Housekeeping genes for RT-qPCR during ovine parthenogenetic embryos

P.S. Nascimento, M.T. Moura, R.L.O. Silva, P. Ramos-Deus, J.C. Ferreira-Silva, J.I.T. Vieira, A.S. Santos Filho, S.I. Guido, C.C. Bartolomeu, A.M. Benko-Iseppon, M.A.L. Oliveira

Supporting information

Supplementary Table 1. Developmental stage of biological material, number of oocytes/ embryos per sample, RNA quantification by Qubit assay, and RNA observance by Nanodrop 2000 C.

Developmental	Samples	RNA quantification	Absorbance
Stage	(n)	(ng μL ⁻¹)	(260-280)
Mature egg	50	6.5	1.74
	50	6.0	1.53
	50	4.4	1.35
Cleavage-stage	20	4.5	1.44
	20	3.6	1.69
	20	10.9	1.46
Morulae	10	3.4	1.50
	10	2.4	1.49
	10	2.8	1.93

Supplementary Figure 1. Melting curves for candidate reference genes (*GAPDH, H3F3A, PPIA, RPL19, TBP, UBB, and YWHAZ*) and target genes (*DPPA3* and *ZFX*).

Supplementary Figure 2. Standard curve for candidate reference genes (*GAPDH, H3F3A, PPIA, RPL19, TBP, UBB,* and *YWHAZ*) and target genes (*DPPA3* and *ZFX*).

Supplementary Figure 3. Alignment of ovine (*Ovis aries*) and bovine (*Bos taurus*) *DPPA3* mRNA orthologs and annotation of regulatory sequences. Red: open reading frame (ORF). Green: polyadenilation sites (PA; longer PA site predicted by RegRNA 2.0 software and the shorter PAs described by Thélie *et al.*, 2007). Blue: CPE-like sequences described by Thélie *et al.*, 2007. Orange: Musashi Binding element predicted by RegRNA 2.0 software. Black: ATTTA motif described by Thélie *et al.*, 2007.

CLUSTAL multiple sequence alignment by MUSCLE (3.8)

XM_012175459.3 NM_001111109.2 NM_001111108.2	ACGCGGGGCTCCTTGAACTCTAGCACTTTAAGCCCAGTTCACAAACCAGCAGCCATCTCT GCGGGGATGGCTACTCTTCATCCCCT
XM_012175459.3 NM_001111109.2 NM_001111108.2	ACAAGCAGAGTTTGAAAAGCAATGGATTTTTCAGGCAACCTCAGGAAGACAGAACCACGGA ACAAAAGCAGT
XM_012175459.3 NM_001111109.2 NM_001111108.2	GGCGCCTTGTAAAATCTCTACCCTACTTGACAGAGGGCATTATTACTCTCTCCTATTAGT
XM_012175459.3 NM_001111109.2 NM_001111108.2	CCCTCTCCCTCT CCCCTAATAGGACTACGCCCATTCACCTTATCCTTTTACTCATTAGTCATTTACA -CCCAAATGTCAACTTATGCTTT ** *
XM_012175459.3 NM_001111109.2 NM_001111108.2	ATAGGCTGGCTGATTGGCTTATCTGTTGTTTTTAGGAGGAAACAGGAGACTTTTACTCTC
XM_012175459.3 NM_001111109.2 NM_001111108.2	ACCACGGCGTGTCAGCCTGGGTTTTTTTCCCCCCTTTCTTAGCTC ATAGT CTTCCAGG ACCACGGCGTGTCAGCCTGGGTTTTTTTCCCCCCCTTTCTTAGTTC ATAGT CTTCCAGG CTGCTTTTGTTC ATAGT CTTCCAGG ** ** * **
XM_012175459.3 NM_001111109.2 NM_001111108.2	CTTCTCTGGAGCAGTTTGAGCCTACAGCATCGCCTTCCACTGGCACCCAGAGATCTAGGA CTTTTTTGGAGCAGTTTGAGCCTACAGCATCACCTTCCACTGGCACCCAAAGATCTAGGA CTTTTTTGGAGCAGTTTGAGCCTACAGCATCACCTTCCACTGGCACCCAAAGATCTAGGA *** * *****************************
XM_012175459.3 NM_001111109.2 NM_001111108.2	GGCGCTTCGAGCTGTGACTAGACTTCC ATGGATTCATCAGAAGATAACCCAACCTGGAC GGAGCTTCAAGCTGTGACTAGACTTCC ATGGATTCATCAGAAGATAACCCAACCTGGAC GGAGCTTCAAGCTGTGACTAGACTTCC ATGGATTCATCAGAAGATAACCCAACCTGGAC ** ***** ***************

