Supplemental Text 1. Analysis of Radiocarbon Dates

Our analysis of radiocarbon dates consists of two components: (1) the identification of problematic dates, which we exclude from subsequent analyses and chronology-building; and (2) the application of Bayesian statistics to refine remaining valid dates. We should emphasize that the former is the most important part of chronology-building. The results of Bayesian analysis also depend on the effective detection of questionable dates.

Identification of Problematic Dates

The process of eliminating problematic radiocarbon dates is called chronometric hygiene by some scholars (Fitzpatrick 2006; Nolan 2012; Spriggs 1989; Taché and Hart 2013). Scholars have suggested various criteria for identifying questionable dates, which are roughly classified into the domains of chronometric issues and archaeological interpretation (Blockley and Pinhasi 2011; Collett and Robertshaw 1983; Inomata et al. 2013; Pettitt et al. 2003; Telford et al. 2004; Waterbolk 1971). The former concerns measurement errors, sample contamination, pretreatments, reservoir effects, and other issues that are dealt with primarily at radiocarbon dating laboratories. The latter includes the association of samples with cultural features, stratigraphic integrity, sample taphonomy, and agreement with ceramic phases, all of which need to be evaluated before samples are sent to labs and after lab results are received. The old wood problem, or the difference between the growth date of dated plant material and its final deposition date, crosscuts the two domains. We should note that many studies on chronometric hygiene concern issues of Paleolithic or Neolithic periods, initial colonization, and other cases of early occupation (e.g., Hunt and Lipo 2006; Waters and Stafford 2007; Wilmshurst et al. 2011). Our study builds on these earlier efforts, but we tailor our approach specifically to the nature of our data set and for the archaeological settings of Kaminaljuyú and southern Mesoamerica, which are characterized by densely aggregated settlements, large buildings, and long continuous occupation.

The most serious problem for radiocarbon dating in southern Mesoamerica, as we perceive it, is the redeposition of old charcoal resulting from long continuous occupation in the same locations and frequent rebuilding using old fill materials (Pendergast 2000). This problem is further compounded by old wood problems, which derive from the use of large tropical trees, the presence of durable buildings that stood for many years, and the long use lives of some wooden objects that may have been passed down through generations as heirlooms. The use of annual

or short-lived species or parts—such as maize grains and seeds—for radiocarbon dating would avoid the old wood problem, but we still need to consider the possibility of redeposition for these materials. Human and animal skeletal materials from secure contexts may eliminate both the stratigraphic mixing and old wood problems, but marine and freshwater reservoir effects may make their radiocarbon measurements substantially older than their true ages unless their diets consisted exclusively of terrestrial materials (Culleton 2006; Keaveney and Reimer 2012). Given these factors, when problematic radiocarbon dates are not eliminated, resulting chronologies tend to be older than they should be. Redeposited charcoal and old wood are not evident at the time of excavation. Their detection needs to rely largely on comparison among multiple radiocarbon dates after lab results are received. All of the samples examined in our study are charcoal, and none are described as annual or short-lived species or parts. Therefore, the evaluation of the validity of each sample is critical.

Chronometric Criteria. The reliability of radiocarbon measurements has improved significantly over the years. Some scholars recommend that dates measured before 1970 and those with large error ranges be categorically excluded (Pettitt et al. 2003; Taché and Hart 2013). In examining the chronologies of Ceibal and the Olmec area, Inomata et al. (2013) used 1980 as a cut-off year. In the present study, our approach is more inclusive. We include all available radiocarbon dates in our initial evaluation for several reasons. First, whereas studies examining initial colonization or the Paleolithic and Neolithic periods in other parts of the world typically deal with data that is loosely replicable through the excavation of additional sites, the archaeology of Kaminaljuyú demands that researchers respect a greater degree of historical uniqueness of individual features and buildings. It may not be possible to re-excavate important features investigated in early days, and datable materials from such remains may not be available anymore. Old radiocarbon measurements on those features should not be dismissed easily. Dates associated with the Mound E-III-3 tombs are good examples.

Second, the number of radiocarbon dates associated with Kaminaljuyú that were recently measured with accelerator mass spectrometry (AMS) is still small. Third, in the conditions of Kaminaljuyú and the southern Maya area, redeposited charcoal may introduce larger and more frequent error than might be caused by chronometric inaccuracies. In such cases, our priority is to increase the reliability of our identification of valid dates by including a larger number of radiocarbon measures. In addition, although AMS is generally more accurate and precise than the earlier beta-counting method, the use of smaller samples for AMS may have increased the chance of including redeposited old charcoal. Larger chunks of charcoal used for conventional dating were less likely to be redeposited

materials (Lanting and van der Plicht 1994; Pendergast 2000). Fourth, the difference between the Shook-Hatch chronology and our revised one is as large as 300 years. For the evaluation of such highly discrepant chronologies, even radiocarbon measurements from early days present sufficient utility. We should emphasize that our chronology relies primarily on recently obtained measurements, and older assays are used as supplementary data. This also means that the current database of radiocarbon measurements on Kaminaljuyú is far from ideal, and its chronology needs to be revised and refined with new data in the future.

The publications containing dates related to Kaminaljuyú do not report specific information that would aid with the evaluation of chronometric issues, such as C/N ratios, δ^{13} C, sample weights, dated plant species, and specific pretreatments used. Thus, most of the chronometric issues and old wood problems, along with the question of redeposited charcoal, need to be evaluated through comparison of multiple dates. The only set of invalid dates that can be confidently excluded due to chronometric problems is the one from the Carnegie Project, which was processed by the University of Chicago lab in the 1950s (see main article text).

Archaeological Criteria. Stratigraphic mixing is common at a site like Kaminaljuyú with an extremely long history of occupation. Old charcoal and other materials were frequently reincorporated in later deposits. At the same time, younger materials may have been introduced in older deposits through animal burrows, root action, postholes, and inadequate excavation. Thus, stratigraphic mixing in both directions is possible, but we assume that at most sites in southern Mesoamerica the mixing of older materials in a deposit is substantially more prevalent than the mixing of younger ones. Just consider the chronological placement of ceramic sherds included in a deposit. The occurrence of ceramics of earlier periods in a given deposit is fairly common; ceramics of later periods can be present, but they are usually far less frequent.

In the evaluation of radiocarbon dates (and in the collection of samples for dating), we need to consider the nature of deposits. We can rank the types of deposit in order of desirability for radiocarbon dating. The optimum type includes primary deposits that contain no or little soil, such as charcoal contained in stucco and dense carbon deposits associated with in situ burning events or hearths. Chances of stratigraphic mixing in these cases are small. Annual or short-lived species or parts obtained from such deposits represent the best possibility for good radiocarbon dating. In situ building materials, such as a post found in its posthole, are also stratigraphically secure, but we still need to consider the old wood problem, including the recycling of building materials from earlier structures. The next best context may be primary deposits associated with discrete depositional events, such as

burials and caches. However, as long as they contain soils, we need to consider the possibility that these soils already included old charcoal before their deposition. In addition, wood objects deposited in such contexts may have had long use life. Primarily deposited human and animal skeletal materials in such contexts eliminate the issues of redeposition and old wood, but marine and freshwater reservoir effects may affect their radiocarbon measurements unless they are terrestrial-feeding species. Other primary deposits, such as middens and on-floor materials, also present good possibilities, but thick middens reflecting long depositional periods are more likely to contain older materials. Mixed deposits, typically construction fill, are least desirable, but transposed middens and dumps containing materials transferred from short-period primary deposits present certain utility for radiocarbon dating.

Specific Approaches. Most of the problems mentioned, including various chronometric issues, redeposition of older materials, stratigraphic mixing, and old wood, are not apparent at the time of excavation or in published information. Problematic dates need to be identified through the examination of consistency among multiple dates. Thus, if there are only a few dates from a site or project, we cannot place much confidence in them (Fitzpatrick 2006; Spriggs 1989; Taché and Hart 2013). Comparison of multiple dates should proceed in the following stages: (1) among radiocarbon measurements from one excavation with direct or close stratigraphic relations among them; (2) among those from one site or one project that reflect consistent excavation procedures, stratigraphic interpretations, and ceramic phase assignments; and (3) among those from broad regions loosely connected through ceramic cross-dating.

Given the nature of archaeological deposits discussed above, we used the following general guidelines in this process:

(1) When multiple radiocarbon dates from the same context resulting from a single depositional event exhibit significant discrepancies, it is more likely that the youngest one is the closest to the true depositional date. In those cases, older dates possibly resulted from redeposited old materials.

(2) When radiocarbon dates from sequential ceramic phases or stratigraphic layers show a substantial overlap or reversal, it is more likely that those from the younger phases or upper layers are problematic dates resulting from the redeposition of old materials.

These general guidelines do not deny the possibility that the mixing of younger materials and chronometric problems resulted in more complex patterns. Thus, in our study we applied these criteria flexibly by examining

specific archaeological contexts of individual cases. The evaluation process should not be a mechanistic application of fixed criteria.

Bayesian Analysis

The Bayesian analysis of radiocarbon dates incorporates prior information, usually on stratigraphic relations and ceramic phases, to produce a refined calibrated date for each radiocarbon measurement, which is called a posterior probability distribution. It can also provide estimates on the starting and ending dates of a given temporal phase. The analysis, however, does not rectify errors resulting from external factors, such as sample contamination, the lack of stratigraphic integrity, and the old wood effect. Problematic dates should be excluded from a model, hence the importance of identifying such dates. Researchers need to build a model based on various assumptions about the radiocarbon dates that they analyze, including phases (the time spans to which multiple samples belong to), sequences (the temporal order of radiocarbon samples or phases), and contemporaneity (one-time events/deposits to which multiple samples belong). Thus, Bayesian analysis is not a mechanical process. The validity of its results depends largely on the soundness of our archaeological interpretations, as well as appropriate choices of other prior information and of reliable radiocarbon measurements (Bayliss 2009). This also means that Bayesian analysis can serve as a heuristic tool to test both the adequacy of our assumptions on archaeological contexts and the integrity of radiocarbon measurements. Our main purpose for using Bayesian analysis was not to gain unexpected results that would be substantially different from our intuitive interpretations of radiocarbon dates, but to make our chronological assessment more robust by integrating different lines of evidence.

The application of Bayesian statistics to radiocarbon dates has been developed mainly in Britain (Bayliss 2009; Bronk Ramsey 2009; Buck and Millard 2004; Buck et al. 1991, 1996; Buck, Litton, and Smith 1994; Christen 1994), but there has been a recent increase in the use of Bayesian analysis in Mesoamerican archaeology (Bachand 2008; Beramendi-Orosco et al. 2009; Carleton et al. 2011; Culleton et al. 2012; Inomata et al. 2013; Kennett et al. 2011, 2013; Munson 2012). The application of Bayesian statistics to radiocarbon dates has been facilitated by the development of computer programs, including BCal (Buck et al. 1999) and DateLab (Jones and Nicholls 1999). For our analysis we used the OxCal 4.2.2 program with the IntCal09 calibration curve (Bronk 2013; Reimer et al. 2009). In the result outputs of OxCal, the premodeled distributions of calibrated date probabilities are indicated by light shading, whereas the modeled distributions of calibrated date probabilities (posterior probability distributions after

the application of Bayesian statistics) are shown by solid fill. Bars below probability distributions indicate 95.4 percent probability ranges after the application of Bayesian statistics. A question mark at the end of a sample description identifies a problematic date that was excluded from the model (see Supplemental Text 4 for specific OxCal codes).

Specific Approach in Our Study. The qualities of radiocarbon dates and of associated archaeological information examined in this study are substantially different from one project to another. The inclusion of these different data in the same Bayesian model may skew the results. Thus, in most cases, we conducted Bayesian analyses separately for individual projects. The results of these Bayesian analyses were then compared across different projects and regions. For each case, we used Bayesian analysis mainly for two purposes: (1) to aid in the identification of problematic dates; and (2) to refine the remaining valid dates. Probability density plots generated in OxCal facilitate both processes. It is difficult enough to understand the relations between normal probability distributions of multiple uncalibrated radiocarbon dates. When dates are calibrated, they exhibit complex patterns of probability densities that do not conform to normal distributions. Visual representation is the most effective way to aid an intuitive understanding of their characteristics.

For the identification of problematic dates, OxCal indicates statistical outliers (dates that are probabilistically distant from others) primarily through agreement indices, that is, measures of the agreement between a premodeled calibrated date and its modeled posterior probability distribution. Bronk Ramsey (2013) recommends that agreement indices should usually be larger than 60 percent for a date to be considered valid. This means that a large part of the posterior density distribution of a modeled date should fall within the 2-sigma range of its premodeled calibrated date. However, this does not automatically mean that any dates with agreement indices lower than 60 percent are invalid. The exclusion of dates with agreement indices higher than 60 percent may results in better agreement indices for those dates that had poor indices in the previous model. Typically, we need to run Bayesian analysis multiple times with different sets of dates and other priors before reaching a conclusion on the most logical model. As discussed above, the evaluation of archaeological contexts is critical in this process. As Buck, Kenworthy, et al. (1994) put it, Bayesian statistics allows us to conduct "what if" analyses: if we use this information, what is the conclusion? The central utility of Bayesian analysis for archaeologists lies in its heuristic

nature. By running multiple models with different priors, we can evaluate our choices of priors and their effects; this process makes our analysis more robust (Bayliss and Bronk Ramsey 2004; Buck 2004).

In our discussion of the results of Bayesian analyses, we focused primarily on visual plots of probability densities, rather than on precise mean or median dates. This is partly because we did not wish to give the impression that those results are products of precise instrumental measurements and mathematics alone. We reiterate that the results of Bayesian analysis are substantially dependent on the interpretation of archaeological information—a process involving subjective judgments.

Considerations on Potential Problems of Bayesian Analysis. In evaluating the results of our analysis, we need to consider the potential problems of Bayesian statistics. One focus of debate concerning Bayesian analysis of radiocarbon dates and Bayesian statistics in general is the use of "uninformative priors" (Efron 2013). In contrast to "genuine" or "informative" priors that derive from observed data—such as stratigraphic relations— "vague" or "uninformative" priors refer to assumptions that are not based on observed data. There can be numerous uninformative priors that may potentially be applied to specific Bayesian models, but these uninformative priors are not based on concrete empirical data that would directly support one prior over another.

