Supplementary Appendix: Imai, Kosuke and Kabir Kahnna. (2016). "Improving Ecological Inference by Predicting Individual Ethnicity from Voter Registration Records." *Political Analysis* doi: 10.1093/pan/mpw001

A Appendix

A.1 Name Merging Procedure

In order to determine the prior probability $Pr(R_i = r | S_i = s)$, we use the Census Surname List and Spanish Surname List. For any surname S_i that appears on the Spanish Surname List, we set the prior probability to 1 for Latinos and 0 for every other racial group. For the remaining surnames, we use the more comprehensive Census Surname List. However, not all of the surnames in the voter files appear in the Census Surname List. This sometimes occurs because surnames are "double barreled," i.e. two names separated by a hyphen or space. We take the following steps in order to merge as many surnames as possible with the Census list. Each step only applies to names that were not matched in a previous step.

- 1. Capitalize all surnames and attempt to match with Census list.
- 2. Remove spaces from surnames and match again.
- 3. Split double-barreled names apart, and attempt to match first half of name.
- 4. Split double-barreled names apart, and attempt to match second half of name.
- 5. Impute priors for remaining names using overall U.S. race distribution.

A.2 Expectation-Maximization Algorithm

Define the following model of partisanship,

$$\psi_{R_i G_i X_i}^p = \Pr(P_i = p \mid G_i, R_i, X_i) \tag{11}$$

This model may be non-parametric, as done in this paper, or parametric (e.g., logistic regression). For the notational simplicity, define $\phi^r_{G_iX_iS_i} = \Pr(R_i = r \mid G_i, X_i, S_i)$, which is observed. Note that R_i is missing data. Then, the complete-data log-likelihood is,

$$\sum_{i=1}^{n} \sum_{p \in \mathcal{P}} \sum_{r \in \mathcal{R}} \mathbf{1}\{P_i = p, R_i = r\} \left(\log \psi_{rG_iX_i}^p + \log \phi_{G_iX_iS_i}^r\right)$$
(12)

Then, in the E-step, we take the expectation of the above complete-data log-likelihood function conditional on the observed data (i.e., the Q-function),

$$\sum_{i=1}^{n} \sum_{p \in \mathcal{P}} \sum_{r \in \mathcal{R}} \pi_{pG_i X_i S_i}^r \mathbf{1}\{P_i = p\} \left(\log \psi_{rG_i X_i}^p + \log \phi_{G_i X_i S_i}^r\right)$$
(13)

where

$$\pi_{pG_{i}X_{i}S_{i}}^{r} = \Pr(R_{i} = r \mid P_{i} = p, G_{i}, X_{i}, S_{i})$$

$$= \frac{\psi_{rG_{i}X_{i}}^{p}P(X_{i} \mid R_{i} = r, G_{i})P(G_{i} \mid R_{i} = r)\Pr(R_{i} = r \mid S_{i})}{\sum_{r' \in \mathcal{R}} \psi_{r'G_{i}X_{i}}^{p}P(X_{i} \mid R_{i} = r', G_{i})\Pr(G_{i} \mid R_{i} = r')\Pr(R_{i} = r' \mid S_{i})} \quad (14)$$

The M-step maximizes the Q-function with respect to the model ψ_{rgx}^p . In the nonparametric model as done in our empirical application, we update ψ_{rgx}^p as,

$$\hat{\psi}_{rgx}^{p} = \frac{\sum_{i=1}^{n} \mathbf{1}\{G_{i} = g, X_{i} = x\}\pi_{pgxS_{i}}^{r}\mathbf{1}\{P_{i} = p\}}{\sum_{i=1}^{n} \mathbf{1}\{G_{i} = g, X_{i} = x\}\pi_{pgxS_{i}}^{r}}.$$
(15)

We repeat the E-step and M-step until convergence. Finally, equation (14) gives the predicted probability of individual race based on this methodology.

A.3 Probing the Conditional Independence Assumption

We probe the conditional independence assumption in equation (1) by comparing $P(S_i, G_i)$ against the product of the marginals $P(S_i) \times P(G_i)$. These two quantities should be equal to each other within a racial category under the conditional independence assumption. We compare the distribution of absolute residuals from this comparison with and without conditioning on race. Figure 2 presents the quantile-quantile plot. Conditioning on race substantially decreases absolute residuals for each racial group.

A.4 Comparing Precinct-Level Data from Census and Voter File

We examine whether the Census and voter file data yield comparable estimates of racial composition by precinct. One possible reason why the demographic information does not improve the performance of our methods is the potential discrepancy between the Census and voter file data. We plot Census and voter file estimates of race by precinct against each other in Figure 3, separately for males and females. With the exception of Asians, the two estimates are highly consistent with one another, suggesting that measurement error is not a problem at the precinct level.

We also reran our race predictions using voter file, rather than Census, estimates of age, sex, and precinct conditional on race. Doing so does not substantially reduce error rates, as shown in Table 3, suggesting that data issues do not explain the ineffectiveness of demographics in predicting race, over and above surname, geolocation, and party.

