betas by vocabulary. We then calculate the correlation across
the two translation methods and generate the correlation plot displayed in Figure2.

The “Human Rights” topic in full text translation is that with the frequent words
“american,” “countri,” and “peopl,” which matches to the “Human Rights” topic in the
DTM translation with frequent words “american,” “country,” and “traitor.” This match
can be seen in row 3, column 5.

The “Attack” topic in full text translation is that with the frequent words “china,”
“newspap,” and “snowden,” which matches to the “Attack” topic in the DTM translation
with frequent words “china,” “american,” and “chinese.” This match can be seen in row
15, column 1.

The “Asylum” topic in full text translation is that with the frequent words “asylum,”
“ecuador,” and “snowden,” which matches to the “Asylum” topic in the DTM translation
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with frequent words “ecuador,” “shelter,” and “political.” This match can be seen in row
12, column 10.

As evident in the figure, each pair matches well with its partner but the topics of
interest are also sometimes correlated with a third topic. Thus, they appear to be identi-
fying a common underlying topic, though we caution readers from drawing too strong a
conclusion, as they are not (and cannot be expected to be) perfectly correlated.

F.4.1 Additional topics

Figure 3 displays the topics and the expected topic proportions for the full text translation,
while Figure 4 does the same for the DTM translation. In Figure 3, the “Human Rights,”
“Attack,” and “Asylum” topics (discussed at length in Section 4.2) are the 7th, 12th, and
5th, respectively (counting down from the top). In the Figure 4, they are the 1st, 8th, and
5th, respectively.

For the sake of brevity, we discussed only those topics in the body of the paper.
However, other topics are potentially interesting. For instance, in the text translation,
we observe a topic about signing a petition to stand with Snowden and stop the fighting.
The “Petition” topic is associated with terms like “snowden”, “spi”, “share”, “edward”,
“accus”, “stop”, and “pheoniz”. One related tweet on Weibo reads (after translation),
“Stand with Edward Snowden # #Snowden! BarackObama - Stopped spying #NSA.
Signed the petition and share.” It has an expected topic prevalence of 6.22%.

G Online Appendix: Benchmarking common pre-processing

tools
As the total volume of text increases, the ability to efficiently manage text at scale becomes
important. We argue here that once researchers start to work with larger volumes of
text, an index-based management system like that provided by txtorg quickly becomes
essential. An index is a data structure that allows the user to search the full corpus without
without scanning every document, allowing for fast search operations even with millions
of documents. The Lucene-powered index is essentially represented as a file containing a
list of all the terms in the corpus, along with a link to the specific documents in which
that term appears. Thus, instead of scanning every document in search of a particular
term, txtorg scans the list of all the unique terms in the index, locates the match, and
returns the documents linked to that term. In addition to searches through the corpora,
txtorg also permits fast searches of metadata and joint searches of both metadata and
text. txtorg can handle complex queries, including regular expressions, booleans, and a
host of Lucene-supported options.

Once txtorg reads in a corpus, a new Lucene index is created and the original corpus
may be discarded or stored elsewhere. This new index is considerably smaller than the
original data permitting local storage of what might otherwise be an unwieldy corpus.12

From the Lucene index, a user can export a DTM even if the original documents are not
available.

12For example, we index an Arabic corpus of size 195.3 MB, which yields an index of size 78.1 MB.
The relationship between corpus size and index size is approximately logarithmic rather than linear.
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america,quot,snowden

snowden,russia,washington

edward,snowden,former

world,freedom,want

snowden,spi,share

obama,chines,snowden

state,unit,snowden

secur,nation,snowden

china,snowden,prism

govern,snowden,internet

snowden,report,plane

will,snowden,issu

snowden,ecuador,asylum

hong,kong,snowden

Figure 2: Correlation between topics in both translation approaches. The vertical axis la-
bels topics from full text translation and the horizontal access labels those from document-
term matrix translation.