A more specific issue with direct relevance to the present study concerns phase boundaries, which are expressed by the Boundary function in OxCal. When radiocarbon measurements are made on materials from a given time period (phase), the span of observed measurements tends to become larger—i.e., the earliest date becomes earlier and the latest one later—as a larger number of measurements are made. This is simply because of the probabilistic nature of measurement errors: if more measurements are taken, there is a higher chance that measurements with larger errors will occur. Then, if we assume a simple uniform distribution in which the true dates of materials are totally independent, or unrelated to each other, and equally likely to occur at any point over an infinite time span, we tend to estimate a longer time span for a phase when we have more date measurements (Bayliss and Bronk 2004:37; Bronk 2001). This is clearly not acceptable. The same tendency occurs with ordered (sequential) dates (Nicholls and Jones 2001). If Bayesian analysis of sequential dates employs the assumption of their uniform distribution over an infinite time span as an uninformative prior (meaning that boundaries are not set in an OxCal model), the resulting posterior probabilities of individual dates may show artificially (unjustifiably) enhanced precision and they may deviate from their true ages (Steier and Rom 2000).

The application of boundaries to a phase is thus necessary in most cases. In such a model, the assumption applied as an informative prior is that the true date of each material is equally likely to occur anywhere within the limited time span defined by the given boundaries—which have unknown true dates—instead of the infinite time span of the previous case. The application of boundaries counteracts the tendency toward the expanding spread of measured dates correlated to the number of measurements (Buck 2004; Buck et al. 1992; Bronk Ramsey 1995, 2001:357). The argument by Steier and Rom (2000:197) that this use of boundaries and associated priors is no more valid than the use of an infinite time span is hardly tenable when we consider the foregoing reasoning (Bronk Ramsey 2000).

For certain sets of measured dates, Bayesian analysis may indicate shorter phase spans than most archaeologists would intuitively predict (see examples in Bayliss 2009; Bayliss et al. 2007). This tendency may be more notable when we are dealing with substantially overlapping measured dates that belong to a single phase. How much can we trust such results of Bayesian analysis? Our approach to this issue is rather conservative. We recognize a sound logic in the use of boundaries and associated uninformative priors in common Bayesian analysis. However, we do not place much confidence on Bayesian estimates of specific boundary dates for a single-phase set of dates. This is particularly true when we have largely overlapping dates—that is, dates with large error ranges in relation to the time span that they represent. We need to be cautious when the results of Bayesian analysis are significantly different from our intuitive understandings.

Under ideal conditions, Bayesian analysis may produce valid date estimates with very high precision out of low-precision data, as indicated by some simulations (see Bayliss 2009; Bayliss et al. 2007). This requires the following conditions: (1) the assumption of uniform distribution and other uninformed priors are appropriate; (2) the accuracies of individual measurements are high in relation to their precisions (or, at least, their deviations from the true dates are not skewed and conform to the expected probability distribution); and (3) individual measurements are not significantly affected by contamination, old wood problems, stratigraphic mixing, or reservoir effects. In reality, we usually cannot securely assume these conditions. When we have well-separated measured dates—which generally results from higher-precision measurements—our confidence level for the results of Bayesian analysis can be higher. Even without the use of boundary definitions, simulations conducted by Steier and Rom (2000) show adequate results of Bayesian analysis for well-separated dates.

Better priors for Bayesian estimates ultimately have to come in the form of observed data. In many archaeological situations, we have multiple phases defined by empirical information, including stratigraphy and ceramic phases. Whereas we remain cautious of Bayesian boundary estimates for single-phase data sets, we generally place significantly more confidence in estimates for a boundary between two phases. In the latter case, the boundary is strongly constrained by observed data, that is, by measured dates from the preceding and subsequent phases. Such a Bayesian model is based substantially on observed data, and the effects of uninformative priors become relatively weak. Under these conditions, Bayesian estimates generally conform well to our intuitive predictions. Thus, it is important for archaeologists to have some sense of the relative weight of uninformative priors in their models (see Berger 1994, 2006; Steier et al. 2001; Weninger et al. 2010 for mathematically based discussion of robust Bayesian analysis in relation to effects of uninformative priors).

In our data set, substantially overlapping dates for Providencia and Verbena-Arenal from the Museum of Tobacco and Salt excavation, for example, are not further constrained by dates from the preceding Las Charcas phase or those from the subsequent Santa Clara or Aurora phase (Figure 8). Thus, we do not place much confidence in the Bayesian estimates for the start date of Providencia and the end date of Arenal derived from this specific data set. However, the date for the transition from Providencia to Verbena is a different matter. It is more strongly defined by "genuine" or "informative" priors, that is, the dates from both phases constrain it from each side. Such a transition date suggested by Bayesian statistics should not be substantially different from intuitive predictions by most archaeologists. In the set of more recently obtained dates from Naranjo, Santa Isabel, and Kaminaljuyú-on which our chronology relies more strongly-each of the transition dates between Providencia, Verbena, Arenal, and Santa Clara is constrained by dates from the preceding and subsequent phases (Figure 10). In addition, because of their higher precision, these dates from different phases are relatively well separated. In this case, the posterior density distributions produced by Bayesian statistics are not much different from the premodeled distributions. In such a case, the resulting chronologies should not differ significantly, regardless of whether we use Bayesian statistics. All in all, substantially refined Bayesian-modeled dates from older projects accord well with those from new projects, on which the effects of Bayesian statistics are smaller. This supports the validity of our chronology and of Bayesian analysis.

Problematic Calibration Curve Zone between 800 and 200 B.C. Another issue we need to consider is the problematic zone in the radiocarbon calibration curve encompassing a plateau between 800 and 400 B.C. and a large

upturn around 300 B.C. In this zone, even AMS dates with fairly high precisions exhibit large ranges of uncertainty when calibrated: from 800 to 400 B.C., or from 400 to 200 B.C. (Supplemental Figure 2). Thus, it is difficult to determine precise dates in this period even with the help of Bayesian analysis. Nonetheless, radiocarbon dates from the Middle Preclassic period (before 400 B.C.) and those from the Late Preclassic period (after 400 B.C.) generally show a clear separation (Supplemental Figure 2). For the purpose of our study, radiocarbon dates from these periods provide a sufficient basis with which to test our revised chronology against the Shook-Hatch chronology, particularly the question of whether the Providencia phase belongs to the Middle Preclassic or Late Preclassic period.

It is more challenging to determine the precise date of the transition from Las Charcas to Providencia. The shape of the calibration curve can give the illusion of a substantial gap between a set of pre-400 B.C. dates and a set of post-400 B.C. ones. In other words, most samples with true dates between 750 and 400 B.C. result in largely overlapping calibrated radiocarbon date ranges of roughly 800 to 400 B.C., whereas those with true dates between 400 and 200 B.C. show calibrated ranges of roughly 400 to 200 B.C. (Supplemental Figure 2). We should keep in mind that a sequence of samples with regular intervals from 800 to 200 B.C. can result in two internally undifferentiated sets of radiocarbon dates. In the Las Charcas date sets from Urías and Naranjo, most dates fall in the 800-400 B.C. range, but there are two (Beta-141170 from Urías and Beta-217153 from Naranjo) that correspond to the 400–200 B.C. range. In these cases—particularly for the Urías set, which has dates ordered by stratigraphic sequence—it is reasonable to think that the true ages of dates in the 400–200 B.C. range are close to the rest of the Las Charcas dates, that is, close to 400 B.C. Under these specific conditions, the uninformative prior of uniform distribution appears appropriate, and Bayesian analysis provides the expected results: modeled median dates of 371 B.C. for Beta-141170 and 376 B.C. for Beta-217153. These results lead us to suggest a tentative Las Charcas-Providencia transition date of 350 B.C. Readers who suspect that Bayesian analysis artificially shifts the Providencia phase forward in time should consider this: if we were to use the premodeled (not processed by Bayesian analysis) dates for these samples, they would suggest an even later Las Charcas-Providencia transition date of 300 or 200 B.C. This would be even more drastically different from the Shook-Hatch chronology.

In regard to the beginning of the Las Charcas phase, we need to be cautious about Bayesian results derived from the largely overlapping dates of the 800–400 B.C. range, for the reasons discussed above. For the data from Naranjo, the Bayesian model suggests a starting date for Las Charcas of 897–596 B.C. at the 95.4 percent

probability level and 820–665 B.C. at the 68.2 percent level. We do not put much confidence in this estimate, and choose a fairly conservative date of 800 B.C. for the beginning of the main occupation at Naranjo. The premodeled 2-sigma calibrated dates from the Las Charcas phase of Naranjo fall predominantly after 800 B.C., and it is highly unlikely that their true dates are before 800 B.C. Although we recognize the possibility of earlier settlements not represented by these samples, it is reasonable to think that the main occupation of Naranjo did not start before 800 B.C. The beginning date of the Las Charcas occupation at Urías is more reliable. It is constrained by Beta-154187, which appears to predate the Las Charcas occupation.

REFERENCES CITED

Bachand, Bruce R.

2008 Bayesian Refinement of a Stratified Sequence of Radiometric Dates from Punta De Chimino, Guatemala. *Radiocarbon* 50(1):19–51.

Bayliss, Alex

2009 Rolling Out Revolution: Using Radiocarbon Dating in Archaeology. *Radiocarbon*51:123–147.

Bayliss, Alex, and Christopher Bronk Ramsey

2004 Pragmatic Bayesians: A Decade of Integrating Radiocarbon Dates into Chronological Models. In *Tools for Constructing Chronologies: Crossing Disciplinary Boundaries*, edited by Caitlin E. Buck and Andrew R. Millard, pp. 25–42. Springer, London.

Bayliss, Alex, Christopher Bronk Ramsey, Johannes van der Plicht, and Alasdair Whittle
 2007 Bradshaw and Bayes: Towards a Timetable for the Neolithic. *Cambridge Archaeological Journal* 17:1–28.

Beramendi-Orosco, Laura, Galia Gonzalez-Hernandez, Jaime Urrutia-Fucugauchi, Linda Manzanilla, A. Soler-Arechalde, Avto Goguitchaishvili, and Nick Jarboe

High-Resolution Chronology for the Mesoamerican Urban Center of Teotihuacan
Derived from Bayesian Statistics of Radiocarbon and Archaeological Data. *Quaternary Research*71(2):99–107.

Berger, James O.

1994 An Overview of Robust Bayesian Analysis. *Test* 3:5–124.

2006 The Case for Objective Bayesian Analysis. *Bayesian Analysis* 1:385–402.

Blockley, S. P. E., and R. Pinhasi

2011 A Revised Chronology for the Adoption of Agriculture in the Southern Levant and the Role of Lateglacial Climatic Change. *Quaternary Science Reviews* 30:98–108.

Bronk Ramsey, Christopher

1995 Radiocarbon Calibration and Analysis of Stratigraphy: The OxCal Program. *Radiocarbon*37:425–430.

2000 Comment on "The Use of Bayesian Statistics for ¹⁴C Dates of Chronologically Ordered Samples: A Critical Analysis." *Radiocarbon* 42:199–202.

2001 Development of the Radiocarbon Calibration Program. *Radiocarbon* 43:355–363.

2009 Bayesian Analysis of Radiocarbon Dates. *Radiocarbon* 51:337–360.

2013 OxCal 4.2. Electronic resource, http://c14.arch.ox.ac.uk/embed.php?File=oxcal.html, accessed February 25, 2014.

Buck, Caitlin E.

2004 Bayesian Chronological Data Interpretation: Where Now? In *Tools for Constructing Chronologies: Crossing Disciplinary Boundaries*, edited by Caitlin E. Buck and Andrew R. Millard, pp. 25–42. Springer, London.

Buck, Caitlin E., William G. Cavanagh, and Clifford D. Litton

1996 Bayesian Approach to Interpreting Archaeological Data. Wiley, Chichester, England.

Buck, Caitlin E., J. Andrés Christen, and Gary N. James

1999 An On-Line Bayesian Radiocarbon Calibration Tool. *Internet Archaeology* 7. Electronic document. http://intarch.ac.uk/journal/issue7/buck_toc.html, accessed February 25, 2014.

Buck, Caitlin E., James B. Kenworthy, Clifford D. Litton, and Adrian F. M. Smith

1991 Combining Archaeological and Radiocarbon Information: A Bayesian Approach to Calibration. *Antiquity* 65(249):808–821.

1994 Reply to Reece. *Antiquity* 68:850.

Buck, Caitlin E., Clifford D. Litton, and Adrian F. M. Smith

1992 Calibration of Radiocarbon Dates Pertaining to Related Archaeological Events. *Journal of Archaeological Science* 19:497–512.

Making the Most of Radiocarbon Dating: Some Statistical Considerations. *Antiquity* 68(259):252–263.

Buck, Caitlin E., and Andrew Millard

2004 *Tools for Constructing Chronologies: Crossing Disciplinary Boundaries*. Springer, London.

Carleton, Chris, Gyles Iannone, and James Conolly

2011 Dating Minanha Using a Bayesian Chronological Framework. In *Archaeological Investigations in the North Vaca Plateau, Belize: Progress Report of the Twelfth (2010) Field Season*, edited by Gyles Iannone, Jaime Awe, Maxime Lamoureux St-Hilaire and Matthew Longstaffe, pp. 109–131. Social Archaeology Research Program, Trent University, Peterborough.

Christen, J. Andrés

1994 Summarizing a Set of Radiocarbon Determinations: A Robust Approach. *Applied Statistics* 43:489–503.

Collett, David, and Peter Robertshaw

1983 Problems in the Interpretation of Radiocarbon Dates: The Pastoral Neolithic of East Africa. *African Archaeological Review* 1:57–74.

Culleton, Brendan J.

2006 Implications of a Freshwater Radiocarbon Reservoir Correction for the Timing of Late Holocene Settlement of the Elk Hills, Kern County, California. *Journal of Archaeological Science* 33:1331–1339.

Culleton, Brendan J., Keith M. Prufer, and Douglas J. Kennett

2012 A Bayesian AMS C14 Chronology of the Classic Maya Center of Uxbenká, Belize. Journal of Archaeological Science 39(5):1572–1586.

Efron, Bradley

2013 Bayes' Theorem in the 21st Century. *Science* 340:1177–1178.

Fitzpatrick, Scott M.

A Critical Approach to 14C Dating in the Caribbean: Using Chronometric Hygiene to Evaluate Chronological Control and Prehistoric Settlement. *Latin American Antiquity* 17(4):389– 418.