Quantile-quantile Plots of Distributions of Surname-by-County Absolute Residuals. These residuals represent the Plots compare the absolute residuals with (vertical axis) and without (horizontal axis) conditioning on race. Conditioning on race differences between $P(S_i, G_i)$ and $P(S_i)P(G_i)$, which are estimated from the data using the corresponding sample proportions. generally reduces the size of absolute residuals, suggesting that the conditional independence assumption may be appropriate. Figure 2:

		Name, Precinct, Na		Name, P	ame, Precinct, Party,		
		Demo	ographics	Demographics			
		Census	Voter File	Census	Voter File		
Overall	error rate	.159	.148	.151	.140		
White (66%)	false negative	.056	.059	.059	.062		
	false positive	.305	.267	.269	.231		
Black (14%)	false negative	.394	.335	.305	.247		
	false positive	.024	.028	.028	.032		
Latino (14%)	false negative	.162	.139	.170	.147		
	false positive	.037	.036	.036	.035		
Asian (2%)	false negative	.571	.468	.571	.466		
	false positive	.007	.006	.007	.006		

Table 3: The Accuracy of Race Predictions Using the Aggregate Demographic Data in Each Precinct Based on Either the Census or Voter File Data. The results show that the use voter file does not substantially improve the predictions, thereby indicating that discrepancies between the Census and voter file data are unlikely to account for the ineffectiveness of aggregate demographic characteristics in improving the prediction of individual race.

A.5 Additional Empirical Results

	Overall	Whit	tes	Blac	ks	Latin	IOS	Asia	ns
Predictors	Error Rate	FN	FP	FN	FР	FN	FP	FN	FP
Name Only	.215	.047	.523	.839	.011	.193	.037	.540	.006
with survey									
Name, Precinct	.158	090.	.294	.381	.027	.150	.039	.519	200.
Name, Precinct, Demo	.159	.056	.305	.394	.024	.162	.037	.571	200.
Name, Precinct, PID	.151	.065	.257	.290	.033	.158	.038	.520	200.
Name, Precinct, Demo, PID	.151	.059	.269	.305	.028	.170	.036	.571	200.
without survey									
Name, Precinct, PID	.155	.059	.285	.362	.026	.148	.039	.516	200.
Name, Precinct, Demo, PID	.157	.058	.291	.370	.025	.160	.038	.563	.008
with survey									
Name, Block	.152	.059	.266	.320	.026	.155	.038	.533	200.
Name, Block, Demo	.186	.068	.247	.290	.029	.210	.039	.577	600.
Name, Block, PID	.145	.061	.237	.249	.029	.162	.037	.532	200.
Name, Block, Demo, PID	.180	069	.229	.250	.030	.212	.039	.576	.010
without survey									
Name, Block, PID	.151	.061	.255	.301	.026	.153	.038	.524	.008
Name, Block, Demo, PID	.189	.074	.238	.277	.032	.213	.040	.570	.011
4: Empirical Validation of Re	ce Classifica	ttion Usir	ig the Fl	orida Re	gistratio	n Records	5. The ta	able disp	lays the ov

rerall classification error rate, and false negative (FN) and false positive (FP) rates for White, Black, Latino, and Asian voters using our proposed prediction method (with and without survey data about the conditional probability of party ID given race). We classify each voter to the racial category with the highest predicted probability. Each row corresponds to predictions based on different sets of information. We start with Census Bureau's surname list and then add information about the voter's precinct, demographics (age and gender), and party registration (PID). N = 9, 247, 810. Table

	Goodman's		Name-	Name-only		Bayesian	
	multivariate regression		classific	cation	classific	eation	
	Bias	RMSE	Bias	RMSE	Bias	RMSE	
Precincts							
Whites	.005	.071	003	.016	005	.016	
Blacks	077	.147	006	.075	002	.075	
Latinos	099	.236	.007	.034	.004	.038	
Asians	.219	.683	008	.135	006	.133	
Others	030	.479	012	.272	029	.253	
Districts							
Whites	.011	.040	006	.011	003	.005	
Blacks	110	.174	.002	.012	004	.011	
Latinos	228	.413	.017	.021	.005	.012	
Asians	.264	.763	001	.021	003	.020	
Others	009	.499	011	.048	060	.078	

Table 5: Additional Results for Bias and Root Mean Squared Error (RMSE) of Predicted Turnout by Race across 8,828 Precincts and 25 Congressional Districts in Florida. Goodman's multivariate regression, name-only classifications (based on the Census surname list), and our proposed Bayesian classifications. Precinct-level bias and RMSE are weighted by the number of voters in each precinct.

Goodman's					Name-only		Bayesian	
	regres	ssion	King'	s EI	predic	etion	predic	ction
	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE
Whites	017	.065	.015	.022	002	.008	002	.007
Blacks	069	.130	071	.178	.005	.067	.003	.064
Latinos	259	.486	250	.364	.042	.092	.018	.074
Asians	192	.808	545	.612	.077	.167	.049	.151
Others	220	.580	266	.467	.056	.113	.028	.094

Table 6: Bias and Root Mean Squared Error (RMSE) of Predicted Turnout by Race across 2,567 Racially Homogenous Precincts in Florida. We evaluate Goodman's regression, King's EI, name-only prediction, and our proposed Bayesian prediction method. The Bayesian method outperforms the other methods, Goodman's regression and the EI in particular. While Goodman's regression and King's EI use only precinct-level turnout and racial composition, the proposed Bayesian methodology uses name, residence location, and party registration of voters. Bias and RMSE are weighted by number of voters in each precinct.

	Whites	Blacks	Latinos	Asians	Others				
Name Only									
False Negative	.720	.717	.666	.645	.639				
False Positive	.696	.723	.682	.650	.657				
Difference	.024	006	016	006	018				
Name, Precinct, and Party									
False Negative	.698	.714	.670	.646	.640				
False Positive	.691	.671	.667	.648	.600				
Difference	.007	.042	.003	002	.040				

Table 7: Turnout among False Negatives and False Positives. The table displays the actual turnout rate among voters that we misclassify based on both the name-only and the Bayesian prediction based on name, precinct, and party registration. We calculate the turnout rate among both false negatives and false positives, as well as the difference between the two. We find that the differences are small on average, indicating that turnout is independent of classification error.