XM_012175459.3 NM_001111109.2 NM_001111108.2	CCTAGACTCTCTGAAAACATCCATCAGTGACGCTTCCCAGGCAATGCAGGTTTCCACTCA CCTAGAGTCTCTGAAAACATCCATCGATGACGCTTCCCAGGCAATGCAAGTTGCCACTCA CCTAGAGTCTCTGAAAACATCCATCGATGACGCTTCCCAGGCAATGCAAGTTGCCACTCA ****** ******************************
XM_012175459.3 NM_001111109.2 NM_001111108.2	ACTCTCTGAAATGTTAGCAACAAACCTCAGTAACTTGACTCTCAACCCAAGTATCAAGTT ACTCTCTGAAATGTTAGCAACGAACCTCAGTAACTTGACTCTCAACCCTAGTATCAAGTT ACTCTCTGAAATGTTAGCAACGAACCTCAGTAACTTGACTCTCAACCCTAGTATCAAGTT **********************************
XM_012175459.3 NM_001111109.2 NM_001111108.2	GCCGTATCTACCAGAATACCCATCTCAACCGACTGGGCAGTTACCTAGTGAGAAAACACC GCCATATCTACCAGAATACCCATCTCAACTGACTGGGCAGTTACCTAGTGAGAAAACACC GCCATATCTACCAGAATACACATCTCAACTGACTGGGCAGTTACCTAGTGAGAAAACACC *** ***************************
XM_012175459.3 NM_001111109.2 NM_001111108.2	CAATAGGCGGAGAGGAGTAAGAACGCTGTTGAGTGAGCGGAGATACAGGATGCAAAAGTT CCATAGGCGGAGAGGGGTAAGAACGGTGTTGAGTGAGCGGAGGTACAGGATGCAAAAGCT CCATAGGCGGAGAGGGGTAAGAACGGTGTTGAGTGAGCGGAGGTACAGGATGCAAAAGCT * ************ ******** *************
XM_012175459.3 NM_001111109.2 NM_001111108.2	GATTGAATCTCTCAGACTTCGCTATGCCAAAGGAGTTCCTCGTTCTGACTCTCAAAGAGA GATTGAATCTCTCAGACTTCGCTATGCCAAAGGAATTCCTCGTTCTGACTCTCAAAGACA GATTGAATCTCTCAGACTTCGCTATGCCAAAGGAATTCCTCGTTCTGACTCTCAAAGACA *******************************
XM_012175459.3 NM_001111109.2 NM_001111108.2	ACTACAGCAGCAGGAGGACACTGAGATTCGATCAAGAGTGCGAAGATTCCAGTGTACCTG ACTACAGCAGCAGGAGGACACTGAGATTCGATCAAGAGTGCGAAGATTCCAGTGTACCTG ACTACAGCAGCAGGAGGACACTGAGATTCGATCAAGAGTGCGAAGATTCCAGTGTACCTG ***********************************
XM_012175459.3 NM_001111109.2 NM_001111108.2	ТАGTTATTGCCAGTTTAAGAGAAATCCTTCTGATGATACTTATGAGAATTATTACAATAC TAGTTATTGCCAGTTTAAGAGAAATCCTTCTGATGATAATTATGAGAATTATTACAACAC TAGTTATTGCCAGTTTAAGAGAAATCCTTCTGATGATAATTATGAGAATTATTACAACAC *************************
XM_012175459.3 NM_001111109.2 NM_001111108.2	AACATACAGTAATTATGCCATGGAATCGGATGAGTCATAA, AACATACAGTAATTATGCCATGGAATCGAATGAGTCATAA, CCTTATTCTTGTACTGTTC AACATACAGTAATTATGCCATGGAATCGAATGAGTCATAA, **********************************
XM_012175459.3 NM_001111109.2 NM_001111108.2	TCTTGCTGGTAATTTTTAGGATCATTATGAAGCAGCTTGGGAAAGATTGTACCAATATTT TCTTGCTGGTAA-TTTTAGGATCATTATGAAGCAGCCTGGGAAAGATTGTACCAATATTT TCTTGCTGGTAA-TTTTAGGATCATTATGAAGCAGCCTGGGAAAGATTGTACCAATATTT *****
XM_012175459.3 NM_001111109.2 NM_001111108.2	GATAA GTATG TGTAAGTTTGTCTTTTTAC GATAA ATTTA TGTAAGTTTGTCTTTTTCAC GATAA ATTTA TGTAAGTTTGTCTTTTTCAC GATAA ATTTA TGTAAGTTTGTCTTTTTCAC ****** * * *************************
XM_012175459.3 NM_001111109.2 NM_001111108.2	TTAACTTATGAGGAATCTATATGTAGCTTGGATTTGAAATGATTTGAATACACTACAC TTTTAACTTAGGAGGAATCTATATGTAGCTTGGAATTGAAATGACTTGAATACACAC TTTTAACTTAGGAGGAATCTATATGTAGCTTGGAATTGAAATGACTTGAATACCCAC ******** **************************
XM_012175459.3 NM_001111109.2 NM_001111108.2	TAGTTCCACTTGGATCTGACACCATGAAGTACTAGTTAAGTCTCAGGTATTGCCTGTTTC TAATTCCACTTTGATCTGACACCATGAAGTACTAATTAAGTCTCAGGTATTGCCTGTTTC TAATTCCACTTTGATCTGACACCATGAAGTACTAATTAAGTCTCAGGTATTGCCTGTTTC ** ******** ***********************
XM_012175459.3 NM_001111109.2 NM_001111108.2	TTAAACCTGAAGTTGAAACTCAATATCAAGAATTTGAAACAAATTAACTTGGGAAGGAA