Hunt, Terry L., and Carl P. Lipo

2006 Late Colonization of Easter Island. *Science* 311:1603–1606.

Inomata, Takeshi, Daniela Triadan, Kazuo Aoyama, Victor Castillo, and Hitoshi Yonenobu

2013 Early Ceremonial Constructions at Ceibal, Guatemala, and the Origins of Lowland Maya Civilization. *Science* 340:467–471.

Jones, Martin, and Geoff Nicholls

1999 New Radiocarbon Calibration Software. *Radiocarbon* 44:663–674.

Keaveney, Evelyn M., and Paula J. Reimer

2012 Understanding the Variability in Freshwater Radiocarbon Reservoir Offsets: A Cautionary Tale. *Journal of Archaeological Science* 39:1306–1316.

Kennett, Douglas J., Brendan J. Culleton, Barbara Voorhies, and John Southon

- 2011 Bayesian Analysis of High-Precision AMS 14C Dates from a Prehistoric Mexican Shellmound. *Radiocarbon* 53:245–259.
- Kennett, Douglas J., Irka Hajdas, Brendan J. Culleton, Soumaya Belmecheri, Simon Martin, Hector Neff, Jaime Awe, Heather V. Graham, Katherine H. Freeman, Lee Newsom, David L. Lentz, Flavio S. Anselmetti, Mark Robinson, Norbert Marwan, John Southon, David A. Hodell, and Gerald H. Haug 2013 Correlating the Ancient Maya and Modern European Calendars with High-Precision AMS 14C Dating. *Nature Scientific Reports* 3. Electronic document. http://www.nature.com/srep/2013/130411/srep01597/full/srep01597.html, accessed February 22, 2014.

Lanting, J. N., and J. van der Plicht

1994 14C AMS: Pros and Cons for Archaeology. *Palaeohistoria* 35/36:1–12.

Munson, Jessica

2012 Building on the Past: Temple Histories and Communities of Practice at Caobal, Petén, Guatemala. Unpublished Ph.D. dissertation, University of Arizona, Tucson.

Nicholls, Geoff, and Martin Jones

2001 Radiocarbon Dating with Temporal Order Constraints. *Applied Statistics* 50:503–521. Nolan, Kevin C.

2012 Temporal Hygiene: Problems in Cultural Chronology of the Late Prehistoric Period of the Middle Ohio River Valley. *Southeastern Archaeology* 31(2):185–206. Pendergast, David M.

2000 The Problems Raised by Small Charcoal Samples for Radiocarbon Analysis. *Journal of Field Archaeology* 27(2):237–239.

Pettitt, P. B., W. Davies, C. S. Gamble, and M. B. Richards

2003 Palaeolithic Radiocarbon Chronology: Quantifying our Confidence Beyond Two Half-Lives. *Journal of Archaeological Science* 30(12):1685–1693.

Reimer, P. J., M. G. L. Baillie, E. Bard, A. Bayliss, J. W. Beck, P. G. Blackwell, C. B. Ramsey, C. E. Buck, G. S. Burr, and R. L. Edwards

2009 IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0–50,000 Years Cal BP. *Radiocarbon* 51(4):1111–1150.

Spriggs, Matthew

1989 The Dating of the Island Southeast Asian Neolithic: An Attempt at Chronometric Hygiene and Linguistic Correlation. *Antiquity* 63(240):587.

Steier, Peter, and Werner Rom

2000 The Use of Bayesian Statistics for 14C Dates of Chronologically Ordered Samples: A Critical Analysis. *Radiocarbon* 42:183–198.

Steier, Peter, Werner Rom, and Stephan Puchegger

2001 New Methods and Critical Aspects in Bayesian Mathematics for 14C Calibration. *Radiocarbon* 43:373–380.

Taché, Karine, and John P. Hart

2013 Chronometric Hygiene of Radiocarbon Databases for Early Durable Cooking Vessel Technologies in Northeastern North America. *American Antiquity* 78(2):359–372.

Telford, Richard J., Einar Heegaard, and Harry John Betteley Birks

2004 The Intercept Is a Poor Estimate of a Calibrated Radiocarbon Age. *Holocene* 14:296–298.

Waterbolk, H. T.

1971 Working with Radiocarbon Dates. *Proceedings of the Prehistoric Society* 37:15–33.Waters, Michael R., and Thomas W. Stafford

2007 Redefining the Age of Clovis: Implications for the Peopling of the Americas. *Science* 315:1122–1126.

Weninger, Franz, Peter Steier, Walter Kutschera, and Eva Maria Wild

2010 Robust Bayesian Analysis, an Attempt to Improve Bayesian Sequencing. *Radiocarbon* 52:962–983.

Wilmshurst, Janet M., Terry L. Hunt, Carl P. Lipo, and Atholl J. Anderson

2011 High-Precision Radiocarbon Dating shows Recent and Rapid Initial Human Colonization of East Polynesia. *Proceedings of the National Academy of Sciences* 108:1815–1820.

Supplemental Text 2. Evaluation of the Stratigraphy of the Museum of Tobacco and Salt (MTS) Excavations at Kaminaljuyú

What MTS researchers called Period II is represented by an early version of Mound B-I-1, which they called "Edificio Quemado." In the southeastern part of the building, the excavators found traces of burning. After this burning event, the Edificio Quemado was buried by Floor 4 and by the next version of Mound B-I-1, which they called the "Gran Basamento" (Supplemental Figure 3). Around the Edificio Quemado, excavators uncovered a series of burials and caches. Burials 2 and 3 were placed in the construction layer of the Gran Basamento. The stratigraphic position of Burial 5 is less clear. Their interpretation was that the caches were placed at the time of construction of the Gran Basamento. Ceramics found in these burials and caches largely correspond to the Providencia complex, characterized by labial/medial flanges, scalloped ridges, Kaminaljuyú Black-Brown with coarse incisions, and Xuc ware. Burials 2 and 5 contained a small number of bowls with nubbin feet, which are characteristic of the Verbena phase, but other clear Verbena markers, such as Kaminaljuyú Black-Brown with fine incisions, are absent. These data indicate that the Edificio Quemado was in use during the Providencia phase and that the next version was constructed at the transition to the Verbena phase.

MTS researchers interpreted the samples taken from the burned area—Gak-17124, Gak-171129, and NUTA-2110—as construction materials of the Edificio Quemado. Gak-17925 was taken from one of the caches. Following their interpretation, our Bayesian model assumes that Gak-17124, Gak-171129, and NUTA-2110 represent the use period of the building and Gak-17925 the end of its use. However, it may also be possible that Gak-17124, Gak-171129, and NUTA-2110 include fuel placed at the time of burning. Gak-17925 is older than Gak-17129 and NUTA-2110, and may be somewhat old wood. Gak-17928, taken from D-III-1, is a clear outlier.

During the following Period III, Floors 3 and 2 were constructed. Excavators found numerous caches, with a total of 100 vessels placed on Floor 4 at the time of construction of Floor 3. These assemblages consist of typical Verbena types, such as Kaminaljuyú Black-Brown with fine incisions and

wavy-line Usulután. They also include a small number of Arenante Coarse Incised vessels, which Popenoe de Hatch (1997) lists as a diagnostic type of the Arenal phase. However, other markers of the Arenal phase, such as larger supports, are absent. We interpret these deposits to have been made near the end of the Verbena phase or at the transition to the Arenal phase. At the time of the construction of Floor 2, caches with a total of eight vessels were deposited. These vessels are of general Verbena-Arenal types, but we assume that this construction occurred during the Arenal phase.

MTS researchers obtained eight radiocarbon dates from charcoal collected from the caches found on Floor 4. Four of these dates are clear outliers. Among the remaining four measurements, Gak-17127 and NUTA-2084 are older than NUTA-2109 and NUTA-2056, although they show a substantial overlap. In our Bayesian model, we assumed that the former two were somewhat old wood, and combined the latter two. Gak-17926 was collected from one of the caches found on Floor 3. It is older than the dates from the caches found on Floor 4 and was excluded as an outlier. Gak-17927, taken from a Period-III layer of D-III-1, accords well with the dates from the caches found on Floor 4.

Supplemental Text 3. Evaluation of the Stratigraphic Position of Monument 1 at El Portón, Salamá Valley

According to excellent stratigraphic descriptions and drawings by Sharer and Sedat (1987), Monument 1 was placed in a small enclosure opening to the west, Structure J7-4B-5, which was found in front of (to the west of) a platform building, J7-4A (Supplemental Figure 5). Structures J7-4A and J7-4B were built directly on the Max-phase fill of the basal platform, and Structure J7-4A went through at least three renovations during the Tol phase, which were named J7-4A-3, J7-4A-2, and J7-4A-1, from the oldest to the newest. The area between Structure J7-4A and J7-4B was not excavated, and thus the precise stratigraphic relation between the two buildings is not clear. Still, it appears more likely that J7-4B-5 was built after J7-4A-1, whose front portion sat directly on the Max-phase floor and then was abutted by a sequence of floors and fills associated with J7-4B. The fill of a floor resurfacing (U10B) of J7-4B-5, which was presumably made after Monument 1, contained Tol ceramics, whereas the fill of the next version of the building, J7-4B-4, contained Uc pottery. Sharer's interpretation was that Cache 25 and the skull deposit (Burial 2)-placed on the Max-phase floor and covered by J7-4B-5-were dedicatory offerings deposited at the time when Structure J7-4B-5 was constructed and Monument 1 was erected. Ceramics found in these offerings were classified as belonging to the Tol phase, but they are not diagnostic enough for more precise dating. This construction sequence suggests that Structure J7-4B-5 and Monument 1 date to the late or final part of the Tol phase.

P-2134 and P-2135—taken from a pit (F3A) dug into the Max-phase floor and covered by Structure J7-4A-3—define the earliest possible date for the construction of this building, with the highest probability around 270 B.C. P-2132, which Sharer used to date Monument 1, was taken from a dedicatory cache (Cache 25) found 9 m to the east of Monument 1. With the assumption that P-2132 stratigraphically postdates P-2134 and P-2135, the Bayesian model places the most likely age for P-2132 around 230 B.C. P-2133, taken from a hearth cut into Structure J7-4B-4, shows a date of around A.D. 30. In other words, the median date of P-2132 is considerably closer to those of P-2134 and P-2135 than to that of P-2133. We suspect that P-2133 might be somewhat old wood. Considering the ceramic data, we suggest that the most likely date for the erection of Monument 1 is around 100 B.C. A date of 400 B.C. is highly unlikely.

Supplemental Text 4. OxCal Code

Kaminaljuyú: Carnegie Dates

```
Plot()
{
Sequence("Kaminaljuyu")
 Phase("Arevalo")
 {
  R_Date("Y-401 C-III-10 2nd Str.", 2240, 60)
  {
  Outlier();
  };
  R Date("Y-402 C-III-10 sandy layer over sterile", 2070, 50)
  {
  Outlier();
  };
 };
 Boundary("Start Las Charcas");
 Phase("Las Charcas")
 {
  R_Date("Y-384 Finca Las Charcas, Late Las Charcas", 2340, 50);
  R Date("M-1257 Finca Las Charcas", 2280, 130);
 };
 Boundary("Las Charcas-Majadas");
 Phase("Majadas")
 {
  R_Date("Y-390 C-III-6 Intrusive pit", 2335, 50);
  R_Date("C-886 C-III-6 same as Y-390", 2970, 200)
  {
  Outlier();
  };
 };
 Boundary("Majadas-Providencia");
 Phase("Providencia")
  R_Date("Y-370 D-III-10 older construction", 1850, 60)
  {
  Outlier();
  };
  R Date("C-879 D-III-10 same as Y-370", 3130, 300)
  {
  Outlier();
  };
  R_Date("Y-374 Zacat, Sacatepequez, Pit R 3", 2120, 60);
 };
 Boundary("Providencia-Verbena");
```

```
Phase("Verbena")
 {
 Sequence("Verbena")
  R Date("Y-382 E-III-3 Str. 3b, 3c, 3d, 4 fill", 1920, 60);
  R_Date("C-884 E-III-3 same as Y-382", 3142, 240)
  {
  Outlier();
  };
  R_Date("Y-391 E-III-3 Str. 5 fill", 2025, 60)
  {
  Outlier();
  };
  R Date("C-887 E-III-3 same as Y-391", 2490, 300)
  {
  Outlier();
  };
  R_Date("Y-377 E-III-3 Tomb 1", 1940, 60);
 };
 };
 Boundary("Verbena-Arenal");
 Boundary("Arenal-Santa Clara");
 R_Date("Y-406 D-III-1, midden sealed by terrace fill", 1800, 60);
 Boundary("Santa Clara-Aurora");
 Sequence("Aurora")
 {
 R_Date("Y-405 D-III-13 adobe str fill below Str. K", 1660, 60);
 R_Date("Y-378 D-III-13", 1785, 60);
 Phase("")
 {
  R_Date("Y-396 D-III-13 Post hole str. Floors 2 and 3", 1860, 60)
  {
  Outlier();
  };
  R Date("Y-629 D-III-13 below burial above stone", 1560, 70);
 };
 };
 Boundary("End Aurora");
};
};
```

Kaminaljuyú: Penn State Dates

```
Plot()
{
Sequence("Penn State Kaminaljuyu")
{
Boundary("Start Providencia");
```

```
Phase("Providencia")
 {
 R_Date("I-6250", 2355, 90);
 R_Date("I-6610", 2215, 90);
 R_Date("I-6384", 2205, 180);
 R_Date("I-6247", 1865, 150)
 {
  Outlier();
 };
 };
 Boundary("Providencia-Verbena");
 Phase("Verbena")
 {
 R_Date("I-6249", 2090, 90);
 R_Date("I-6305", 2060, 90);
 };
 Boundary("Verbena-Arenal");
 Phase("Arenal")
 {
 R_Date("I-6248", 1965, 90);
 R_Date("I-6332", 1830, 90);
 };
 Boundary("Arenal-Aurora");
 R_Date("I-6269", 1915, 90);
 Boundary("Aurora-Esperanza");
 R_Date("I-6308", 1750, 90);
 Boundary("Esperanza-Amatle");
 R_Date("I-6270", 1225, 90);
 Boundary("End Amatle");
};
};
```

