Table S1. Shark fin trade model implemented in WinBUGS software version 1.4.3 (Imperial College London 2008) using triangular and uniform distributions as well as deterministic calculations. Aquat. Living Resour. 2008, vol. 21, \mathbf{N}° 4, Clarke S.

```
model
{
    shar8090 ~dunif(0.65,0.80)
    shar9195~dunif(0.50,0.65)
    shar9600~dunif(0.44,0.59)
    shar0007~dunif(0.30,0.50)
for (z in 1:11) {
    ratio[z] <- shar9600/shar8090
    }
for (z in 12:16){
    ratio[z] <- shar9600/shar9195
    }
for (z in 17:21){
    ratio[z] <- 1
    }
    ratio[z] <- shar9600/shar0007
    }
for (g in 1:4) {
    rv[g]~dunif(0,1000)
    x[g]<-rv[g]/1000
    gate[g]<-((trimode[g]-trimin[g]) / (trimax[g]-trimin[g]))
    A[g]<-min(x[g],gate[g])
    B[g]<-equals(x[g],A[g])
    C[g]<-equals(B[g],0)
    draw[g]<-(B[g]**(trimin[g]+sqrt(x[g]*(trimode[g]-trimin[g])*(trimax[g]-trimin[g]))))+
                                    (C[g]*(trimax[g]-sqrt((1-x[g])*(trimax[g]-trimode[g])*(trimax[g]-trimin[g]))))
    for (h in 1:27) {
        scaled[g,h] <- draw[g] * (HKimport[h]/HKimport[21])
        share[g,h] <- scaled[g,h] * ratio[h]
                areaprop[g,h] <- share[g,h] * 0.2506
                tunaprop[g,h] <- share[g,h] * tunaAt[[h]
                hookprop[g,h] <- share[g,h] * LLratio[h]
                }
    }
}
#DATA
list(
trimin=c(4.640, 0.320, 0.218,0.358), #use these data for biomass estimates:
#trimin=c(203.63,19.71,8.80,12.13),
trimode=c(10.741,0.485,0.604,0.597), #trimode=c(364.26,38.07,21.95,55.0),
trimax=c(15.762,0.978,1.209,3.896), #trimax=c(619.29,56.02,46.89,85.18),
HKimport=c(2739,2741,2704,2512,2748,2613,2788,3317,3272,3003,
3018,3526,4265,3856,4144,4706,4513,4868,5196,5824,
6788,6435,6513,6960,6142,5887,5337),
tunaAtl=c(
0.200,0.217,0.238,0.213,0.177,0.187,0.163,0.158,0.155,0.159,
0.159,0.154,0.149,0.156,0.152,0.139,0.144,0.125,0.122,0.117,
0.111,0.116,0.096,0.094,0.093,0.099,0.088),
LLratio=c(
0.209,0.209,0.249,0.239,0.250,0.269,0.282,0.246,0.232,0.264,
0.289,0.261,0.263,0.283,0.312,0.295,0.331,0.312,0.285,0.300,
0.297,0.254,0.224,0.242,0.219,0.212,0.251))
```