XM_012175459.3 NM_001111109.2 NM_001111108.2	GTGAAGATAACATTGGCTGGCTTGGCCAGACCATTAT
XM_012175459.3 NM_001111109.2 NM_001111108.2	TTTTTTGATGTGCTGTTTCAGTTTTCAGTAGCAAATAGATGTGTTTATAGAAGATCTTAA TTTTTTGATGTGCTGTTTCAGTTTTCAGTAGCAAATAGATGTGTTTATAGAAGATCTTAA
XM_012175459.3 NM_001111109.2 NM_001111108.2	TAAAACTTGAGACTTATTTGAGTAACTTTAAGATAAATCCTTGTTCTTATCTTAGACTTG TAAAACTTGAGACTTATTTGAGTAACTTTAAGATAAATCCTTGTTCTTATCTTAGACTTG
XM_012175459.3 NM_001111109.2 NM_001111108.2	ТТТТТGCTAGCTATGTATTAAATGAATAATACTTACCCCCATCATGTTCTCAGGATGTAA ТТТТТGCTAGCTATGTATTAAATGAATAATACTTACCCCCATCATGTTCTCAGGATGTAA
XM_012175459.3 NM_001111109.2 NM_001111108.2	ATATATCTGGT TTCTAAT TTTTTTTTTTTTTTTGGC TTCTAAT TTTTGTGATAC ATATATCTGGT TTCTAAT TTTTTTTTTTTTTTTTTGGC TTCTAAT TTTTGTGATAC
XM_012175459.3 NM_001111109.2 NM_001111108.2	TGTCCTGTTGG AATAAA TTTACACATTTGAGG TGTCCTGTTGG AATAAA TTTACCCATTTGAGGTAAGGT