Semetabaj Dates

```
Plot()
{
   Sequence("San Andres Semetabaj")
   {
      R_Date("GX-5859 Pit 2 plaza fill", 2660, 175)
      {
           Outlier();
      };
      Boundary("Providencia-Verbena/Arenal");
      Phase("Verbena-Arenal")
      {
           Sequence("platforms")
           {
            R_Date("GX-5856 Burned main post, lower platform", 1840, 120);
      }
}
```

```
R_Date("GX-5857 Burned main post, upper platform", 1865, 130);
};
R_Date("GX-5858 Pit 7 plaza fill", 1960, 135);
};
Boundary("Verbena/Arenal-Early Classic");
R_Date("GX-5860 Pit 4, intrusive pit", 1485, 140);
Boundary("End Early Classic");
};
};
```

Kaminaljuyú: Museum of Tobacco and Salt Dates

```
Plot()
{
Sequence("Kaminaljuyu: MTS")
 {
 Boundary("Start Providencia");
 Phase("Providencia")
 {
  R_Date("GaK-17928 D-III-1 on Str. 5 floor", 2930, 90)
  {
  Outlier();
  };
  Sequence("Burned Str.")
  {
  Phase("Burned Str. use")
  {
   R_Date("GaK-17124 Burned Str.", 2330, 160);
   R_Date("GaK-17129 Burned Str.", 2210, 120);
   R_Date("NUTA-2110 Burned Str.", 2140, 130);
  };
  Boundary();
  R Date("GaK-17925 Under Floor 4 Offering 62", 2270, 200);
  };
 };
 Boundary("Providencia-Verbena/Arenal");
 Phase("Verbena-Arenal")
 {
  R_Date("GaK-17128 On Floor 4 Offering 16", 3750, 300)
  {
  outlier();
  };
  R_Date("GaK-17125 On Floor 4 Offering 23", 3000, 110)
  {
  outlier();
  };
  R_Date("GaK-17126 On Floor 4 Offering 17", 2970, 90)
  {
```

```
outlier();
 };
 R_Date("GaK-17123 On Floor 4 Offering 19", 2540, 90)
 {
  outlier();
 };
 R_Date("GaK-17127 On Floor 4 Offering 26", 2070, 130)
 {
  outlier();
 };
 R_Date("NUTA-2084 On Floor 4 Offering 57", 2060, 180)
 {
  outlier();
 };
 R_Combine("Floor 4 NUTA-2109xNUTA-2056")
 {
  R_Date("NUTA-2109 On Floor 4 Offering 24", 1950, 130);
  R_Date("NUTA-2056 On Floor 4 Offering 29", 1920, 160);
 };
 R_Date("GaK-17926 On Floor 3", 2200, 70)
 {
  Outlier();
 };
 R Date("GaK-17927 D-III-1 on Str. 4 floor", 2060, 80);
 };
 Boundary("End Arenal");
};
};
```

Urías Dates

```
Plot()
{
Sequence("Urias")
 {
 Boundary("Start Urias sequence");
 R_Date("Beta-154187 Subop 8 Nivel 25", 2810, 40);
 Boundary("Start Agua");
 R_Date("Beta-114963 Subop 6 Nivel 24", 3260, 120)
 {
 Outlier();
 };
 Phase("Level 21")
 {
  R_Date("Beta-114962 Subop 2 Nivel 21 midden", 2460, 60);
  R_Date("Beta-141169 Subop 7 Nivel 21", 2370, 50);
 };
 R_Date("Beta-141168 Subop 8 Nivel 19 midden", 2570, 100);
```

```
Phase("Level 18")
{
    R_Date("Beta-114966 Subop 2 Nivel 18 midden", 2510, 60);
    R_Date("Beta-114961 Subop 3 Nivel 18", 2380, 60);
};
    R_Date("Beta-114960 Subop 3 Nivel 17 stela", 2430, 60);
    R_Date("Beta-141170 Subop 7 Nivel 16 burial", 2250, 50);
    Boundary("End Agua");
};
```

Naranjo, Santa Isabel, Kaminaljuyú Park, Miraflores II Project, and Brigham Young-Del Valle Dates

```
Plot()
{
Sequence("Naranjo-Kaminaljuyu")
 Boundary("Start Las Charcas");
 Sequence("Naranjo-Santa Isabel")
 ł
  Phase("Early Las Charcas")
  {
  //
       R_Date("Beta-214073 N. Mon. 7", 4600, 40)
  //
      {
  //
        Outlier();
  //
       };
  R_Date("Beta-214075 N. Mon. 3", 2550, 40);
  R Date("Beta-215654 N. N. Sec.", 2550, 40);
  R_Date("Beta-215653 N. S Plat.", 2500, 40);
  R Date("Beta-220576 N. Mound 1", 2430, 40);
  };
  R_Date("Beta-209872 N. N. Plat.", 2590, 60);
  Phase("Late Las Charchas")
  {
  R Date("Beta-215655 N. Mon. 22", 2510, 40);
  R_Date("Beta-217153 N. SW S.", 2270, 40);
       R_Date("Beta-217152 N. Hearth", 560, 50)
  //
  //
       {
  //
        Outlier();
  //
       };
  R_Date("Beta-307568 Sta Isabel", 2450, 30);
  R Date("Beta-307569 Sta Isabel", 2410, 30);
  };
 };
 Boundary("Las Charcas-Providencia");
 Phase("Providencia")
 {
  R_Date("Beta-164710 Miraflores II", 2060, 60);
```

```
};
Boundary("Providencia-Verbena");
Phase("Verbena")
R Date("Beta-164706 Miraflores II", 2020, 40);
R_Date("Beta-361803 Mound E-III-5", 1990, 30);
};
Boundary("Verbena-Arenal");
Phase("Arenal")
{
R_Date("Beta-320689 KJ Palangana south wall initial deposit", 2120, 30)
 Outlier();
};
R Date("Beta-320688 KJ C-II-12 base Palangana dedicatory", 2050, 30)
{
 Outlier();
};
R_Date("Beta-307567 KJ early deposit Acropolis", 1960, 30);
R_Date("Beta-164707 Miraflores II", 1180, 60)
{
 Outlier();
};
};
R Date("Beta-307565 KJ Acropolis End Arenal", 1930, 30);
Phase("Santa Clara")
{
R_Date("Beta-164709 Miraflores II", 2140, 40)
{
 Outlier();
};
R_Date("Beta-361800 Palangana West wall", 1790, 30);
R Date("Beta-361798 Palangana West wall", 1820, 30);
};
Boundary("Santa Clara-Aurora");
Phase("Aurora")
R_Date("Beta-164708 Miraflores II", 2040, 40)
{
 Outlier();
};
R Date("Beta-361801 Palangana, East wall", 1660, 30);
};
Boundary("Aurora-Esperanza");
Phase("Esperanza")
{
Sequence("BYU Acropolis")
{
```

```
R_Date("AA-55657 Earliest talud-tablero Str. E", 1520, 35);
  Phase()
  {
  R_Date("AA-57122", 1590, 80);
  R_Date("AA-57655 ", 1510, 30);
  };
  R_Date("AA-57656 Last talud-tablero", 1475, 30);
 };
 Sequence("Parque")
 {
  R_Date("Beta-320687 KJ Early Esperanza", 1670, 30);
  R Date("Beta-320690 KJ Late Esperanza", 1470, 30);
 };
 };
 Boundary("Esperanza-Amatle");
 Phase("Amatle")
 {
 R_Date("Beta-361802 Mound C-II-13", 1860, 30)
 {
  outlier();
 };
 R Date("Beta-307566 KJ Acropolis tunnel Late Classic", 1400, 30);
 R_Date("Beta-320691 KJ Late Classic", 1310, 30);
 R Date("Beta-220578 Naranjo North S.", 1250, 60);
 R_Date("Beta-220577 Naranjo South Plat.", 1260, 60);
 R_Date("AA-13080 Str. F", 1180, 150);
 // R_Date("Beta-220579 Naranjo South Plat.", 2190, 40)
 // {
 // Outlier();
 // };
 };
 Boundary("Amatle-Pamplona");
 Phase("Pamplona")
 R Date("Beta-361799 Palangana, South wall", 1210, 30);
 R_Date("Beta-361804 Área ceremonial contemporánea", 1190, 30);
 };
 Boundary("End Pamplona");
};
};
```

Chalchuapa-Santa Leticia Dates

```
Plot()
{
Sequence()
{
Boundary("Start Tok");
```

```
R_Date("P-1551 C", 2790, 57);
 Boundary("Tok-Colos");
 Phase("Colos")
 R Date("P-1807 C", 2448, 60);
 R_Date("P-1806 C", 2385, 63);
 };
 Boundary("End Colos");
 Boundary("Start Chul");
 Phase("Chul")
 {
 R_Date("Q-3108 SL", 2320, 100);
 R_Date("Q-3105 SL", 2090, 85);
 R_Date("Q-3101 SL", 2035, 90);
 R_Date("Q-3106 SL", 1940, 90);
 };
 Boundary("Chul-Early Caynac");
 Phase("Early Caynac")
 {
 R_Date("P-1550 C", 2036, 44);
 R_Date("P-1805 C", 1965, 61);
 R_Date("Q-3104 SL", 1930, 80);
 R Date("Q-3109 SL", 1930, 90);
 R_Date("Q-3102 SL", 1870, 65);
 R_Date("Q-3103 SL", 1775, 85)
 {
  outlier();
 };
 };
 Boundary("Early Caynac-Late Caynac");
 R_Date("P-1547 C", 1817, 38);
 Boundary("Late Caynac-Vec");
 R Date("P-1803 C", 1717, 62);
 Boundary("End Vec");
};
};
```

Salamá Valley Dates

```
Plot()
{
Sequence("Salama")
{
Boundary("Start Early Xox");
R_Date("P-3208 Sakajut", 2880, 190);
Boundary("End Early Xox");
Boundary("Start Max");
R_Date("P-2139 Mangales D6-2 U1", 2290, 50);
```

```
Boundary("Max-Tol");
 Phase("Tol")
 {
 Sequence("El Porton J7-2")
 {
  R_Date("P-2137 El Porton F21", 2230, 60);
  R_Date("P-2136 El Porton F19", 2160, 60);
  R_Date("P-2138 El Porton C32", 2320, 50)
  {
  Outlier();
  };
 };
 Sequence("El Porton J7-4")
 {
  R_combine("El Porton J7-4A-3 F3A: P-2135xP-2134")
  {
  R_Date("P-2135 El Porton F3A", 2230, 60);
  R_Date("P-2134 El Porton F3A", 2300, 50);
  };
  R_Date("P-2132 El Porton C25", 2260, 60);
 };
 Sequence("Las Tunas C6-1")
 {
  R_Date("P-2220 Las Tunas F2B", 2180, 60);
  R_Date("P-2219 Las Tunas F3", 2140, 70);
 };
 R_Date("P-2221 Las Tunas C6-2 F5", 2020, 60);
 R_Date("P-2222 Las Tunas C6-2 U11", 2300, 50)
 {
  Outlier();
 };
 };
 Boundary("Tol-Uc");
 R_Date("P-2133 El Porton F8", 1960, 40);
// Date(Archmag776,N(15.5,13));
 Boundary("End Uc");
};
};
```

La Lagunita Dates

```
Plot()
{
    Sequence("La Lagunita")
    {
        R_Date("Gif-4556 EJ-16", 1900, 90)
        {
        Outlier();
    }
```

```
};
 Boundary("Start Lililla 1");
 R_Date("Gif-4231 Burial S-2", 1870, 100);
 Boundary("Lililla 1-Lililla 2");
 R Date("Gif-4230 C-43 Floor IIa cache", 1640, 90);
 Boundary("Lililla 2-Lililla 3");
 Phase("Lililla 3")
 {
 Phase("C-44 Tomb")
  {
  Phase("Ceramic bowl")
  R_Date("I-10014 C-44/183", 1840, 95)
  {
   Outlier();
  };
  R_Date("Gif-4228 C-44/183", 1630, 90);
  };
  R_Date("Gif-4229 C-44/B4-1", 1480, 90);
  };
 Phase("C-48 cave")
  {
  R_Date("Gif-4555 C2/18", 1650, 80);
  R_Date("Gif-4554 E4/10", 1640, 80);
  R_Date("Gif-4553 B8/25", 1610, 80);
  R_Date("UCLA-2138", 1530, 80);
  R_Date("I-10011", 1505, 100);
  R_Date("Gif-4227 108", 1350, 90)
  {
  Outlier();
  };
 };
 };
 Boundary("End Lililla 3");
};
};
```

Izapa Dates

```
Plot()
{
Sequence("Izapa")
{
Boundary("Start Duende");
Phase("Duende")
{
Phase("30a-D4")
{
```

```
R Date("I-1656 M30a, Exc. L, Level 14", 2580, 220);
 R_Date("I-1655 M30a, Exc. L, Level 10-11", 2310, 210);
};
R Date("I-873 M30a, Exc. D, on floor", 2695, 100);
};
Boundary("Duende-Frontera");
Phase("Frontera")
{
R_Date("I-1660 M30a, Exc. L, Str. F1a2, on burned plat.", 2600, 130);
R Date("I-4854 M59, Exc. A, Sec. 5 ash line", 2440, 130);
R Date("I-1218 M25, Exc. A, primary desposit on sterile", 2280, 150);
R Date("I-4855 M59, Exc. A, Sec. 5-6", 2280, 90);
};
Boundary("Frontera-Gap");
Boundary("Gap-Guillen");
R_Date("I-875 M30a, Exc. D, F. 1", 2100, 95);
Phase("Guillen")
{
R_Date("I-876 M58, Exc. 1, on floor", 2695, 120)
{
 Outlier();
};
R_Date("I-872 M61, Exc. B, Sec. N4, F. 2", 2205, 95);
R Date("I-877 M60, Exc. A, Level 12, on floor", 2100, 90);
R_Date("I-1211 M60, Exc. A, hearth/posthole", 1855, 140);
};
Boundary("Guillen-Hato");
R_Date("I-871 M30a, B, inside partial vessel", 2100, 110)
{
Outlier();
};
Boundary("Hato-Itstapa");
Sequence("Itstapa")
Phase("Floor 3 fill")
{
 R Date("I-4548 M125a, Exc. A, below Floor 3", 1830, 95);
 R_Date("I-1654 M125a, Exc. A, F. 89-4", 1790, 150);
};
R_Date("I-1653 M125a, Exc. A, on floor 3", 1850, 200);
};
Boundary("Itstapa-Jaritas");
R_Date("I-1210 M125a, Exc. A, F. 51", 1565, 145);
Boundary("Jaritas-Kato");
R_Date("I-1217 M125a, Exc. A, F. 26", 2330, 220)
{
Outlier();
};
```

```
Boundary("Kato-Loros");
 R Date("I-4545 M125b, Exc. A, F. 63", 1700, 125);
 Boundary("Loros-Peistal");
 Phase("Peistal")
 {
 R_Date("I-4547 M125c, Exc. B, F. 84, Tomb 4", 1180, 100);
 R_Date("I-4544 M125, Exc. B, F. 62", 1155, 100);
 };
 Boundary("Peistal-Remanso");
 R Date("I-1214 M125a, Exc. A, F. 13", 2400, 235)
 {
 Outlier();
 };
 R Date("I-4546 M130, Exc. B, F. 64, hearth", 1060, 100);
 Boundary("End Remanso");
};
};
```

San Bartolo Dates

```
Plot()
{
Sequence("San Bartolo")
 Ł
 Boundary("Start Sub-VI");
 R Date("Beta-206576 Sub-VI in floor", 2260, 40);
 Boundary("Sub-VI to Sub-V");
 R_Date("Beta-206577 Sub-V in floor", 2200, 60);
 Boundary("Sub-V construction to destruction");
 R Combine("Sub-V destruction 206624x206578x206575")
 {
  R_Date("Beta-206624 Sub-V destruction", 2260, 40);
  R Date("Beta-206578 Sub-V destruction", 2180, 40);
  R_Date("Beta-206575 Sub-V destruction", 2150, 40);
 };
 Boundary("Sub-V destruction to Sub-IV");
 Boundary("Sub-II to Sub-I");
 R_Date("Beta-193509 Sub-I mural plaster wall", 2140, 40);
 Boundary("Sub-I construction to termination");
 R_Date("Beta-193510 Sub-I on floor burning", 2070, 40);
 Phase("Final construction")
 {
  R_Date("Beta-193512 Final construction", 2100, 40);
  R Date("Beta-193513 Final construction", 2050, 40);
  R Date("Beta-193511 Final construction", 2050, 50);
 };
 Boundary("End final construction");
 };
```

};

Supplemental Figure 1. Ceramic cross-dating from Shook's notebook.