16



0.00 0.05 0.10 0.15 0.20 0.25 0.30

Topics, Full Text Translation

Expected Topic Proportions

Topic 7: obama, chines, snowden, messag, new, peopl, data

Topic 10: china, snowden, prism, deliv, network, chines, quotprism

Topic 13: will, snowden, issu, relat, event, threaten, hero

Topic 11: govern, snowden, internet, communic, network, china, britain

Topic 9: secur, nation, snowden, agenc, leak, said, secret

Topic 12: snowden, report, plane, now, worri, person, today

Topic 6: snowden, spi, share, edward, accus, stop, phoenix

Topic 2: america, quot, snowden, comment, first, fbi, time

Topic 5: world, freedom, want, right, snowden, peopl, support

Topic 8: state, unit, snowden, countri, return, said, extradit

Topic 14: snowden, ecuador, asylum, polit, foreign, iceland, request

Topic 15: hong, kong, snowden, govern, charg, leav, espionag

Topic 4: edward, snowden, former, inform, intellig, leak, cia

Topic 3: snowden, russia, washington, intern, news, snowdon, may

Topic 1: snowden, moscow, russian, airport, russia, putin, still

Figure 3: All Topics for Snowden Full Text Translation Model.
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Topics, Term−by−Term Translation

Expected Topic Proportions

Topic 6: informat, obama, snowden, said, data, remain, ask

Topic 9: one, month, snowden, peopl, expose, live, speak

Topic 8: can, announc, snowden, possibl, readi, will, didnot

Topic 13: new, http, snow, snowden, may, get, chines

Topic 5: snowden, govern, charg, usa, claim, toth, official

Topic 4: hongkong, us, event, snowden, newspap, relat, across

Topic 10: snowden, leak, program, issue, founder, traitor, hero

Topic 12: china, usa, network, govern, snowden, attack, global

Topic 11: putin, snowden, request, airport, confirm, still, shelter

Topic 3: say, washington, russia, snowden, want, look, passport

Topic 2: ecuador, snowden, america, state, asylum, head, next

Topic 14: moscow, snowden, russian, russia, go, report, toth

Topic 7: quot, reveal, monitor, prism, commun, secret, britain

Topic 15: intellig, american, edward, employe, snowden, washington, call

Topic 1: snowden, spi, edward, also, peopl, countri, arrest

Figure 4: All Topcis for Snowden DTM Translation Model.
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Software txtorg TM

Index DTM Corpus Object DTM
January, 1994 14.83s 53.23s 34.606s 34.629s
(one month; 6,599 documents)
January - December, 1994 174.83s 867.34s 152.566s 1232.507s
(twelve months; 75,303 documents)
January 1994 - December 1998 853.65s 4023.47s 922.255s FAILED
(five years; 389343 documents)
January 1994 - December 2003 1643.83s 7235.98s FAILED FAILED
(ten years; 802353 documents)

Number of languages stemmed >50 14
Number of languages stop word removal >50 15
Native segmentation support Chinese, Japanese, Korean 7
Index based fast searching 3 7
Outputs associated meta-data 3 7
Multi-corpora management 3 7

Table 3: Results from benchmarking txtorg against TM on three ranges of New York
Times data. All times in seconds. Document length will have an effect on run times.
FAILED indicates that R either froze or threw a memory allocation error.

A direct consequence of the index based system is speed in producing the DTM.
To demonstrate the speed advantages of an index based system, we benchmark txtorg

against the commonly recommended R package, TM (Feinerer et al., 2008).13 TM provides
a framework for preprocessing, in which corpora are read into R, after which they may be
preprocessed and then converted into a DTM object. Though not perfectly analogous, we
compare the time necessary to create a corpus object in TM to the time necessary to create
an index in txtorg, and compare the time necessary to create a DTM object in TM to that
necessary to write a DTM in txtorg. We compare the runtime for TM to that of txtorg
on several differently sized corpora from the New York Times. The results from this
comparison are shown in Table 3, which clearly demonstrates that while the construction
of the index can be nontrivial, it provides a flexible, fast framework for the creation of
document-term matrices. Moreover, because users only need to create an index once for
any given corpus, moving the computational burden to the indexing stage is prudent, as
it makes all subsequent operations faster.14

13TM is a superb package, offering a range of functions useful for text mining. But because it is not an
index based system, it suffers in terms of speed and ability to handle large corpora.

14txtorg outputs several different file formats - primarily, a sparse matrix format and a flat CSV, and
hence the corpus can be exported in a form easily read into any major text processing software such as
the Topicmodels package in R.
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