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The analysis reported in “A New Measure of Policy Spending Priorities in the American

States” uses a spatial proximity model to represent state programmatic expenditures. This

is quite different from the approach used in most other studies, which employ techniques

based upon the factor analytic model to represent state policy outputs (spending and other-

wise). By definition, models are abstract depictions of real-world phenomena. As such, it is

inappropriate to say that any model is “correct” or “incorrect.” Instead, a model’s adequacy

should be judged according to the degree to which the empirical data can be reproduced from

the components of the model, itself– a property that is sometimes called the model’s “ex-

planatory power.” And, given two different models with equal levels of explanatory power,

the principle of parsimony is usually applied; that is, the simpler model is preferable (e.g.,

Kaplan 1964; King, Keohane, Verba 1994).

Using the preceding criterion, the spatial proximity model is generally better than the

factor analytic model for representing state policy commitments because it produces lower-

dimensioned– and hence, simpler– depictions of the data. This contrast between spatial and

factor representations of empirical data has long been recognized in the literature on scaling

methods and dimensional analysis (e.g., Coombs 1964; Weisberg 1972; 1974; Davison 1983;

Jacoby 1991; Van Schuur and Kiers 1994). The difference stems from the nature of the

respective models and their associated geometry.

The factor analytic model represents linear correlations between columns (or rows) of the

data matrix as angles between vectors. If the data contain nonrandom patterns which are

also nonlinear in form, then a factor analysis will almost certainly produce “extra” factors

in order to account for the nonlinearities. This is not necessarily the case with the spatial

proximity model, which represents entries in the data matrix as distances between points.

These distances can readily incorporate a variety of nonlinear data patterns.

The higher dimensionality that is virtually inevitable in the factor analytic approach (un-

der certain circumstances) can be demonstrated quite easily, using some simple, hypothetical

data. Table 1 shows a data matrix. The rows represent eleven “states” (labeled s1 through



s11) and the columns represent three “policies” (labeled A, B, and C). The cells contain

state policy “expenditures,” so that entry xij is the amount state i spends on policy j.

Table 2 shows the correlation matrix for the policies. Note that the “total variance” in

the correlation matrix (represented by the sum of the main diagonal entries) is 3.0, since

each of the variables is standardized to a variance of one, and there are three variables.

If this correlation matrix is used as input to a factor analysis, it produces two orthogonal

factors. Figure 1 shows the resultant factor space and Table 3 gives the factor pattern

coefficients, along with the communalities and the eigenvalues. Speaking informally, the

communalities give the variance explained in each of the variables, while the eigenvalues

give the variance explained by each factor. The sum of the communalities is 3.0, as is the

sum of the eigenvalues. Hence, the factor solution accounts for 100% of the variance in the

input data. Policies A and C load at opposite ends of the first factor. Policy B, alone,

has a large loading on the second factor. For present purposes, the specific configuration of

factor coefficients is less important than the fact that it takes two factors (or dimensions) to

represent the data.

Now, let us fit a spatial proximity model to the same hypothetical data (i.e., from Table

1). The rule used to construct the model is simple: Fourteen points (representing s1 through

s11, A, B, and C) are arranged along a continuum such that the distances between state

points and policy points (in the unidimensional case, distances can be shown as dij = |si−pj|,

where i ranges from 1 to 11, and pj is either A, B, or C) are inversely proportional to the

amounts that states spend on the respective policies. That is, dij = k − mxij, where m is

a constant of proportionality and k is a constant that is at least as large as the maximum

value in the original data matrix. For the present example, we will set m = 1 and k = 10.

Figure 2 shows one possible dimension that could be constructed using this modeling

approach and Table 4 gives the resultant distances between state points and policy points.

Now, the correlation between the distances in Table 4 and the input data values in Table 1

is -1.00; the R2 value is 1.00. So, the spatial proximity model also accounts for 100% of the
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variance in the data. But, it does so with a single dimension, rather than the two that were

required in the factor analytic approach.