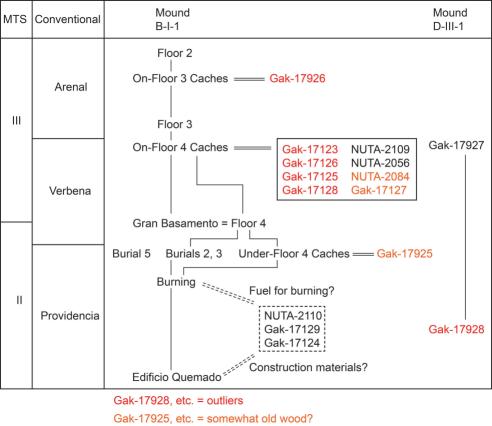
Supplemental Figure 2. Radiocarbon calibration curve and an OxCal simulation showing how calibrated radiocarbon dates obtained from samples with true dates between 850 B.C. and 150 B.C., spaced at regular intervals of 100 years, might distribute (uncertainty of 30 years). Note that they give a false impression that two discrete groups of dates might exist in the 800–400 B.C. and 400–200 B.C. ranges.

Supplemental Figure 3. Stratigraphic sequence of the excavations by the Museum of Tobacco and Salt.

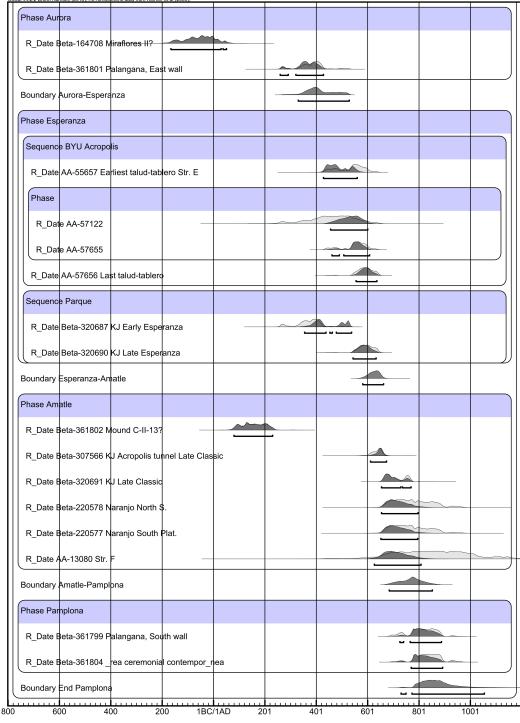
Supplemental Figure 4. The results of Bayesian analysis of radiocarbon dates obtained from Classicperiod contexts from Naranjo, the Kaminaljuyú Park, the Miraflores II Project, and the Brigham Young University-Universidad del Valle excavations.

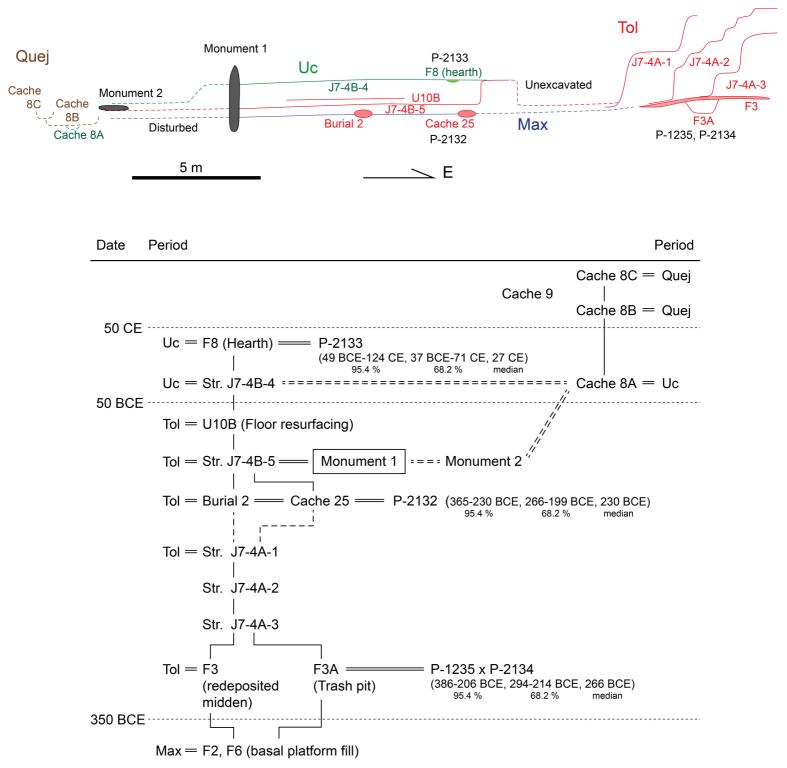
Supplemental Figure 5. Stratigraphic sequence related to Monument 1, El Portón, Salamá Valley.

Supplemental Figure 6. The results of Bayesian analysis of radiocarbon dates obtained from La Lagunita, Chixoy River Valley.

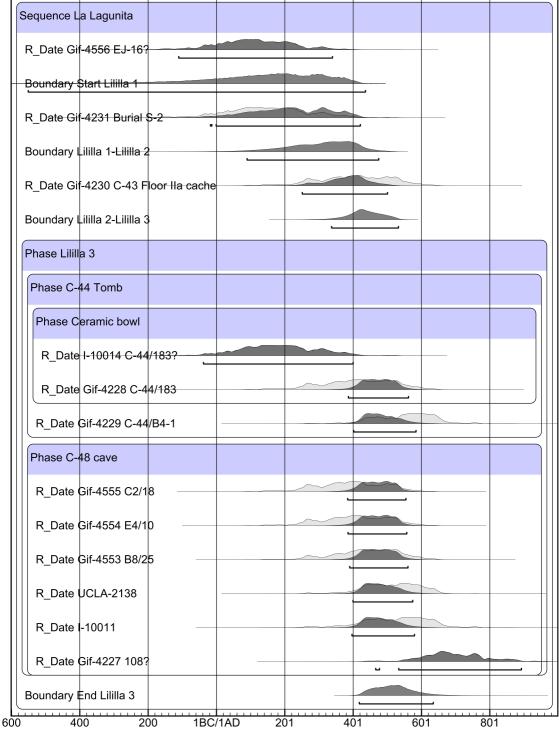

Supplemental Figure 7. The results of Bayesian analysis of radiocarbon dates obtained from Izapa.

Supplemental Figure 8. The results of Bayesian analysis of radiocarbon dates obtained from San Bartolo.

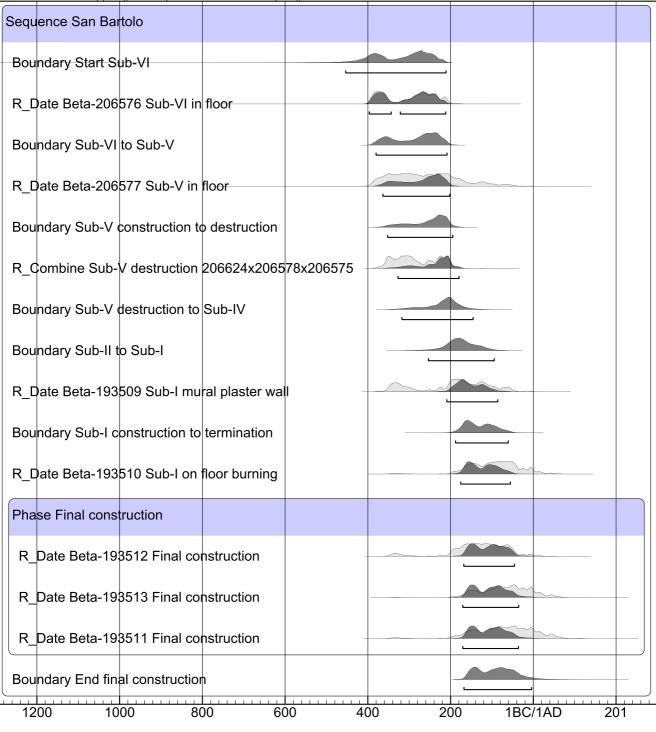

Supplemental Table 1. Radiocarbon dates from Kaminaljuyú and other regions.


Supplemental Table 2. Ceramic cross-dating of Kaminaljuyú and relevant regions with diagnostic types and modes.

Years	Kaminaljuyú	Uaxactún
500		
400	Esperanza	Tzakol 3
300		
200	Salcaja	Tzakol 2
100		Tzakol 1
1 ^{A.D.} B.C.	Salcaja	(Holmul II)
100		
200	Salcaja	Matzanel
300		(Holmul I)
400		
500	Santa Clara	
600		
700		
800	Arenal	
900		
1000		
1100		
1200	Verbena	Chicanel
1300	- ··· ·	
1400	Providencia	
1500		
1600	Caratanían	
1700	Sacatepéquez	
1800	Mound C-III-6	
1900		
2000		
2100		Mamom
2200		
2300		
2400		
2500	Las Charcas	
2600		
2700		
2800		
2900		
3000		



xCal v4.2.2 Bronk Ramsey (2013); r:5 Atmospheric data from Reimer et al (2009);



OxCal v4.2.2 Bronk Ramsey (2013); r:5 Atmospheric data from Reimer et al (2009);

OxCal v4	2.2 Bronk Ramsev (20	13): r:5 Atmospheric d	lata from Reimer et al I	(2009):									 	
Se	quence Izapa													
	Boundary Star	Duende												
6	Phase Duende													ר
	Phase 30a-D													
	R_Date I-1	656 M30a, E	tc. L, Level 1	-										
	R_Date I-1	6 55 M30a, E	xc. L, Level 1	0-11)
	R_Date I-87	3 M30a, Exc.	b, on floor											Л
I	Boundary Due	nde-Frontera	_											
6	Phase Fronter	a												
			L Ch. 51-0	and the second set										
				on burned p	at		t							
	R_Date I-48	54 M59, Exc.	A, Sec. 5 ash	line	-		_							
	R_Date I-12	8 M25, Exc.	A, primary de	sposit on ster	ile									
	R_Date I-48	5 M59, Exc.	A, Sec. 5-6				<u> </u>							Л
	Boundary Fror	tera-Gap							-					
	, Boundary Gap													
						•								
	C_Date I-875 I		F. 1											
	hase Guillen													
	R_Date I-87	6 M58, Exc. <u>1</u>	on floor?		<u> </u>									
	R_Date I-87	2 M61, Exc. B	, Sec. N4, F.	2 —					-					
	R Date I-87	M60, Exc. A	Level 12, or	floor										
		1 M60, Exc.												
			A, neartri/pos											7
	Boundary Guil	en-Hato												
F	2_Date I-871 I	M30a, B, insic	e partial vess	el? —					<u> </u>					
1	Boundary Hate	-Itstapa						_						
6	Sequence Itsta	pa												
	Phase Floor	3 fill												
			tue A heleur	Elece 2										
		548 M125a, I												
	R_Date I-1	654 M125a, I	Exc. A, F. 89-	4 -									F	'
	R_Date I-16	53 M125a , Ex	c. A, on floor	β										-)
1	Boundary Itsta	pa-Jaritas									_	_		
1	Date I-1210	M125a, Exc.	A, F. 51			-				~	-			_
	3 Boundary Jarit	as-Kato												
			A E 000											
	Date I-1217		A, F. 20?											
1	Boundary Kato	Loros										-		
I	LDate I-4545	M125b, Exc.	A, F. 63			_				_	\sim			
6	Boundary Lord	s-Peistal							-				 ⊢	
6	Phase Peistal													
		47 M125c, Ex	C B F 84 T	omb 4										
	_													
		44 M125, Exc												フ
1	Boundary Peis	al-Remanso												—
-	Date I-1214	M125a, Exc.	А, Г. <u>1</u> 3 <u>?</u>						_					
1	Date I-4546	M130, Exc. E	3, F. 64, hear	th										
	Boundary End												 	
			200 10	1	 00 60	h	00 2	00 1BC	/1AD 20)1 4()1 6(11	
							2						 	

OxCal v4.2.2 Bronk Ramsey (2013); r:5 Atmospheric data from Reimer et al (2009);

Sabbi	cincinal fable 1. Kaulocart	Ceramic phase	Radiocarbon	2σ calibrated date range	Source
Lab code	Context		date (B.P.)		
Kaminaljuyú Car	negie Project				
Y-401	C-III-10 2nd Str.	Arévalo	2240±60	404 B.C166 B.C.	Deevey et al. 1959
Y-402	C-III-10 sandy layer over sterile	Arévalo	2070±50	339 B.C.–A.D. 51	Deevey et al. 1959
Y-384	Finca Las Charcas	Late Las Charcas	2340±50	736 B.C.–211 B.C.	Deevey et al. 1959
M-1257	Finca Las Charcas	Late Las Charcas	2280±130	762 B.C48 B.C.	Crane and Griffin 1964
C-886	C-III-6 same as Y-390	Majadas	2970±200	1691 B.C786 B.C.	Libby 1954
Y-390	C-III-6 Intrusive pit	Majadas	2335±50	732 B.C210 B.C.	Deevey et al. 1959
C-879	D-III-10 same as Y-370	Providencia	3130±300	2278 B.C599 B.C.	Libby 1954
Y-374	Zacat, Sacatepéquez, Pit R 3	Providencia	2120±60	360 B.C.–A.D. 2	Deevey et al. 1959
Y-370	D-III-10 older construction	Providencia	1850±60	A.D. 25–A.D. 332	Deevey et al. 1959
C-884	E-III-3 same as Y-382	Verbena	3142±240	2010 B.C826 B.C.	Libby 1954
C-887	E-III-3 same as Y-391	Verbena	2490±300	1386 B.C.–A.D. 66	Libby 1954
Y-391	E-III-3 Str. 5 fill	Verbena	2025±60	197 B.C.–A.D. 85	Deevey et al. 1959
Y-377	E-III-3 Tomb 1	Verbena	1940±60	88 B.C.–A.D. 230	Deevey et al. 1959
Y-382	E-III-3 Str. 3b, 3c, 3d, 4 fill	Verbena	1920±60	43 B.C.–A.D. 232	Deevey et al. 1959
Y-406	D-III-1, midden sealed by terrace fill	Santa Clara	1800±60	A.D. 81–A.D. 382	Deevey et al. 1959
Y-396	D-III-13 Post hole str. Floors 2 and 3	Aurora	1860±60	A.D. 20–A.D. 325	Deevey et al. 1959
Y-378	D-III-13	Aurora	1785±60	A.D. 86–A.D. 392	Deevey et al. 1959
Y-405	D-III-13 adobe str fill below Str. K	Aurora	1660±60	A.D. 249–A.D. 538	Deevey et al. 1959
Y-629	D-III-13 below burial above stone	Aurora	1560±70	A.D. 349–A.D. 641	Deevey et al. 1959
Kaminaljuyú Pen	nsylvania State University Project				
I-6250	46-23-268 Level 15	Providencia	2355±90	766 B.C206 B.C.	Michels 1973
I-6610	46-33-056 E-IV-6? Level 6	Providencia	2215±90	486 B.C1 B.C.	Michels 1973
I-6384	46-12-396 Level 10	Providencia	2205±180	769 B.C.–A.D. 125	Michels 1973
I-6247	46-23-184 Level 14	Providencia?	1865±150	336 B.C.–A.D. 534	Michels 1973
I-6249	46-23-185 Level 12	Verbena	2090±90	367 B.C.–A.D. 69	Michels 1973
I-6305	46-23-072 Level 17	Verbena	2060±90	360 B.C.–A.D. 124	Michels 1973
I-6248	46-12-189 Level 6	Arenal	1965±90	197 B.C.–A.D. 242	Michels 1973
I-6332	46-23-023 Level 10	Arenal	1830±90	18 B.C.–A.D. 407	Michels 1973
I-6269	46-32-094 B-V-7 Level 10	Aurora	1915±90	160 B.C.–A.D. 327	Michels 1973
I-6308	46-23-072 Level 5	Esperanza	1750±90	A.D. 71–A.D. 532	Michels 1973
I-6270	46-32-141 B-V-4 F. 4	Amatle	1225±90	A.D. 655–A.D. 984	Michels 1973
San Andrés Sem	etabaj				
GX-5859	Pit 2 plaza fill	Providencia	2660±175	1268 B.C395 B.C.	Shook et al. 1979
GX-5858	Pit 7 plaza fill	Verbena-Arenal?	1960±135	358 B.C.–A.D. 376	Shook et al. 1979
GX-5857	Burned main post, upper platform	Verbena-Arenal?	1865±130	192 B.C.–A.D. 431	Shook et al. 1979
GX-5856	Burned main post, lower platform	Verbena-Arenal?	1840±120	158 B.C.–A.D. 504	Shook et al. 1979
GX-5860	Pit 4, intrusive pit	Early Classic	1485±140	A.D. 240–A.D. 863	Shook et al. 1979

Supplemental Table 1. Radiocarbon dates from Kaminaljuyú and other regions.

Kaminaljuyú Museum of Tobacco and Salt Project

	······································				
GaK-17928	D-III-1 on Str. 5 floor	Providencia	2930±90	1390 B.C.–916 B.C.	Ohi 1994
GaK-17124	Burned Str.	Providencia	2330±160	801 B.C46 B.C.	Ohi 1994
GaK-17129	Burned Str.	Providencia	2210±120	732 B.C.–A.D. 53	Ohi 1994
NUTA-2110	Burned Str.	Providencia	2140±130	510 B.C.–A.D. 131	Ohi 1994
GaK-17925	Under Floor 4 Offering 62	End of Providencia	2270±200	814 B.C.–A.D. 124	Ohi 1994
GaK-17128	On Floor 4 Offering 16	End of Verbena	3750±300	3011 B.C1434 B.C.	Ohi 1994
GaK-17125	On Floor 4 Offering 23	End of Verbena	3000±110	1493 B.C.–930 B.C.	Ohi 1994
GaK-17126	On Floor 4 Offering 17	End of Verbena	2970±90	1416 B.C938 B.C.	Ohi 1994
GaK-17123	On Floor 4 Offering 19	End of Verbena	2540±90	831 B.C407 B.C.	Ohi 1994
GaK-17127	On Floor 4 Offering 26	End of Verbena	2070±130	394 B.C.–A.D. 212	Ohi 1994
NUTA-2084	On Floor 4 Offering 57	End of Verbena	2060±180	536 B.C.–A.D. 382	Ohi 1994
NUTA-2109	On Floor 4 Offering 24	End of Verbena	1950±130	354 B.C.–A.D. 381	Ohi 1994
NUTA-2056	On Floor 4 Offering 29	End of Verbena	1920±160	360 B.C.–A.D. 424	Ohi 1994
GaK-17926	On Floor 3	Arenal	2200±70	396 B.C60 B.C.	Ohi 1994
GaK-17927	D-III-1 on Str. 4 floor	Verbena-Arenal	2060±80	357 B.C.–A.D. 120	Ohi 1994
Urías, Antigua Valle	ey .				
Beta-154187	Subop 8 Nivel 25	Sterile	2810±40	1110 B.C843 B.C.	Robinson et al. 2006
Beta-114963	Subop 6 Nivel 24	Las Charcas	3260±120	1879 B.C1269 B.C.	Robinson et al. 2006
Beta-114962	Subop 2 Nivel 21 midden	Las Charcas	2460±60	767 B.C408 B.C.	Robinson et al. 2006
Beta-141169	Subop 7 Nivel 21	Las Charcas	2370±50	751 B.C366 B.C.	Robinson et al. 2006
Beta-141168	Subop 8 Nivel 19 midden?	Las Charcas	2570±100	897 B.C411 B.C.	Robinson et al. 2006
Beta-114966	Subop 2 Nivel 18 midden	Las Charcas	2510±60	796 B.C416 B.C.	Robinson et al. 2006
Beta-114961	Subop 3 Nivel 18	Las Charcas	2380±60	756 B.C375 B.C.	Robinson et al. 2006
Beta-114960	Subop 3 Nivel 17 stela	Las Charcas	2430±60	761 B.C400 B.C.	Robinson et al. 2006
Beta-141170	Subop 7 Nivel 16 burial	Las Charcas	2250±50	398 B.C202 B.C.	Robinson et al. 2006
Naranjo, Santa Isab	el, Kaminaljuyú Park, BYU Project				
Beta-214075	Naranjo Mon. 3	Early Las Charcas	2550±40	806 B.C540 B.C.	Arroyo 2010
Beta-215654	Naranjo N. Sec.	Early Las Charcas	2550±40	806 B.C540 B.C.	Arroyo 2010
Beta-215653	Naranjo S Plat.	Early Las Charcas	2500±40	791 B.C.–418 B.C.	Arroyo 2010
Beta-220576	Naranjo Mound 1	Early Las Charcas	2430±40	753 B.C.–402 B.C.	Arroyo 2010
Beta-209872	Naranjo N. Plat.	Early-Late Las Charcas transition	2590±60	896 B.C523 B.C.	Arroyo 2010
Beta-215655	Naranjo Mon. 22	Late Las Charcas	2510±40	795 B.C.–421 B.C.	Arroyo 2010
Beta-217153	Naranjo SW S.	Late Las Charcas	2270±40	401 B.C.–206 B.C.	Arroyo 2010
Beta-307568	Santa Isabel	Late Las Charcas	2450±30	753 B.C410 B.C.	а
Beta-307569	Santa Isabel	Late Las Charcas	2410±30	741 B.C398 B.C.	a
Beta-164710	KJ MII 3B-33 Lote 14	Providencia	2060±60	346 B.C.–A.D. 69	Kaplan per. com. 2014 ^b
Beta-361803	KJ Mound E-III-5	Verbena	1990±30	49 B.C.–A.D. 74	а
Beta-164706	KJ MII 1B-4 Lote 14	Verbena	2020±40	161 B.C.–A.D. 68	Kaplan per. com. 2014 ^b
Beta-320689	KJ Palangana south wall initial	Arenal	2120±30	346 B.C.–A.D. 49	а
Beta-320688	deposit KJ C-II-12 base Palangana dedicatory	Arenal	2050±30	166 B.C.–A.D. 20	а
Beta-307567	KJ early deposit Acropolis	Arenal	1960±30	40 B.C.–A.D. 121	а
Beta-164707	KJ MII 2A-39/42 Lote 3	Arenal	1180±60	A.D. 690–A.D. 983	Kaplan per. com. 2014 ^b
Beta-307565	KJ Acropolis End Arenal	Santa Clara	1930±30	A.D. 3–A.D. 131	а

	Beta-361798	KJ Palangana West wall	Santa Clara	1820±30	A.D. 91–A.D. 318	а
	Beta-361800	KJ Palangana West wall	Santa Clara	1790±30	A.D. 132–A.D. 331	а
	Beta-164709	KJ MII 3B-28 Lote 11	Santa Clara	2140±40	357 B.C50 B.C.	Kaplan per. com. 2014 ^b
	Beta-361801	KJ Palangana, East wall	Aurora	1660±30	A.D. 259–A.D. 529	а
	Beta-164708	KJ MII 3B-29 Lote 8	Aurora	2040±40	168 B.C.–A.D. 52	Kaplan per. com. 2014 ^b
	Beta-320687	KJ Park	Early Esperanza	1670±30	A.D. 258–A.D. 430	а
	AA-57122	KJ BYU Acropolis	Esperanza	1590±80	A.D. 258–A.D. 623	Houston et al. 2005
	AA-55657	KJ Earliest talud-t. Str. E, BYU	Esperanza	1520±35	A.D. 432–A.D. 611	Houston et al. 2005
	AA-57655	Acropolis KJ BYU Acropolis	Esperanza	1510±30	A.D. 435–A.D. 623	Houston et al. 2005
	AA-57656	Last talud-tablero, BYU Acropolis	Esperanza	1475±30	A.D. 543–A.D. 644	Houston et al. 2005
	Beta-320690	KJ Park	Late Esperanza	1470±30	A.D. 545–A.D. 645	а
	Beta-361802	KJ Mound C-II-13	Amatle	1860±30	A.D. 80–A.D. 231	а
	Beta-307566	KJ Acropolis tunnel Late Classic	Amatle	1400±30	A.D. 597–A.D. 670	а
	Beta-320691	KJ Late Classic	Amatle	1310±30	A.D. 656–A.D. 773	а
	Beta-220577	Naranjo South Plat.	Amatle	1260±60	A.D. 656–A.D. 891	Arroyo 2010
	Beta-220578	Naranjo North S.	Amatle	1250±60	A.D. 657–A.D. 935	Arroyo 2010
	AA-13080	KJ Str. F, BYU Acropolis	Amatle	1180±150	A.D. 589–A.D. 1162	Houston et al. 2005
	Beta-361799	KJ Palangana, South wall	Pamplona	1210±30	A.D. 694–A.D. 892	а
	Beta-361804	KJ ceremonial area	Pamplona	1190±30	A.D. 720–A.D. 944	а
C	nalchuapa and San	ta Leticia				
	P-1551	Chalchuapa	Tok	2790±57	1113 B.C819 B.C.	Sharer 1978
	P-1807	Chalchuapa	Colos	2448±60	763 B.C405 B.C.	Sharer 1978
	P-1806	Chalchuapa	Colos	2385±63	761 B.C375 B.C.	Sharer 1978
	Q-3108	Santa Leticia	Chul	2320±100	763 B.C171 B.C.	Demarest 1986
	Q-3105	Santa Leticia	Chul	2090±85	362 B.C.–A.D. 65	Demarest 1986
	Q-3101	Santa Leticia	Chul	2035±90	359 B.C.–A.D. 135	Demarest 1986
	Q-3106	Santa Leticia	Chul	1940±90	174 B.C.–A.D. 316	Demarest 1986
	P-1550	Chalchuapa	Early Caynac	2036±44	168 B.C.–A.D. 55	Sharer 1978
	P-1805	Chalchuapa	Early Caynac	1965±61	157 B.C.–A.D. 211	Sharer 1978
	Q-3109	Santa Leticia	Early Caynac	1930±90	169 B.CA.D. 321	Demarest 1986
	Q-3104	Santa Leticia	Early Caynac	1930±80	161 B.C.–A.D. 254	Demarest 1986
	Q-3102	Santa Leticia	Early Caynac	1870±65	18 B.C.–A.D. 326	Demarest 1986
	Q-3103	Santa Leticia	Early Caynac	1775±85	A.D. 53–A.D. 431	Demarest 1986
	P-1547	Chalchuapa	Late Caynac	1817±38	A.D. 86–A.D. 325	Sharer 1978
	P-1803	Chalchuapa	Vec	1717±62	A.D. 133–A.D. 505	Sharer 1978
Sa	lamá Valley					
	P-3208	Sakajut	Early Xox	2880±190	1605 B.C552 B.C.	Sharer and Sedat 1987
	P-2139	Mangales D6-2 U1	Max	2290±50	484 B.C200 B.C.	Sharer and Sedat 1987
	P-2138	El Portón C32	Tol	2320±50	706 B.C206 B.C.	Sharer and Sedat 1987
	P-2134	El Portón F3A	Tol	2300±50	508 B.C203 B.C.	Sharer and Sedat 1987
	P-2222	Las Tunas C6-2 U11	Tol	2300±50	508 B.C203 B.C.	Sharer and Sedat 1987
	P-2132	El Portón C25	Tol	2260±60	411 B.C168 B.C.	Sharer and Sedat 1987
	P-2135	El Portón F3A	Tol	2230±60	401 B.C119 B.C.	Sharer and Sedat 1987
	P-2137	El Portón F21	Tol	2230±60	401 B.C119 B.C.	Sharer and Sedat 1987