Of course, the results presented here occur as a result of the simulated data employed

in the illustrative analysis. So, it is important to ask: Under what circumstances will

this difference between the two models be manifested in empirical data? One situation is

particularly relevant for the present research context: A data matrix that simultaneously

contains bipolarity across certain variables and consensus in others. For example, in Table

1, states that spend a large amount on policy A spend very little on policy C and vice versa.

But, all states devote at least a moderate amount of resources to policy B (the smallest

expenditure for B is five, while the minimum values for A and C are both zero). This drives

down the correlations between spending on B and spending on the other policies.

This kind of situation is very likely to occur in the context of real-life state policy expen-

ditures. States have some discretion to allocate resources selectively across certain kinds of

policies. But, there are also certain services that all states must provide, regardless of other

political or socioeconomic factors and preferences.

For example, education and welfare comprise the largest segments within every state’s

budget (National Governor’s Association et al. 2006). The mean proportions of spending

devoted to these two policy areas across the 1982-2005 time period are 0.410 and 0.288,

respectively. None of the other seven policy areas come close to these values; highway

spending is greatest, with a mean proportion of only 0.099. The remaining policy areas all

show mean proportions smaller than 0.050. At the same time, there is much less variability

across the states in the proportions allocated to education and welfare than to the other

policy areas. The coefficient of variation (defined as CVX = (100SX)/x̄) is the appropriate

summary statistic in this context, because it expresses variability relative to the average size

of the variable values. The coefficients of variation for education and welfare are 11.729 and

20.196, respectively. The values for the other seven policy areas are all much larger, ranging

from 28.652 (for corrections) to 70.837 (for highways).
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Thus, state policy spending does exhibit a combination of bipolar and consensual pat-

terns. For this reason, the spatial proximity model is preferable to the factor analytic model

for representing state policy spending. Again, it is not that the former is “right” and the

latter is “wrong.” Instead, the spatial proximity model requires fewer dimensions– i.e., it is

a simpler representation– than the factor analytic model.
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Table 1: Hypothetical data on eleven states’ expenditures across three policy areas.

Policy

A B C

s1 10 5 0

s2 9 6 1

s3 8 7 2

s4 7 8 3

s5 6 9 4

s6 5 10 5

s7 4 9 6

s8 3 8 7

s9 2 7 8

s10 1 6 9

s11 0 5 10

Table 2: Correlation matrix for hypothetical state expenditures on three policy areas.

A B C

A 1.00 0.00 -1.00

B 0.00 1.00 0.00

C -1.00 0.00 1.00



Table 3: Factor pattern coefficients (or “factor loadings”), communalities, and eigenvalues
from factor analysis of hypothetical state expenditure data.

Factors

Factor 1 Factor 2 Communalities

A 1.00 0.00 1.00

B 0.00 1.00 1.00

C -1.00 0.00 1.00

Eigenvalues 2.00 1.00

Note: These factor results are based upon a principal axis factor analysis. Prior commu-
nality estimates were set to one for all three variables. The solution is not rotated,
but this factor configuration is identical to a varimax rotation. Factor scores for the
eleven observations are not shown.



Table 4: Interpoint distances obtained from the spatial proximity model of hypothetical
state expenditures.

Policy Points

State Points A B C

s1 0 5 10

s2 1 4 9

s3 2 3 8

s4 3 2 7

s5 4 1 6

s6 5 0 6

s7 6 1 5

s8 7 2 4

s9 8 3 3

s10 9 4 2

s11 10 5 1

Note: Each cell entry in Table 4 represents the distance between a state point and a policy
point in Figure 2. For example, the distance from the s1 point to the A point is 0,
the distance from the s1 point to the B point is 5, and so on.



Figure 1: Factor space obtained from factor analysis of hypothetical state expenditure data.
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Figure 2: Spatial Proximity Model of Hypothetical State Expenditure Data.
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