	P-2220	Las Tunas F2B	Tol	2180±60	387 B.C61 B.C.	Sharer and Sedat 1987
	P-2136	El Portón F19	Tol	2160±60	375 B.C.–53 B.C.	Sharer and Sedat 1987
	P-2219	Las Tunas F3	Tol	2140±70	382 B.C2 B.C.	Sharer and Sedat 1987
	P-2221	Las Tunas C6-2 F5	Tol	2020±60	191 B.C.–A.D. 119	Sharer and Sedat 1987
	P-2133	El Portón F8	Uc	1960±40	43 B.C.–A.D. 126	Sharer and Sedat 1987
La	a Lagunita					
	Gif-4556	La Lagunita, EJ-16	Sterile	1900±90	111 B.C.–A.D. 340	Ichon and Viel 1984
	Gif-4231	La Lagunita, Burial S-2	Lilillá 1	1870±100	91 B.C.–A.D. 398	Ichon and Viel 1984
	Gif-4230	La Lagunita, C-43 Floor IIa cache	Lilillá 2	1640±90	A.D. 176–A.D. 609	Ichon and Viel 1984
	I-10014	La Lagunita, C-44/183	Lilillá 3	1840±95	39 B.C.–A.D. 401	Ichon and Arnauld 1985
	Gif-4555	La Lagunita, Cave C-48, C2/18	Lilillá 3	1650±80	A.D. 220–A.D. 592	Ichon and Arnauld 1985
	Gif-4554	La Lagunita, Cave C-48, E4/10	Lilillá 3	1640±80	A.D. 234–A.D. 595	Ichon and Arnauld 1985
	Gif-4228	La Lagunita, C-44/183	Lilillá 3	1630±90	A.D. 219–A.D. 618	Ichon and Arnauld 1985
	Gif-4553	La Lagunita Cave C-48, B8/25	Lilillá 3	1610±80	A.D. 253–A.D. 604	Ichon and Arnauld 1985
	UCLA-2138	La Lagunita, Cave C-48	Lilillá 3	1530±80	A.D. 353–A.D. 657	Ichon and Arnauld 1985
	I-10011	La Lagunita, Cave C-48	Lilillá 3	1505±100	A.D. 261–A.D. 760	Ichon and Arnauld 1985
	Gif-4229	La Lagunita, C-44/B4-1	Lilillá 3	1480±90	A.D. 382–A.D. 765	Ichon and Arnauld 1985
	Gif-4227	La Lagunita, Cave C-48, 108	Lilillá 3	1350±90	A.D. 470–A.D. 893	Ichon and Arnauld 1985
Iz	ара					
	I-873	M30a, Exc. D, on floor	Duende	2695±100	1129 B.C541 B.C.	Lowe et al. 1982
	I-1656	M30a, Exc. L, Level 14	Duende	2580±220	1306 B.C196 B.C.	Lowe et al. 1982
	I-1655	M30a, Exc. L, Level 10-11	Duende	2310±210	897 B.C.–A.D. 84	Lowe et al. 1982
	I-1660	M30a, Exc. L, Str. F1a2, on burned plat.	Frontera?	2600±130	1024 B.C398 B.C.	Lowe et al. 1982
	I-4854	M59, Exc. A, Sec. 5 ash line	Frontera	2440±130	832 B.C207 B.C.	Lowe et al. 1982
	I-4855	M59, Exc. A, Sec. 5-6	Frontera	2280±90	747 B.C61 B.C.	Lowe et al. 1982
	I-1218	M25, Exc. A, primary deposit on sterile	Frontera	2280±150	779 B.C.–2 B.C.	Lowe et al. 1982
	I-875	M30a, Exc. D, F. 1	Frontera-Guillén transition	2100±95	377 B.C.–A.D. 64	Lowe et al. 1982
	I-876	M58, Exc. 1, on floor	Early Guillén	2695±120	1212 B.C511 B.C.	Lowe et al. 1982
	I-872	M61, Exc. B, Sec. N4, F. 2	Guillén	2205±95	486 B.C.–A.D. 5	Lowe et al. 1982
	I-877	M60, Exc. A, Level 12, on floor	Guillén	2100±90	372 B.C.–A.D. 59	Lowe et al. 1982
	I-1211	M60, Exc. A, hearth/posthole	Late Guillén	1855±140	194 B.C.–A.D. 532	Lowe et al. 1982
	I-871	M30a, B, inside partial vessel	Hato	2100±110	392 B.C.–A.D. 115	Lowe et al. 1982
	I-1653	M125a, Exc. A, on floor 3	Itstapa	1850±200	359 B.C.–A.D. 580	Lowe et al. 1982
	I-4548	M125a, Exc. A, below Floor 3	Itstapa	1830±95	37 B.C.–A.D. 409	Lowe et al. 1982
	I-1654	M125a, Exc. A, F. 89-4	Itstapa	1790±150	146 B.C.–A.D. 571	Lowe et al. 1982
	I-1210	M125a, Exc. A, F. 51	Jaritas	1565±145	A.D. 129–A.D. 766	Lowe et al. 1982
	I-1217	M125a, Exc. A, F. 26	Kato	2330±220	926 B.C.–A.D. 123	Lowe et al. 1982
	I-4545	M125b, Exc. A, F. 63	Loros	1700±125	A.D. 67–A.D. 601	Lowe et al. 1982
	1-4547	M125c, Exc. B, F. 84, Tomb 4	Peistal	1180±100	A.D. 661–A.D. 1020	Lowe et al. 1982
	I-4544	M125, Exc. B, F. 62	Peistal	1155±100	A.D. 660–A.D. 1035	Lowe et al. 1982
	I-1214	M125a, Exc. A, F. 13	Remanso	2400±235	1110 B.C.–A.D. 72	Lowe et al. 1982
	I-4546	M130, Exc. B, F. 64, hearth	Remanso	1060±100	A.D. 716–A.D. 1206	Lowe et al. 1982
S	an Bartolo					

San Bartolo

Beta-206576	Sub-VI in floor	Chicanel	2260±40	398 B.C206 B.C.	Saturno et al. 2006
Beta-206577	Sub-V in floor	Chicanel	2200±60	393 B.C108 B.C.	Saturno et al. 2006
Beta-206624	Sub-V destruction	Chicanel	2260±40	398 B.C206 B.C.	Saturno et al. 2006
Beta-206578	Sub-V destruction	Chicanel	2180±40	379 B.C114 B.C.	Saturno et al. 2006
Beta-206575	Sub-V destruction	Chicanel	2150±40	359 B.C55 B.C.	Saturno et al. 2006
Beta-193509	Sub-I mural plaster wall	Chicanel	2140±40	357 B.C50 B.C.	Saturno et al. 2006
Beta-193510	Sub-I on-floor burning	Chicanel	2070±40	196 B.CA.D. 18	Saturno et al. 2006
Beta-193512	Final construction	Chicanel	2100±40	347 B.C2 B.C.	Saturno et al. 2006
Beta-193511	Final construction	Chicanel	2050±50	192 B.C.–A.D. 55	Saturno et al. 2006
Beta-193513	Final construction	Chicanel	2050±40	174 B.C.–A.D. 50	Saturno et al. 2006

Note: All samples are charcoal.

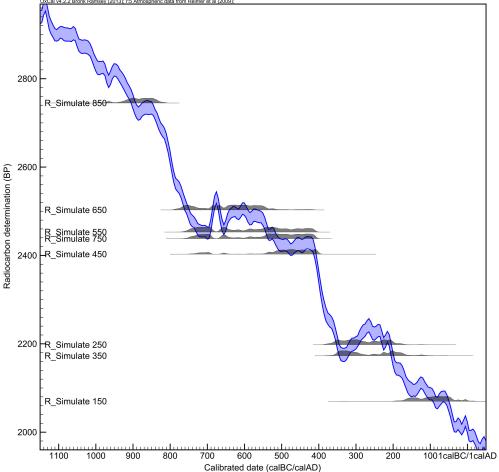
^a Radiocarbon dates newly obtained by Arroyo, which have not been previously published. The measurements are corrected for isotopic fractionation.

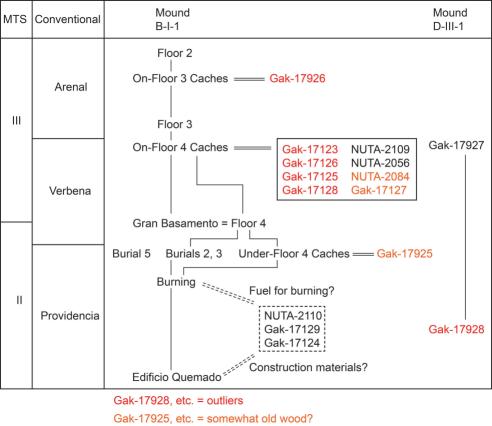
^b Jonathan Kaplan kindly provided these dates. To gain better information on the Kaminaljuyú chronology, Kaplan asked for charcoal samples collected during the Kaminaljuyú Miraflores II Project conducted by Juan Antonio Valdés and Marion Hatch in the 1990s. He did not publish these dates because he had not rechecked their contexts and associated materials. The measurements are corrected for isotopic fractionation.

Supplemental Table 2. Ceramic cross-dating of Kaminaljuyú and relevant regions with diagnostic types and modes.

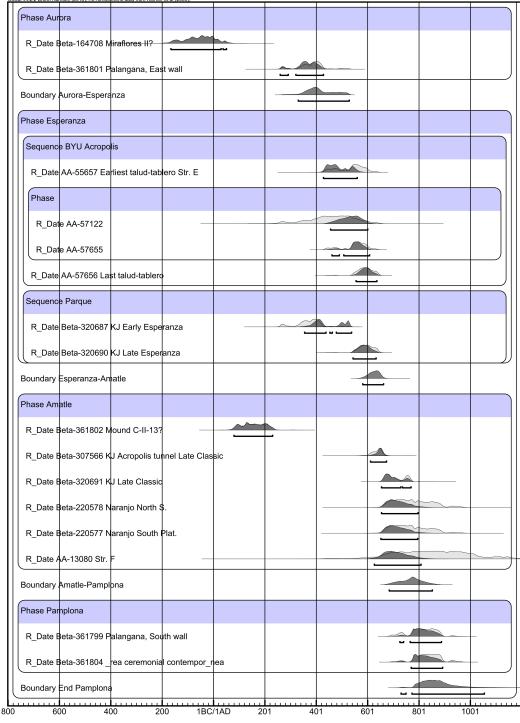
Type/mode	Upper Grijalva	Izapa	Tak'alik Ab'aj	La Lagunita	Ceibal/Maya Lowlands	Salamá	Kaminaljuyú	Chalchuapa
	Kau	Itstapa	Alejos	Lilillá 2	Xate 2		Aurora	Vec
Polychrome	Soyatitan	?	?	Ixcanrio	Ixcanrio		Ixcanrio	No
				Lilillá 1			Santa Clara	Late Caynac
Large mammiform tetrapods	Yes	?	Yes	Yes	Yes		Yes	Yes
	lx	Hato	Ruth			Quej	Arenal	
Large supports	Yes	Yes?	Yes	Yes	Yes	Yes	Yes	Yes
Kaminaljuyú Black-Brown post-slip fine incisions	Tabil	Yes	Yes	No	No	Canchon	Kaminaljuyú B.	Canchon
Verbena White	No	Yes	No	No	No	Chuacus?	Verbena W.	Pajonal
Arenante Coarse Incised	No	No?	No	No	No	No	Arenante	Conchalio
Iberia Orange	No	No?	No	No	Iberia	Chitucan	No	No
Wide horizontally everted effigy rim	San Jacinto	Yes	Yes	Yes	No	No	Yes	No
Wide horizontally everted rim	San Jacinto	Yes	Yes	Yes	No	No	Yes	No
	Hun		Rocío	Noguta 2	Xate 1	Uc	Verbena	Early Caynac
Inner-prong censer	No?(Chiapa de Corzo ^c)	Yes	?	No	No	?	?	?
Izalco Usulután	No	No?	Izalco	?	No	? (Chicuxtin)	Izalco	Izalco
Pseudo-Usulután	Escobal	No?	No	Sacluc?	Sacluc/ Caramba	Caramba?	No	No
		Guillén						
Verbena White	No	No	No	No	No	No	Verbena W.	No?
Kaminaljuyú Black-Brown post-slip fine incisions	No	No	Yes	No	No (Tikal Burials 85 &167 ^b)	Canchon	Kaminaljuyú B.	No
Kaminaljuyú Black-Brown post-slip coarse incisions	No	No	Yes?	Nogaro Variety C	No	Jorgia	Kaminaljuyú B.	Jorgia
Gancho rim	Yes	No	Yes	?	Yes	Yes	Yes	Yes
Utatlán Red and Black Zoned Bichrome	No	No	No?	Utatlán	No	Utatlán	Utatlán	Olomega
Spiked censer	Yalmus	Yes	Yes	Yes?	Corriental	?	No?	No
Inner-handle censer	No?	Yes	?	No	No	Cotoxa	?	Pululuya
						Tol		Late Chul
Conical supports	Yes	No?	Yes?	?	Yes	?	Yes	Yes
Nubbin supports	Yes	?	Yes	?	Yes	?	Yes	Yes
Kaminaljuyú Black-Brown post-slip fine incisions	No	No	Yes	No	No	Yes	Kaminaljuyú B.	No
	Guajil	Frontera	Nil	Noguta 1	Cantutse 2-3		Providencia	Early Chul
Inner-handle censer	No?	Yes	No?	No?	No?	No?	No?	No?
Utatlán Red and Black Zoned Bichrome	Utatlán	No	No?	Utatlán	No	No?	Utatlán	Olomega?
Scalloped ridge	No	No	Yes	Yes	No	Yes	Yes	Yes
Kaminaljuyú Black-Brown post-slip coarse incisions	No	No	Yes?	?	No	Jorgia	Kaminaljuyú B.	Jorgia
Fine Red	Sierra	Mundet	Yes	Roqueño	Sierra	Xinacati	Rofino	Santa Tecla

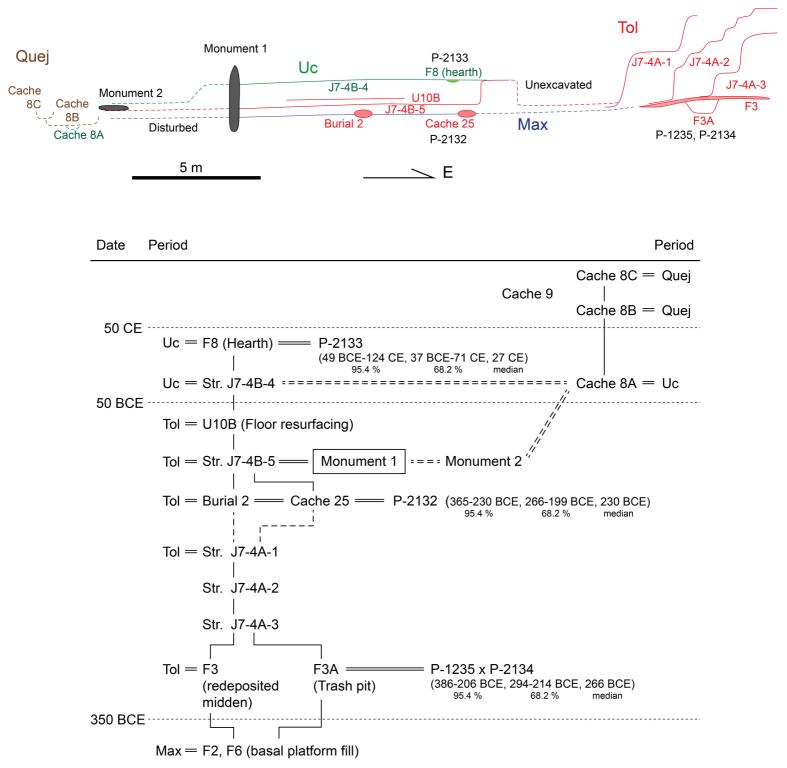
Purple on Fine Red	No	No	No?	No	No	Yes	Morfino	Santa Tecla
Red on Orange	No	No	No?	Otoño	No	Chisub	No	No
abial-medial flange	Yes	No?	No?	?	Yes	Yes	Yes	Yes
Drange Usulután	No	No	No?	Orfeo	No	Chopen	Verbena Red- Orange	Olocuitla
Thick cream Usulután	No	No	No?	No	No	Jicalapa	Usulután Cream Slipped	Jicalapa
Monte Alto Red jar	No	No	Monte Alto	No	No	No	Monte Alto	No
Xuc ware	No	No	Xuc	Trovador	No	No	Xuc	No
	Foko			Santizo 2	Escoba 3- Cantutse 1			
Labial-medial flange	Yes	No?	No?	No?	Yes	Yes	Yes	Yes
Graphite painted	No	No	No?	Stendal	No	Chahai	Morfino	Copinula
Wide horizontally everted rim	Yes	Yes	Yes	Yes	Yes	Yes	No	No
							Late Las	Kal
Glossy/Waxy red/orange	Mundet	Mundet	Naranja	Orfeo	Juventud/ Sierra	Xinacati	Charcas Yes	No
olossy waxy rea/ordinge	Munuet	Wunder	Glossy	Oneo	Suventual Sierra	Anacati	103	NO
Glossy/Waxy cream	Teopisca	Teopisca	No?	Trovador	Pital/Flor	No	Morada	No
Glossy/Waxy black	Libertad	No	Negro Glossy	Nogaro	Chunhinta/ Polvero	Pinos: Guaxpac	Yes	No
Blochy orange resist	Nicapa	No	?	Orfeo	Tierra Mojada	Chopen	Yes	Puxtla
			Ixchiyá	Santizo 1	Escoba 2	Max		
Red on Buff Zoned Bichrome	No	Nasmin	?	Bedelio	No	?	Red on Buff	No
	Enub	Escalón						
Glossy/Waxy red/orange	Kana	No	?	Orfeo	Juventud	Chopen	Yes	No
Glossy/Waxy cream	No	No	?	?	Pital	No	Morada	No
Glossy/Waxy black	Libertad	No	?	Nogaro	Chunhinta	Chimacho	Yes	No
Blotchy orange resist	Nicapa	Nicapa	?	Orfeo	Tierra Mojada	Chopen	Yes	Puxtla
Pre-slip grooves	Yes	Yes	Yes?	Yes	Yes	Yes	Yes	Yes
Pallid/dusky red with post- slip incisions	No	No	?	No	No	No	Pallid Red	Lolotique
Fine Orange	No	No	?	No	Savana	No	No	Savana
Streaky Gray-Brown	No	No	?	No	No	Choven	Streaky Gray- Brown	Jinuapa
Three-pronged censer	Yalmus	Yes?	?	No?	No	Cotoxa	Yes	Cara Sucia
	Dyosan	Duende			Escoba 1-Real 3	Late Xox	Early Las Charcas	Colos
Pallid red with thick post-slip incisions	No	No	?		No	No	Pallid Red	Gualcho
Arevalo Red	No	No	?		No	Chirrum	Arevalo R.	No
Composite silhouette	No	Yes	Yes		Yes	Yes	Yes	Yes
Chamfering	No	?	Yes		Yes	Yes	Yes	?
Pre-slip grooves	Yes	?	Yes?		Yes	Yes	Yes	Yes
Zoned punctuation	No	No?	Yes		No	Yes	Yes	Yes
Tubular spout	No	?	?		Yes	?	Yes?	Yes
Globular jars/bowls with tall tripods	No	?	?		No	Beleju/Pachi caj	Yes	No
Dull-red bowl with applique fillets	No	?	?		Yalmanchac	Chuachua	Red on Natural	No?
Outflared everted red rim with grooves	Dava	?	?		Toribio	No	No	No
Small horizontally everted rim	Yes	?	?		Yes	Yes?	Yes	Yes
	Chacte				Real 1-2			Late Tok

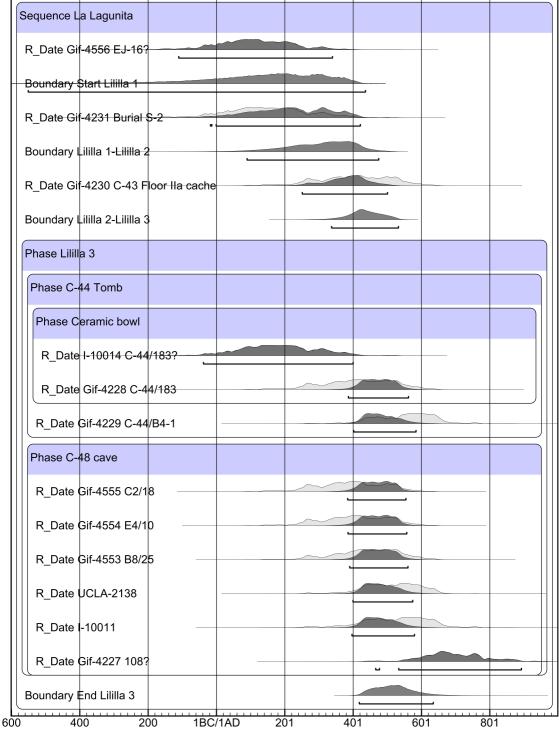

Red rim and vertical line on cream/white	No	?	?	No (Tower Hill ^a)	No	Red on white	Ataco
Necked jar	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Post-slip incisions	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Pattern burnish	No	?	?	No (Patchchacan ^a)	El Congo	No	No
	Jocote	Jocotal			Early Xox		Early Tok
Rocker stamping	No	?			Beleju		No?
Necked bowl	Yes?	Yes?			?		?
Necked jar	No?	?			?		?


^a These types are not present at Ceibal but are reported from Cuello (Kosakowsky 1987). ^b This type is not present at Ceibal or most lowland sites, but imported vessels of this type were found in Burials 85 and 167 at Tikal (Culbert 1993).

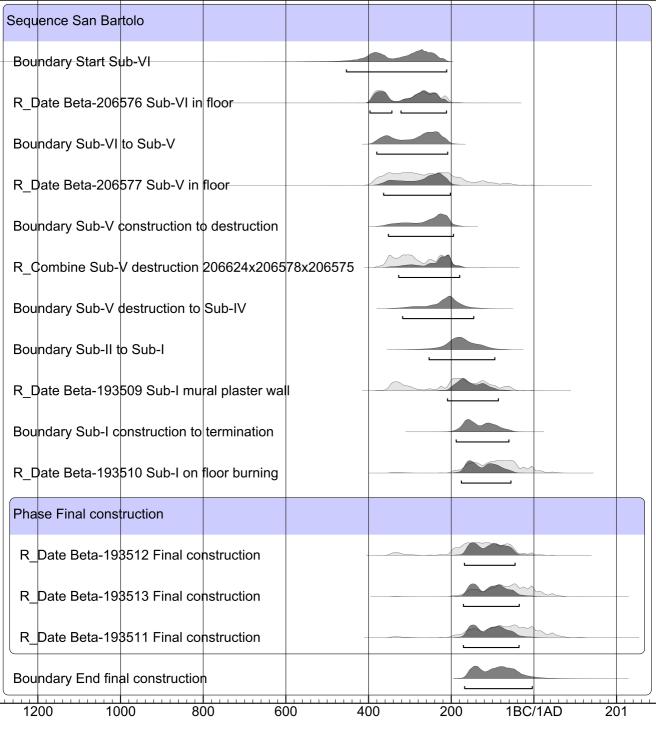
^c This censer type is not reported from the Upper Grijalva River region but is present at Chiapa de Corzo (Lowe and Agrinier 1960).


Years	Kaminaljuyú	Uaxactún
500		
400	Esperanza	Tzakol 3
300		
200	Salcaja	Tzakol 2
100		Tzakol 1
1 ^{A.D.} B.C.	Salcaja	(Holmul II)
100		
200	Salcaja	Matzanel
300		(Holmul I)
400		
500	Santa Clara	
600		
700		
800	Arenal	
900		
1000		
1100		
1200	Verbena	Chicanel
1300	- ··· ·	
1400	Providencia	
1500		
1600	Caratanían	
1700	Sacatepéquez	
1800	Mound C-III-6	
1900		
2000		
2100		Mamom
2200		
2300		
2400		
2500	Las Charcas	
2600		
2700		
2800		
2900		
3000		


OxCal v4.2.2 Bronk Ramsey (2013); r:5 Atmospheric data from Reimer et al (2009);



xCal v4.2.2 Bronk Ramsey (2013); r:5 Atmospheric data from Reimer et al (2009);



OxCal v4.2.2 Bronk Ramsey (2013); r:5 Atmospheric data from Reimer et al (2009);

OxCal v4	2.2 Bronk Ramsev (20	13): r:5 Atmospheric d	lata from Reimer et al I	(2009):									 	
Se	quence Izapa													
	Boundary Star	Duende												
6	Phase Duende													ר
	Phase 30a-D													
	R_Date I-1	656 M30a, E	tc. L, Level 1	-										
	R_Date I-1	6 55 M30a, E	xc. L, Level 1	0-11)
	R_Date I-87	3 M30a, Exc.	b, on floor											Л
I	Boundary Due	nde-Frontera	_											
6	Phase Fronter	a												
			L Ch. 51-0	and the second set										
				on burned p	at		t							
	R_Date I-48	54 M59, Exc.	A, Sec. 5 ash	line	-		_							
	R_Date I-12	8 M25, Exc.	A, primary de	sposit on ster	ile									
	R_Date I-48	5 M59, Exc.	A, Sec. 5-6				<u> </u>							Л
	Boundary Fror	tera-Gap							-					
	, Boundary Gap													
						•								
	C_Date I-875 I		F. 1											
	hase Guillen													
	R_Date I-87	6 M58, Exc. <u>1</u>	on floor?		<u> </u>									
	R_Date I-87	2 M61, Exc. B	, Sec. N4, F.	2 —					-					
	R Date I-87	M60, Exc. A	Level 12, or	floor										
		1 M60, Exc.												
			A, neartri/pos											7
	Boundary Guil	en-Hato												
F	2_Date I-871 I	M30a, B, insic	e partial vess	el? —					<u> </u>					
1	Boundary Hate	-Itstapa												
6	Sequence Itsta	pa												
	Phase Floor	3 fill												
			tue A heleur	Elece 2										
		548 M125a, I												
	R_Date I-1	654 M125a, I	Exc. A, F. 89-	4 -									F	'
	R_Date I-16	53 M125a , Ex	c. A, on floor	β										-)
1	Boundary Itsta	pa-Jaritas									_	_		
1	Date I-1210	M125a, Exc.	A, F. 51			-				~	-			_
	3 Boundary Jarit	as-Kato												
			A E 000											
	Date I-1217		A, F. 20?											
1	Boundary Kato	Loros										-		
I	Cate I-4545	M125b, Exc.	A, F. 63			_				_	\sim			
6	Boundary Lord	s-Peistal							-				 ⊢	
6	Phase Peistal													
		47 M125c, Ex	C B F 84 T	omb 4										
	_													
		44 M125, Exc												フ
1	Boundary Peis	al-Remanso												—
-	Date I-1214	M125a, Exc.	А, Г. <u>1</u> 3 <u>?</u>						_					
1	Date I-4546	M130, Exc. E	3, F. 64, hear	th										
	Boundary End												 	
			200 10	1	 00 60	h	00 2	00 1BC	/1AD 20)1 4()1 6(11	
							2						 	

OxCal v4.2.2 Bronk Ramsey (2013); r:5 Atmospheric data from Reimer et al (2009);

